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Abstract 
 

Microarray technology allows measurement of the expression levels of 

thousand of genes simultaneously. Several gene set analysis (GSA) methods 

are widely used for extracting useful information from microarrays, for 

example identifying differentially expressed pathways associated with a 

particular biological process or disease phenotype. Though GSA methods like 

Gene Set Enrichment Analysis (GSEA) are widely used for pathway analysis, 

these methods are solely based on statistics. Such methods can be awkward to 

use if knowledge of specific pathways involved in particular biological 

processes are the aim of the study. Here we present a novel method 

(Knowledge Based Gene Set Analysis: KB-GSA) which integrates knowledge 

about user-selected pathways that are known to be involved in specific 

biological processes. The method generates an easy to understand graphical 

visualization of the changes in expression of the genes, complemented with 

some common statistics about the pathway of particular interest.  
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Introduction 
 
The microarray technology has become a vital tool in biological and biomedical research. 

Global gene expression analysis is now widely used for exploring the differences between 

samples e.g. normal and diseased tissues. Differentially expressed genes (DEG) from 

microarray experiments (static and time series experiment [1]) are commonly identified 

using statistical methods. After determining a list of DEG, one can correlate these genes 

to known pathways and identify pathways that are induced under the specific biological 

condition studied [2].  

  

Methods for pathway analysis are mainly based on one of two approaches viz. Individual 

Gene Analysis (IGA) and Gene Set Analysis (GSA) [3]. IGA methods aim at identifying 

individual genes whose changes in expression are associated with phenotype(s) (e.g. 

normal and diseased tissues). Significance Analysis of Microarray (SAM) [4] is one of the 

statistical methods that are widely used for identification of DEG [3, 5]. The GSA 

methods identify functionally related pathways that are linked to a disease or a specific 

biological process. GSA methods select differentially expressed pathways by ranking the 

pre-defined gene sets [3, 6]. The GSA methods identify gene sets with subtle but 

coordinated expression [3].  

 

Related work 
The GSA methods are aimed at identifying affected biological processes or pathways in a 

microarray experiment. Recently several GSA methods have been proposed for pathway 

enrichment analysis viz. Global Test [7], Significance Analysis of Function and 

Expression (SAFE) [8], sigPathway [9] – just to name a few. The Global Test [7] 

determines whether predefined  gene sets/pathways are differentially expressed and 

determines if the global gene expression patterns of differentially expressed gene set are 

related to some clinical outcome of interest, for example, Acute Lymphoic Leukemia or 

Acute Myeloid Leukemia. The linear models are used in Global Test to calculate ‘Q-

statistic’ which describes relationships between gene expression profiles in a gene set and 

the clinical outcomes. The SAFE assess significant changes in gene expression across 

experimental conditions [8]. The assessment in SAFE is carried out by using local and 

global statistics. The SAFE uses local statistics like t-test to measure association between 
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gene expression profile and phenotypes. Then the SAFE uses global statistics like 

Wilcoxon rank sum to evaluate difference between local statistics of the given gene set 

and that of the reference set. The sigPathway [9] was developed by Tian et al and it 

determines whether a pathway is coordinately related with a phenotype (wild type and 

mutant).  

 

However, the Gene Set Enrichment Analysis (GSEA) [10-11] is one of the first proposed 

GSA methods and is still commonly used for pathway analysis. The GSEA is based on the 

hypothesis that none of the predefined gene sets are associated with the phenotype. The 

Kolmogorov-Smirnov statistical test is used as scoring function to conclude which gene 

sets/pathways contain high scoring DEG [10]. The output from the GSEA is an ordered 

list of pathways/gene sets that are differentially expressed in the investigated dataset. 

However, one cannot explore a particular pathway if it has a low ranking. Ranking of the 

pathway reflects extent of dysregulation of the pathway. Top ranking suggest larger 

changes in expression and vice versa. This is a limitation in those cases where you have 

information about which pathway(s) you want to analyze in detail under a certain 

biological stimuli. Therefore, instead of ranking of pathways, prior knowledge regarding 

pathways and the biological processes which they regulate can be utilized for the pathway 

analysis. The use of prior knowledge is likely to produce more focused and relevant 

output that is easier to interpret and understand than the output received from GSEA.  

 

Problem description and motivation  

Microarrays measure the expression levels of thousands of genes simultaneously. The 

challenge is to extract useful information from all these expression profiles and make a 

biological interpretation of the results. One approach is to investigate which pathways that 

are induced in the gene expression dataset. Methods based on gene set analysis (GSA) are 

widely used for identification of differentially expressed pathways and elucidation of 

biological processes [12]. One example of such a method is Gene set enrichment analysis 

(GSEA) [10], which scores gene sets with slight but harmonized changes in expression or 

gene sets with differential expression. But ranking of pathways becomes immaterial if one 

has prior knowledge about pathways that are known to be involved in a specific biological 

process. Therefore, there is a need to develop a new approach as a complement to existing 

methods that can be utilized for pathway analysis when prior knowledge regarding which 

pathways those are relevant to elucidate is available. The purpose of this approach is to 
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aid the user with simple statistics and graphical visualization of the changes in expression 

of the genes in a pathway of particular interest.   

 

Hypothesis  

We hypothesize that prior knowledge of which pathways that are involved in a specific 

biological process can be utilized for pathway analysis.  

 

Aims and objectives  

The aim is to develop a supportive tool for pathway analysis that uses prior knowledge of 

user selected pathways that are important in a specific biological process. The First 

objective of this work is to identify which genes that are involved in a particular pathway. 

There are databases like Kyoto Encyclopedia of Genes and Genomes (KEGG) [13] that 

store various kind of information about pathways and their genes which can be utilized for 

the analysis. The Second objective is to develop an algorithm to evaluate gene expression 

for pathways involved in various biological processes by employing simple statistical 

measures and graphical representation of the expression values. The Third objective is to 

illustrate the usability of the tool by analyzing a real dataset from hepatocyte 

differentiation.  

 

The overall aim is to present a new method called Knowledge Based Gene Set Analysis 

(KB-GSA) for pathway analysis. KB-GSA utilizes prior knowledge of pathways and 

biological processes and generates a user friendly statistical and graphical visualization of 

changes in expression levels of genes involved in a pathway.  

Material and Methods 
 
Gene expression data  

The performance of the GSEA and the proposed novel method was tested on a real data 

set from Human Embryonic Stem cell lines that are available in NCBI Gene Expression 

Omnibus database (GEO; http://www.ncbi.nlm.nih.gov/geo/) and which is accessible 

through the GEO series accession number GSE13460. The dataset consists of gene 

expression levels from two groups of samples representing duplicate samples of wild type 

miR-122 (control) and triplicate samples expressing mutant miR-122 (treatment), carrying 

mutation in 3 nucleotides within the seed sequence.   
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GSEA analysis  

The GSEA method was applied using default values for all parameters except that the 

metric “ratio of classes” was used to rank the genes according to how their expression 

levels correlate with phenotypes (wild type and mutant type). The recommended FDR 

(maximum of 25%) was used to identify significant gene sets. The gene sets were 

obtained from the Molecular Signature Database (MSigDB) v2.5 (April 2008 release).    

 

KB-GSA analysis  
The proposed novel method was implemented in the programming language R (v2.11.1). 

An analysis starts with uploading a microarray dataset, a predefined dataset (set of genes 

involved in a pathway to be analyzed) and cut off threshold value (fold change). After 

uploading the inputs, KB-GSA computes DEG (up and down regulated genes). DEGs are 

calculated by using fold change (FC) between the expression values of samples from two 

classes (e.g. wild type and mutant samples). Two-fold or greater differences in expression 

are generally required for achieving statistically significant results. Thus the differentially 

expressed genes in a pathway are identified with threshold of FC=2 or more. The R-code 

for KB-GSA can be found in the Appendix 1. 
 

 

Where, Eka and Ekb are the expression values for the gene k in state ‘a’ and state ‘b’. 
 

Pathway selection  

Pathways for the KB-GSA analysis were selected from two pathway databases viz. 

KEGG [14]: Wingless signaling pathway (WNT), Cytokine-cytokine receptor interaction 

(CCR), Transforming growth factor beta pathway (TGF), Hedgehog signaling pathway 

(Hh), Janus kinase/signal transducers and activators of transcription (JAK/STAT) 

pathway, Mitogen-activated protein kinase (MAPK) pathway, Hepatocyte Growth Factor 

(HGF), Mammalian target of rapamycin pathway (mTOR), Vascular Endothelial Growth 

Factor (VEGF), Biocarta: Integrin Signaling Pathway and AKT Signaling Pathway.  
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Results and discussion  
 
To illustrate the capability of the KB-GSA to give an ‘easy to understand’ output of the 

pathway analysis a dataset from hepatocyte differentiation [15] was used as an example. 

For comparison, the GSEA method was also applied on the same dataset. The dataset 

consists of 2 controls and 3 treated samples. The aim of the original study [15] (for which 

this data set was generated) was to determine whether miR-122 over expression in hESCs 

can direct the differentiation towards ‘liver like’ cells. The miR-122 is a liver specific 

microRNA. Increased levels of miR-122 during embryonic development [16] suggest that 

miR-122 might play implicit role in liver tissue specification and development. Several 

studies have shown that specific pathways, like WNT [17], HGF [18], Hedgehog [19], 

TGFβ [20], are associated with signaling processes during tissue specification and 

development [21]. Signaling pathways were selected for KB-GSA analysis (2 from 

BioCarta and 9 from KEGG [14]) that are known to be involved in tissue specification 

and development [21-23].  

 
The GSEA results  

The GSEA algorithm analyzes whether a dataset have genes that are related to a 

phenotype. It ranks the genes with respect to the difference between the expressions of 

two groups. The GSEA method was applied on the dataset from hepatocyte differentiation 

[15] to search for enriched gene set(s) from the curated gene sets (C2) of MSigDB. The 

MSigDB database is a collection of curated gene sets relevant for pathway analysis.[10]. 

The settings of the GSEA parameters were kept as default, except that the metric “ratio of 

classes” was used to rank the genes and how their expression levels correlate with 

phenotypes [10-11]. GSEA evaluates the distribution of genes in the queried gene set 

using statistics like Kolmogorov-Smirnov test, Enrichment score (ES), normalized 

enrichment score (NES). Positive (close to 1) ES indicates over-representation (up-

regulation) of genes at the top of the ranked gene list while negative ES (close to -1) 

represents enrichment of the genes at the bottom of the ranked gene list (down-

regulation). NES are obtained by normalizing the ES for enriched gene sets with different 

gene set sizes. Thus, NES is used for comparing results between different gene sets. 

Enriched gene sets with FDR less than 25% are likely to produce interesting hypothesis 

and are first choice for additional analysis.    
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 GSEA identified 545 gene sets with positive ES score and 874 gene sets with negative ES 

score. The fact that none of the gene sets was found to be significant at FDR < 25% 

underlines the result obtained by Tzur et al [15]  that over-expression of miR-122 does not 

have significant effects on hESCs differentiation. The list of gene sets identified as 

enriched by the GSEA contains several pathways having no obvious connection to 

signaling processes during cell development, e.g., PGC1A PATHWAY (ES=0.55, 

NES=1.51) which is coupled to tissue specific co-activator, while pathways known to be 

related to such signaling processes did not occur in the list of pathways found enriched by 

GSEA, e.g., Hepatocyte Growth Factor (HGF) pathway and AKT pathway. 

 
The KB-GSA results  

The KB-GSA method was employed to test the effect of miR-122 on the genes of 

pathways known to be involved in hepatocyte differentiation signaling process. Instead of 

using all gene sets in a database, only those pathways which are known to be relevant to 

the cell signaling process [21-23] were selected like WNT  [17], HGF [18], Hedgehog 

[19], TGFβ [20] and Notch [24]. 

 

Results from the analysis are summarized in the Table 1. Two fold or greater differences 

in up-regulation and down-regulation in expression are, in general considered as 

statistically significant. At FC=2, the KB-GSA identified four pathways viz. Wingless 

signaling pathway (WNT), Cytokine-cytokine receptor interaction (CCR), Transforming 

growth factor beta pathway (TGF), Hedgehog signaling pathway (Hh). But the numbers 

of DEG in each pathway are less than 1%, suggesting that none of the selected pathways 

are enriched in the hepatocyte differentiation dataset. Most of the selected pathways 

contain 30% or more DE genes at FC=1.2. But the FC=1.2 is very less to be considered as 

statistically significant. Thus, the overall pathways analysis shows that the mir-122 had no 

or very little effect on hepatocyte differentiation. 
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Table 1.  Summary of KB-GSA for hepatocyte differentiation data. The up and down regulated 
genes in the selected pathways at FC=1.2 and FC=2 are enlisted.  

WNT: Wingless signaling pathway; CCR: Cytokine-cytokine receptor interaction; TGF: 
Transforming growth factor beta pathway; Hh : Hedgehog  signaling pathway; JAK_STAT : Janus 
kinase/signal transducers and activators of transcription (JAK/STAT); MAPK: Mitogen-activated 
protein kinase; INT: Integrin Pathway; HGF: Hepatocyte Growth Factor; mTOR: Mammalian 
target of rapamycin pathway; VEGF: Vascular endothelial growth factor; UP: up-regulated, DN: 
down-regulated; %: percentage of affected genes; # genes: number of genes in the pathway; FC: 
fold change. 
 

Figure 1 illustrates a graphical representation of the output from KB-GSA, taking WNT 
signaling pathway as an example. The graphical output shows the number of genes that 
identified differentially expressed in a pathway at specified threshold by KB-GSA. The 
graphical representation for the other tested pathways can be found in Appendix 2.   

  
            1a                   1b  

Figure 1. Illustrating effect of miR-122 over-expression on WNT signaling pathways at FC=1.2 
(1a) and 2(1b). *Red dots: up-regulated genes; *Blue dots: down-regulated genes, *green dots: 
pathways genes, *gray dots: total dataset from hepatocyte differentiation 
 

Gene set/data set # 
Genes 

FC (1.2) FC (2.0) 
UP DN % UP DN % 

Hepatocyte differentiation dataset  22215 1863 2596 20 22 46 0.3 
WNT 149 20 30 34 1 1 1 
CCR 259 48 44 36 1 - 0.4 
TGF 85 23 19 49 1 - 1 
Hh 38 5 14 33 - 1 2 
MAPK 257 43 56 39 - -  
JAK_STAT 157 18 27 29 - -  
INT 25 5 2 28 - -  
HGF 37 11 5 42 - -  
mTOR 51 6 9 29 - -  
AKT 24 2 7 38 - -  
VEGF 73 8 15 32 - -  
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Even though the group gene analysis (GSA) is the main focus, it is often interesting to 

look at individual genes within the group. Such single genes within the selected pathways 

can be identified using KB-GSA. DEG in the selected pathways identified by KB-GSA 

are manually compiled in Table 2.   

Table 2. Differentially expressed genes in different pathways in hepatocyte differentiation  

WNT: Wingless signaling pathway; CCR: Cytokine-cytokine receptor interaction; TGF: 
Transforming growth factor beta pathway; Hh: Hedgehog signaling pathway; JAK_STAT: Janus 
kinase/signal transducers and activators of transcription (JAK/STAT); MAPK: Mitogen-activated 
protein kinase; INT: Integrin Pathway; HGF: Hepatocyte Growth Factor; mTOR: Mammalian 
target of rapamycin pathway; VEGF: vascular endothelial growth factor; FC: fold change; UP: up-
regulated genes, DN: down-regulated genes. 

 
The overall behavior of the dataset from hepatocyte differentiation [15]  due to miR-122 

over-expression can be visualized by the scatter plots (Figure 2) at different fold change 

thresholds viz. FC= 1.2 and FC=2. Figure 2a shows that the miR-122 had very little effect 

on the hepatocyte differentiation (0.3% DE genes) at FC=2 underlying the results of Tzur 

et al. [15]. 

 

Gene 
set/data set 

FC 1.5 FC 2.0 
UP DN UP DN 

WNT C1D OAZ1 CSRP1, C1D, 
PPP2R1A 

RPL35,    TAF10 , 
C19orf50,    OAZ1 , 
HSPA9 

CCR 

RPL11 ,  NARS ,RPL17,  
ARF1,  , HSP90B1, 
YWHAZ,     DNAJB1 ,  
UBE2L3 , SF3B3  ,   CALU 
, SARS 

GDI2  ,  RPL12 ,  
GNAS  , FAM120A ,    
PSMB7 

SF3B3 - 

TGF 
YY1 ,  NONO  ,  GUK1,     
WDR1 ,  ATP6V0B ,   
KARS,      RPS25 

TARDBP    RPL6     
BAT1 KARS - 

Hh - CAPNS1,   RPL35  RPL35 

MAPK 
RPS24 ,  P4HB  ,  DNAJB1   
XBP1 ,   KDELR2 ,   SKP1     
GNB1  ,  MGEA5 

TAF10,    NDRG1,    
GSN,      DNAJA1,   
RHOC. 

- - 

JAK_STAT PRKAR1A ,  SF3B3 GDI2,  RPL17   
RPL32 - - 

INT PARK7 - - - 
HGF RPL18      DAD1 - - - 
mTOR ERH - - - 
AKT - GDI2 - - 
VEGF - - - - 
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2a.                     2b. 

Figure 2. A scatter plot illustrating the overall effect of miR-122 on hESCs differentiation at fold 
change (FC) 2, and 1.2. The distance between boundaries, linear to the diagonal is equal to the 
threshold fold change *Red dots: up-regulated genes; *Blue dots: down-regulated genes, *green 
dots: unchanged genes at threshold fold change.  
 

The total numbers of DEG (at FC=1.2) in the hepatocyte differentiation data are more 

than the number of DEG in the selected pathways. The difference between DEG suggests 

the possibility of other pathways regulating hepatocyte differentiation and other biological 

process. On the other hand, very few genes are differentially expressed at FC=2 

suggesting that miR-122 had no effect on hepatocyte differentiation.   

Conclusion 
 
Although several GSA methods exist for pathway analysis, very few of them consider 

prior biological knowledge of biological processes, diseases and related pathways. The 

challenge for a GSA method is to filter out pathways that are relevant to the expression 

dataset to be analyzed. Often biologists performing microarray analysis have a few 

specific pathways in mind in which they have particular interest in. Thus, occasionally it 

is sensible to investigate only few such pathways where previous knowledge is available.  

 
This study describes a pathway analysis method (KB-GSA) for analysis of microarray 

data. The method is based on combining prior knowledge of pathways related to a specific 

biological process with simple statistical measure. KB-GSA is useful for visualizing 

microarray gene expression data with simple statistics and easy to understand pathway 
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analysis results. Special attention is given to visualization of the results to make the 

interpretation easy. The graphical output consists of a scatter plot showing the number of 

DEG at specified cutoff threshold for each investigated pathway. Overall, the proposed 

method provides biologists with an efficient novel strategy that uses prior knowledge of 

pathways for analysis of microarray data. 

Future work  
 

Future work will mainly cover the development the KB-GSA algorithm to analyze time 

series microarray data. Currently the KB-GSA is designed to analyze microarray dataset 

using fold change as a statistical measure. Results from different statistical measures, viz. 

t-like tests, can be compared. The tool is aimed at users with a biological background. 

However, currently, the algorithm requires knowledge of R-programming. The algorithm 

can be simplified and made interactive by providing a graphical user interface.    
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Appendix  1.   

R-code and tutorial for KB-GSA 

The appendix describes how the KB-GSA algorithm works. The functionality of the KB-
GSA is demonstrated using hepatocyte differentiation dataset available through GEO 
(GSE13460). The experiment contains 2 normal samples while 3 sample expression 
mutant miR-122 as described in Tzur et al. [15].  The script and input material can be 
downloaded from http://tinyurl.com/38mmdrt . 

 

Input: expression data set, pathway genes and fold change (cutoff threshold) 

Output: differentially expressed genes (percentage and individual genes) 

 

 The analysis starts with uploading expression dataset.  
       

#loading expression data 
> data_exp <- read.table("processed_data.txt", 

  sep = "\t", header = T, as.is = T, dec = ".") 
 

 The next step is to calculate mean of expression values for both samples. Since the data 
available at GEO is already log2 transformed, for calculating mean it was transformed to 
normal scale.  

 
#calculating mean for MUT and WT 
 
      #for MUT samples  

  >xMUT<-grep("^MUT", colnames(data_exp)) 
  >xxMUT<-2^data_exp[,xMUT] 
   
  >meanMUT<-apply(xxMUT,1,mean)  
   
                        # adding mean column to data_exp 
  >data_exp["meanMUT"]<-meanMUT 
   
 
      #for WT samples 
  >xWT<-grep("^WT", colnames(data_exp)) 
  >xxWT<-2^data_exp[,xWT] 
  >meanWT<-apply(xxWT,1,mean)  
  
       # adding mean column to data_exp 
  >data_exp["meanWT"]<-meanWT 
 

 Log2 transformation of mean values 
   #log transformation   

  >logMUT<-log2(meanMUT)  
  >data_exp["logMUT"]<-logMUT 
   

http://tinyurl.com/38mmdrt�
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  >logWT<-log2(meanWT)  
  >data_exp["logWT"]<-logWT 
 
 

 Second input to the algorithm is the genes of pathway to be analyzed. 
>x11() 

 
#2. laoding pathway  

  >data_pathway <- read.table("gene_WNT.txt", 
  sep = "\t", header = T, as.is = T, dec = ".") 
  

 The algorithm then plots identifies common genes between expression dataset and 
pathway genes  

#3.WHICH: printing mean for common genes by WHICH 
>index_nor_GS<-
which(data_exp[,"gene_symbol"]%in%data_pathway[,1]) 

 
 Algorithm then plots all genes and common genes in different colors  

  
#4 PLOTTING graphs 

 
 Here we set cutoff threshold  

 
#setting cutoff threshold 

      >threshold<-log2(2) 
 

#plotting general GRAY PLOT 
   
  > plot(logWT,logMUT, col = grey",cex=0.6,xlim=c(2,16),ylim=c(2,16), 
     main=" WNT pathway (2 fold)", col.main="red",  
  col.sub="blue",xlab="log2 mean expression (wt-miR122)",  
     ylab="log2 mean expression (mut-miR122)", col.lab="blue4", 
  cex.lab=1.5, cex.main=1.5) 
 
 
  >abline(a=threshold/2 , b = 1, col = "orange",lwd=1.8) # UP LINE 
 
  >abline(a=-threshold/2 , b = 1, col = "orange",lwd=1.8)#DOWN LINE 
  
 
#PLOTING mut and wt values in gray plot 
 > x1 <- data_exp[index_nor_GS,"logWT"] 
 > y1 <- data_exp[index_nor_GS,"logMUT"] 
 
 > points(x1,y1,col="green",cex=0.6) 
 
#ploting up reg 
 > nor_GS<-data_exp[index_nor_GS,] 
  
 > nor_GS_FC_WT_MUT<-nor_GS[,"logMUT"]-nor_GS[,"logWT"] 
   
 > upReg<-which(nor_GS_FC_WT_MUT>threshold/2) #setting threshold condt 
 
 > x2 <- nor_GS[upReg,"logWT"] #x coordinate for up 
 > y2 <- nor_GS[upReg,"logMUT"] #y coordinates 
 
 > points(x2,y2,col="red",cex=0.6) #plotting up in red 
 
#plotting down reg 
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 > downReg<-which(nor_GS_FC_WT_MUT<(threshold/2*-1)) 
 > x2 <- nor_GS[downReg,"logWT"] 
 > y2 <- nor_GS[downReg,"logMUT"] 
 
 > points(x2,y2,col="blue",cex=0.6) 
 
#printing info 
 

> percent<-((length(upReg)+length(downReg))/nrow(data_pathway))*100 
 

> text(1.8,16,paste("*DE genes :",length(upReg)+length(downReg),"out 
of",nrow(data_pathway),"genes (", format(percent, digit=1),"%",")"),pos=4,cex=1.4, 
col="orangered4") 

 
> text(1.8,15,paste( "*Cutoff Fold change(FC) : ",2^threshold),pos=4,cex=1.4, 
col="green4") 

 
> text(1.8,14,paste("*Up-regulated gene(s) :",length(upReg)),pos=4,cex=1.4, 
col="red") 

 
> text(1.8,13,paste("*Down-regulated gene(s) :",length(downReg)),pos=4,cex=1.4, 
col="blue4") 

 
#printing differentially expressed genes. 

print("UP") 
 

data_exp[upReg,"gene_symbol"] 
 

print("Down") 
 

data_exp[downReg,"gene_symbol"]  
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Appendix  2  

Graphical representation of KB-GSA output for the tested pathways 
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