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a b s t r a c t

The inverse problem of the recovery of the poroelastic parameters of open-cell soft

plastic foam panels is solved by employing transmitted ultrasonic waves (USW) and the

Biot–Johnson–Koplik–Champoux–Allard (BJKCA) model. It is shown by constructing the

objective functional given by the total square of the difference between predictions

USW that the inverse problem is ill-posed, since the functional exhibits several local

minima and maxima. In order to solve this problem, which is beyond the capability of

most off-the-shelf iterative nonlinear least squares optimization algorithms (such as the

Levenberg Marquadt or Nelder–Mead simplex methods), simple strategies are

developed. The recovered acoustic parameters are compared with those obtained using

simpler interaction models and a method employing asymptotic phase velocity of the

transmitted USW. The retrieved elastic moduli are validated by solving an inverse

vibration spectroscopy problem with data obtained from beam-like specimens cut from

the panels using an equivalent solid elastodynamic model as estimator. The phase

velocities are reconstructed using computed, measured resonance frequencies and a

time–frequency decomposition of transient waves induced in the beam specimen.

These confirm that the elastic parameters recovered using vibration are valid over the

frequency range of study.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The motivation of this study is the need for simple and efficient methods for the characterization of the microstructure
and mechanical behavior of cellular materials. The aim of the investigation is the resolution of the inverse problem of
retrieval of poroelastic parameters of air-saturated cellular materials in the form of panels from transmitted ultrasonic
wave data, with an emphasis on finding the correct minimum from the cost (objective) function.

The poroelastic properties of cellular materials are complex, dependent upon the material, the saturating fluid, as well
as the microstructural arrangement. Details in constituent cells of foams relating to the micro-mechanics governing the
deformation and failure mechanisms which determine the overall foam responses have yet to be elicited [1]. Many studies
involving the detailed analysis of the microstructural features such as cell size, geometry of constituent cells and the struts
that define the cell edges, as well as their stiffness and tensile strength have been undertaken for plastic foams and a good
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number can be found in [2]. In these studies, the nature of cell morphology, anisotropy and deformation are identified
through microscopy (optical or scanning electron microscope) or micro-computed X-ray tomography. The associated
micro-mechanics is often analyzed using Kelvin cell models [3–6] which predicts well the shape of the compressive stress–
strain curve. In acoustics, microstructural configurations have been used to study how the volume averaged properties of
the thermal and velocity fields governing the propagation and dissipation of acoustic waves relate to microscopic details of
the local geometry parameters [7].

The investigation focuses on the development of the direct and inverse problem of retrieval of the macroscopic
structural (porosity, viscous and thermal characteristic lengths, tortuosity [8,9]) and macroscopic mechanical (Young’s
modulus, Poisson ratio and density) properties of poroelastic, soft open-cell foam panels. Ultrasonic wave propagation in
the poroelastic panels is modeled using a modified Biot’s theory where the parameters have physical interpretation closely
related to the pore structure at the microscale. This model for air-saturated cellular material is detailed in Section 2 and the
method for solving the inverse problem in Section 3.

The quality of the reconstruction of material parameters often varies with the accuracy of the data on the one hand, and
the accuracy of the interaction model employed in the inversion scheme on the other hand [10]. It is shown that even
though the employed method uses an estimator (mathematical entity used to account for the wave field transmitted by a
test target) that is exact for a poroelastic panel problem, it leads to an infinite number of solutions for the inverse problem
of the reconstructed parameters when the probe radiation is a band-limited plane wave [11]. This is a problem because of
the difficulty in the choice of the right solution from several minima of the cost function.

A consequence of ill-posedness is that arbitrarily small changes in the data may lead to arbitrarily large variations in the
solution of the inverse problem. Since data errors are inevitable, stabilizing procedures termed regularization are often
employed to successfully deal with ill-posedness [12]. A method to handle the ill-posed problem using the cost function is
proposed in Section 4. In previous studies [13,14], cost functions have been plotted within a certain range of expected
solution values, in a manner similar to that practiced in optimization problems where the initial value for the algorithm is
often chosen in the neighborhood of the solution. In this study a wide range of the solution space is examined to capture a
large number of minima.

The ultrasonic wave transmission experimental procedure used herein is developed in Section 5. The detailed
description of the panels is given in Section 5.1.

In Section 6 the acoustic parameters recovered with the present model are validated using the model of equivalent fluid
(MEF), the reference method for the characterization of soft open-cell foams, in which the porous material is replaced on a
macroscopic scale by an equivalent fluid [15–19]. A second method is used to deduce the tortuosity from the asymptote of
the calculated phase velocities in the high-frequency region using transmitted USW as outlined in [20].

The second part of the investigation concerns the inverse problem of the recovery of elastic parameters from real
vibrational data for the validation of those previously recovered using transmitted ultrasonic wave data. This is done using
simplified vibration spectroscopy elastodynamic model of a sub-specimen of the aforementioned cellular panel structures
in the form of long, thin cross-sectioned beams.

The multimodal and dispersive nature of wave propagation in beams (many modes can propagate simultaneously with
velocities depending on frequency) will influence the vibration spectroscopy data used in the inverse problem. The
resolution of the direct vibration spectroscopy problem is done by solving two eigenvalue problems. The first is
implemented using a 3D finite element model scheme for the lower frequency modes. The second involves the resolution
of an eigenvalue problem for the Timoshenko beam model equation in order to better capture the higher frequency flexural
modes. The equation is solved using a fourth-order finite difference scheme.

Since the beams are porous, employing the simpler elastodynamic models to recover elastic parameters requires that
the dispersion observed using phase velocities in the frequency band of interest, be accounted for in the models. The
dispersion accounted for by the elastodynamic models are those due to shear and rotary inertia and Poisson effect [21,22].
The elastic parameters of the beams are validated qualitatively using known asymptotic regions of the phase velocity
curves. The method for attaining this objective using time frequency analysis on acquired data pertaining to the transient
waves propagating in the beams is also detailed herein.

The results are given in Section 8.

2. The forward problem for the transmission of an acoustic wave by a porous plate-like panel

The forward transmission problem (notably for simulating measured data) is formulated as follows. Given: (i) the
geometry of the transmitting porous plate (panel) body and its composition (material properties); (ii) the material
properties of the host medium; (iii) the incident wavefield, determine: the field transmitted through the body at arbitrary
points of space.

Biot theory describes the equations of motion for each phase (i.e., the solid frame and the fluid) based on energy
considerations that include the inertial, potential, and viscous coupling between the two phases. The macroscopic average
displacement vectors u and U for, respectively, the solid and the fluid in the fluid saturated porous medium, are given by

~r11

@2u

@t2
þ ~r12

@2U

@t2
¼ Prðr � uÞþQrðr �UÞ�Nr4ðr4uÞ, (1)
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~r12

@2u

@t2
þ ~r22

@2U

@t2
¼Qrðr � uÞþRrðr � UÞ, (2)

where P, Q and R are the macroscopic Biot elastic constants [8,23] which are related, via Gedanken experiments, to other,
measurable quantities, namely the porosity, bulk modulus of the pore fluid (Kf), bulk modulus of the elastic solid (Ks), bulk
modulus of the skeleton (Kb), the shear modulus of the skeleton (N), elastic parameters : Young’s modulus (YM) and
Poisson ratio of the solid (Es and ns, respectively) and of the skeleton (Eb and nb). The solid and skeleton frame
compressibility moduli are given by

Ks ¼
Es

3ð1�2nsÞ
, Kb ¼

Eb

3ð1�2nbÞ
, N¼

Eb

2ð1þnbÞ
: (3)

In order to extend this theory to a high frequency range, a correction factor, which modifies the fluid density through a
tortuosity factor a in the form: rf-rfa, was introduced in [17]. Consequently the evaluation of the effective density of the
fluid in the pores is no longer restricted to materials with cylindrical pores as in the original theory. Tortuosity represents
the squared ratio of the mean path length through the porous frame to that of the direct path. It express the viscous
exchanges between the fluid and the structure which play an important role in damping the acoustic waves in porous
medium. When the frequency dependent effects are taken into account, it is called the dynamic tortuosity aðoÞ [17]:

aðoÞ ¼ a1 1þ
sf

joa1rf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jo

4a2
1rfZ

s2L2f2

s !
, (4)

with j¼
ffiffiffiffiffiffiffi
�1
p

, o is the angular frequency, the resistivity s¼ Z=k0, Z is the fluid viscosity, k0 is the viscous permeability, f is
the porosity (f¼ 1�rb=rs, for open pores only, where rb and rs are the densities of the skeleton and the solid,
respectively), a1 is the tortuosity, L is the viscous characteristic length (related to the size of the inter-connections
between two pores).

The Biot coefficients are given by

~rmn ¼ rmnþð�1Þmþn b

jo , (5)

where b is the drag coefficient, r11 and r22 are density parameters for the solid, r12 is a density coupling parameter
between the fluid and solid phases (r11þr12 ¼ ð1�fÞrs, r12þr22 ¼frf and r12 ¼�frf ða1�1Þ).

When the pore fluid is light (e.g. gas), several modifications are needed in the Biot model equation. Thermal effects are
added to the viscous relaxation phenomena associated with the dissipative properties of the porous solid. The ratios
Kb=Ks51 and Kf =Ks51 and consequently the expressions of the constants P, Q and R are then given by

P¼ Kbþ
4

3
Nþ
ð1�fÞ2

f
K�f , Q ¼ ð1�fÞK�f , R¼fK�f , (6)

where the incompressibility modulus is a function of the compressibility Kf and of the susceptibility bðoÞ and is given by
K�f ¼ Kf =bðoÞ.

Thermal transfer between the air saturating the pores and the structure is due to the compression and dilatation of the
former during the passage of the wave. This thermal transfer due to the interaction between the gas (in our case air) and
the structure is modeled in the frequency domain by bðoÞ [24]:

bðoÞ ¼ g�ðg�1Þ 1þ
Zf

jorf ku0Pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
@

1
A
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, (7)

where g is the specific heat ratio, ku0 the thermal permeability, Lu the thermal characteristic length and Pr the Prandtl
number. Kf ¼ gP0 with P0 the pressure of the saturating fluid.

In the high frequency regime (o-1), the viscous skin thickness (d¼ 2Z=orf ) is very thin near the radius of the pore r.
The viscous effects are concentrated in a small volume near the surface of the frame and d=r51, consequently the
following asymptotic approximations are used:

aðoÞ ¼ a1 1þ
2

L

ffiffiffiffiffiffiffiffiffiffiffi
Z

jorf

s !
, bðoÞ ¼ 1þ

2ðg�1Þ

Lu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

jorf Pr

s
, (8)

where Lu is the thermal characteristic length (related to the size of the cell, the edge breadth of the ligament [7]) (Fig. 1).
In this study Lu¼ 3L (classically fixed from 2 to 3 for plastic foams [25]).

Finally, the coefficients of the Biot model with the corrections (in the frequency domain) are written:

~r11ðoÞ ¼ r11þ
2fa1
L

ffiffiffiffiffiffiffiffi
Zrf

jo

s
,
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Fig. 1. Schematic representation of a pore. L and Lu are the viscous and thermal characteristic lengths, respectively. They are related to the size of the

inter-connection between two pores and the diameter of the pores, respectively.
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s
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This modified Biot model is called henceforth BJKCA.
The displacement and pressure fields for the compressional waves are obtained by using the wave equations of the

dilatational and rotational waves employing scalar and vector potentials, respectively. Since the acoustic wave impinges at
normal incidence on the fluid-porous material interface, only longitudinal waves are excited. The displacement fields for
the longitudinal vector components are

u¼= ~Fs ,

U¼= ~Ff , (10)

where Fs and Ff are the scalar potentials for the frame and air, respectively.
The analytical calculation, in the frequency domain of the transmission coefficient T ðoÞ, is done using these potentials,

Eq. (1) and the boundary conditions [26].
The incident (pi) and transmitted (pt) pressure fields are related to the transmission scattering operator ~T ðtÞ via the

convolution in the time domain:

ptðx,tÞ ¼

Z t

0

~T ðtÞpi t�t� x�L

c0

� �
dt, (11)

wherein c0 is the speed of sound outside the porous panel and L is the porous panel thickness.
The scattering operator ~T ðtÞ is first computed numerically by the inverse Fourier transform of T ðoÞ [14]. Its analytical

expression is calculated in the same manner as that detailed in [26]. The convolution of ~T ðtÞ with the incident signal
(Eq. (11)) gives the transmitted signal in the time domain.

3. Solving the inverse problem of recovering the poroelastic parameters using transmitted USW

The general inverse transmission problem is formulated as follows. Given: (i) the incident wavefield, (ii) the material
properties of the host medium (iii) the transmitted wavefield, reconstruct the poroelastic parameters of the transmitting
porous panel (plate). The thickness of the panel is determined by measurement using vernier calipers. In the framework of
the modified Biot theory (BJKCA), the propagation of ultrasonic waves in a air-saturated cellular panel is conditioned by the
parameters listed in Table 2.

The inverse problem is that of the recovery of the parameters characterizing the microstructure of the cellular material
from the measured incident (pi) and transmitted (pt) waves employing the BJKCA model. These parameters influence the
load-capacity, elasticity, noise absorption and thermal insulation of the material. The transmitted wave was found to be
sensitive to six parameters characteristic of the microstructure: L, f, a1, Eb, nb and rb. They are recovered by minimizing
the objective functional J (the others are assumed to be known)

JðL,a1,f,rb,Eb,nbÞ ¼
XLs

p ¼ 1

fptexperiment
ðtpÞ�ptmodel

ðtp,L,a1,f,rb,Eb,nbÞg
2, (12)

whereby Ls is the length of the temporal signals and Lu¼ 3L. The other parameters intervening in the BJKCA model require
very specialized apparatus or equipment for their determination. Consequently, they are taken from tabulated data
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(saturating fluid characteristics, Prandtl’s number Pr, density rf , fluid viscosity Z, specific heat ratio g and pressure of the
saturating fluid P0 are taken as 0.71, 1.2 kg/m3, 1.85e�5 Pa s, 1.4, 1.0e5 Pa, respectively).

The objective functional curves are given with respect to one of the six problem variables, the others being fixed at their
computationally optimal values, i.e., as 2D plots.

4. Method for solving the ill-posed problem of recovering the poroelastic parameters from USW measurements

Cost functions (CF) often depicted seem to exhibit single minima, which are an indication of unique solutions. But in
some cases, if the interval of variation of the parameters is enlarged, other minima may appear. Most optimization
algorithms (e.g. Nelder Mead in [27]) may retrieve solutions that are not global depending on the initial values entered into
the algorithm. In this study, the consequence of several minima in the CF is the ambiguity in retrieving the correct
parameter values. The ambiguity can be removed in several ways, namely: (1) Using two panels of different thicknesses cut
from the same homogeneous specimen. The drawback of this method is the possible damage of the specimen in the cutting
process. (2) Employing data acquired from the acoustic interrogation of the panel at different angles of incidence, which
requires a goniometer. (3) By changing the saturating fluid, for example replacing air with helium [28] or argon [29].
(4) Employing transducers with different central frequencies. The coinciding minima on the CF curves obtained for two
different configurations are taken to be the true solutions.

The use of two transducers with different central frequencies is chosen with the true solutions being the coinciding
minima (provided it is legitimate to suppose that the parameters do not vary significantly within the ranges of the two
transducer frequency bands).

5. USW experimental procedures

5.1. Foam specimens

Open-cell foam panels made from melamine and polyurethane foams (PUF) [5] are employed. Melamine foam is one of
the best sound absorbing materials. Melamine wedges have been employed as linings of the anechoic chamber of the CNRS
LMA in Marseille [30]. The two soft PUF characterized in this study are green (GPUF) and yellow (YPUF) in color (color does
not necessarily signal foams with the same properties). The YPUF and GPUF panels are both 1.0 cm thick while the
melamine panel is 2.0 cm thick. The scanning electron microscope images obtained using a tabletop Microscope Hitachi
TM1000 showing the pore arrangements of the melamine and GPUF panels employed in this study are depicted in Fig. 2.
The rough estimate of the pore and pore inter-connections sizes, ligament length and edge breadth can be retrieved from
these micrographs. The variation of pore size within each foam is often within a relatively narrow range [4,5]. Micrographs
are also useful for validating models relating for instance the cell dimensions (length and cross-section radius) of the
ligament and other dimensions (e.g. cell height) to parameters like the macroscopic mechanical properties, relative density
(porosity), relative Young’s modulus. These models have been reported in [4,7,31–33]. The anisotropy of the foams was not
considered in the study.

The density of the specimens was calculated from their weights, measured on an electronic balance (Denver
Instruments SI-4200), and volume. They are listed in Table 1.
Fig. 2. SEM images of the pores of the characterized cellular panel samples. (a) Melamine foam. (b) Green polyurethane foam (GPUF).



Table 1
Measured geometric characteristics and density of the thin bar specimens cut from the foam panels.

Foam specimen Length (cm) Cross section (cm� cm) Measured density (kg/m3)

Melamine 29.8 1.5�1.5 8.0

GPUF 32.5

YPUF 32.5 1.0�1.5 27.8
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Fig. 3. The schematic of the measurement setup for acquiring the transmitted ultrasonic wave through a poroelastic panel immersed in air.
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5.2. Ultrasonic measurements

Air-coupled ultrasonic probes with center frequencies at 50, 100 and 200 kHz (Ultran NCG50, NCG100, NCG200,
respectively) connected to a Panametrics 5058-PR pulser are employed. The transmitted signal is captured using a
B&K4138 microphone connected to a B&K2120 Analyzer for the 50 and 100 kHz probes. The schematic of the experimental
setup is depicted in Fig. 3. For measurements at 200 kHz, two transducers (emitter and receiver) are connected to the
Panametrics 5058-PR pulser. The transmitted signal in this case is captured using the air-coupled transducer and since the
signal is highly attenuated, it is first amplified by low noise 40 dB preamplifier NF SA-200F3 and then by the 5058-PR
pulser amplifier.

6. Validation of the acoustic parameters

The recovered acoustic parameters (L,f,a1) are validated using two methods.

6.1. Using the model of equivalent fluid

The structure of air-saturated cellular media is generally considered motionless in the absence of mechanical excitation
and the waves to propagate only in the fluid at ultrasonic frequencies. The coupling of the acoustic energy from the air to
the skeleton of the cells is negligible. This case is often described by the model of equivalent fluid [15,17–19]. This is an
approximation of the Biot theory of poroelasticity [34,35]. The interactions between the fluid and the structure are
accounted for in the two frequency response factors: the dynamic tortuosity of the medium and the dynamic
compressibility of the saturating fluid as was detailed previously. The MEF is an interaction model whereby only the
acoustic parameters can be recovered. The method of inversion appeals to the incident, reflected and transmitted waves as
reported in [13]. The terms skeleton and foam are used as synonyms herein.

6.2. Using measured phase velocities in the high frequency regime

The tortuosity parameter of the open pore cellular panels is deduced directly from the measured phase velocities in the
high frequency regime of the transmitted USW using the same test rig. The theoretical development is detailed in
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Appendix A. Tortuosity a1 and viscous characteristic length L can also be determined independently by solving
an electrical conduction problem for a porous medium filled with a conducting fluid having an insulating solid phase [17].
a1 is obtained from the electrical resistivity measurement data as reported by Henry [36]. The most reliable method
reported by this author requires the prior knowledge of the porosity of the sample.

7. Validation of USW mechanical parameters using vibration spectroscopy and transient wave measurement
on thin beams

Vibration spectroscopy (VS) consists of setting a structure into vibration (linear or nonlinear) and then carrying out a
spectroscopic examination of its vibrational response (resonance frequencies on the spectrogram). The vibration
spectrogram is a function of the structure (material composition, geometry) and boundary conditions.

7.1. The forward VS problem for thin beam-like specimens cut from the panels

The specimen is initially visualized as a linear, isotropic elastic solid 3D body of arbitrary shape, attached to its
environment with a stress-free boundary condition, and submitted to a transient excitation. The microscopic irregularities
and biphasic nature of the original porous medium are not explicitly taken into account; i.e., the medium is thought of as
being homogenized on the scale of the micro-irregularities (but macro-irregularities can be accounted for by the 3D
geometrical model). The procedure for computing the resonance frequencies using the elastodynamic model is established
in Appendix B. This computation is easily carried out for the low frequency modes but requires finer finite element meshes
for the high frequency ones thus resulting in longer computation times. In order to alleviate this problem, we chose a 1D
formulation for the flexural modes, i.e., the specimen is considered to be a Timoshenko beam for which there exist two
propagating modes. The method for calculating the resonance frequencies pertaining to the two modes using the finite
difference method (FDM) is detailed in Appendix C. The elastodynamic interaction models employed (Timoshenko beam
model and 3D FEM) account for the mode dispersions, consequence of the Poisson effect, shear deformation and rotary
inertia.

7.2. Solving the inverse VS problem of recovering the elastic parameters of thin beam specimens

The thin beam specimens are cut from the same panels as those characterized using USW. The macroscopic elastic
moduli of the porous beams saturated with a light fluid, considered to be the same as those of the dry skeleton (Young’s
modulus Eb and Poisson ratio nb) are retrieved using the measured resonance frequencies of thin cellular beams in a setup
in which they are suspended by nylon threads thus allowing the specimens to vibrate with stress-free boundary
conditions. During the inversion process the beams are modeled using the previously mentioned equivalent 3D solid
elastodynamic model (homogenous and isotropic). The details on the resolution of the inverse vibration spectroscopy (IVS)
problem are given in Appendix D. Once the moduli are recovered, the forward problem is used to compute the resonance
frequencies from these optimized values used to plot the phase velocities as explained in a later Section 7.2.2.

7.2.1. Vibration spectroscopy measurements

Thin bar specimens of melamine and YPUF with cross-sections 1.5 cm�1.5 cm and 1.0 cm�1.5 cm, respectively, are
employed. The exciter is a piezoelectric transducer (PZT) bonded to one of the extremities of the thin bar specimen. It is
driven using a power amplifier, Brüel and Kjaer B&K2706. The response is measured at the opposite end of the specimen
using a sensor of the same type as the excitation PZT. The sensor output is connected to a low noise amplifier, Ciprian
EO80 dB (Grenoble France).

In order to favor the longitudinal mode, the exciter is bonded using double sided scotch tape at the flat end of the thin
bar while the sensor is bonded to the opposite extremity (Fig. 4). Flexural waves are favored by bonding the exciter and the
sensor laterally to the specimen.

When the PZT sensor is bonded to a deforming vibrating surface, a mechanical deformation is induced in the polarized
crystal (resulting from tension and twisting of the sensor) leading to the generation of an electric charge. Likewise, when
the PZT crystal is submitted to a modulated electrical solicitation, it vibrates (and induces a stress wave). The light weight,
small size and flat structure form of the PZT facilitates its mechanical fixation on structures, with negligible influence on
the vibrational response as compared, for instance, to an accelerometer.

The exciter transducer (PZT) is driven using harmonic excitation at constant amplitude in discrete frequency steps using
a digital signal processing Lock-in amplifier, Signal Recovery 7265 (Oak Ridge, USA), which also acquires the amplitude and
phase of the response. The schematic is the same as that reported in [37].

7.2.2. Method for plotting phase velocities from the vibration modes of the beam-like specimens

The purposes of computing and plotting the phase velocities of the beam-like specimens are to validate qualitatively the
mechanical parameters (Young’s modulus, Poisson ratio and density) and, consequently, the mode dispersion as predicted
by the elastodynamic models from the dispersion curve. The phase velocities are first computed from the resonance



Fig. 4. The excitation and detection of longitudinal modes using PZT. The flexural modes are excited and detected by placing the transducers laterally.
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frequencies fresonance
m and the length of the beams Lbeam using the simple relation:

vphase ¼
2Lbeamf m

resonance

m
, (13)

wherein m is the mode number. The time taken for the wave induced by the exciter to reach the sensor (the two are placed
at known positions) is then determined for each mode using the distance separating the two transducers, Lexc-sens. Herein
Lexc-sens=Lbeam. However, it should be noted that these simple computations are only valid for uniform, thin cross-
section beams.
7.2.3. Acquisition of induced transient wave response of thin beam-like specimens and visualization of wave dispersion using

time–frequency representations

A transient wave generated by a waveform function generator, Agilent 33250B, is induced in the specimen by the
exciter PZT using the previous configuration. A steep voltage rise of the leading edge of a long positive rectangular pulse
produced by the generator causes the PZT to deform and to induce a very short elastic wave pulse in the specimen. A
second pulse is subsequently generated at the trailing edge of the rectangular pulse, but this is made to happen outside of
the signal capture window. The response is measured using the PZT sensor. The pulse waveform on the receiver sensor is
captured using an oscilloscope, Tektronix TDS 3032B. To obtain signals with higher signal-to-noise ratios, triggered
averaging (512 temporal signals) is carried out. Bilinear time–frequency, Wigner–Ville distribution (WVD) [38] is used to
analyze the transient signal and is plotted as a time–frequency representation (TFR). The WVD achieves better resolution in
both the time and frequency domains, thus providing a critical advantage over standard Fourier analysis. TFR is more
effective in localizing multiple, closely spaced modes in both time and frequency.

The validation consists in the comparison to known asymptotic values of the phase velocity of the fundamental
longitudinal mode (L(0,1)) of a free isotropic bar whose static limit (called the bar velocity is vbar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=rb

p
). The Rayleigh

velocity for the propagation of a surface wave on the surface of a semi-infinite half-space is used for the validation at the
high frequency limit of the fundamental flexural (also known as F(1,1)) and the L(0,1) modes. At the short wave length
limit (high frequency), the Rayleigh beam theory predicts a wave velocity that approaches the surface wave velocity [39].
This velocity is given by vray ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
N=rb

p
ðð0:87þ1:12nbÞ=ð1:0þnbÞÞ.

The two asymptotes on the time–frequency plane corresponding to the arrival times of waves that would have traveled
in the beam with the two velocities are shown on the same plot as the TFR. The distance traveled is Lexc-sens.

The phase velocities are then constructed from resonance frequencies as explained in Section 7.2.2. The optimized
values of the parameters obtained from the BJKCA model with the transmitted USW are employed in both of the
elastodynamic models to compute the resonance frequencies. The resulting phase velocities are transcribed onto the same
plot as the TFR of the measured transient signal.

The TFR indicates the arrival times of propagating vibrational modes captured by the sensor at the opposite end of the
beam. It also allows the visualization of the temporal location of the spectral components, consequently mode dispersion.

The Time–Frequency Toolbox for Matlab developed in [40] was employed for the TFR computations in this study.
Other methods that can be employed for recovering the shear modulus and Poisson ratio include using phase velocities

of guided acoustic modes from the displacement measured on a soft thick poroelastic plate excited by a mechanical shaker
[41] and recovering the damping and shear modulus of the foam using Rayleigh waves detected acoustically over a thin
porous layer (reticulated plastic foam) and the Biot theory [41,42]. These methods, however, require very large porous
samples.



Table 2
Parameters of the BJKCA model with air as saturating fluid.

Parameter Symbol

Density of the pore fluid rf

Density of porous skeletal frame rb

Young’s modulus of the porous skeletal frame Eb

Poisson ratio of the porous skeletal frame nb

Fluid bulk modulus Kf

Porosity f
Tortuosity a1
Viscosity of pore fluid Z
Viscous characteristic length L
Thermal characteristic length Lu
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8. Results

In this section, results of the inversions are presented by plotting the cost/objective function obtained by the method
described at the end of Section 3.

The elastic moduli of YPUF and melamine foam panels are recovered by solving the inverse vibration spectroscopy
problem of their beam specimens. The cost functions for the IVS are not shown as the problem is well posed, the minima
were found to be unique (single global minimum) [37].

8.1. Green polyurethane foam (GPUF)

The computed cost functions for the poroelastic parameters, obtained from the measured transmitted wave (at 50 and
100 kHz transducer as emitters and a microphone for reception) using the BJKCA model, are shown in Fig. 5. The retrieved
parameters, which are solutions of the inverse problem, are read from these curves. The recovered density of 30 kg/m3 is in
a fair agreement with the measured one (32 kg/m3). The transmitted signal is then reconstructed using the BJKCA model
with these retrieved values and the measured incident signal as input. A particular aspect of the cost function is its
sharpness in the neighborhood of one of its minima. It increases with the central transducer frequency. The CF of the
100 kHz is sharper than the 50 kHz one. The number of minima also increases with frequency. This sharpness allows a
faster convergence and a more precise solution of the inverse problem [37]. The comparison between the transmitted
(measured and reconstructed using retrieved parameters) signals is shown in Fig. 6. The excellent agreement between the
two shows that the poroelastic parameters have been well-reconstructed.

8.2. Yellow polyurethane foam (YPUF)

The cost functions computed from transmitted data obtained using three different transducers (centered at 50, 100 and
200 kHz) insonifying a YPUF panel are shown in Fig. 7a–f. The measured density (rb) of 27.8 kg/m3 was in excellent
agreement with the recovered one of 28 kg/m3 (Fig. 7f). It is also within the range of those reported in [5,31]. There was
equally a good agreement between YM and Poisson ratio recovered using BJKCA with transmitted USW (205 kPa, 0.47) and
vibration spectroscopy (210 kPa, 0.47) (difference r2:4 percent). The comparison between the measured and
reconstructed transmitted signals is shown in Fig. 8. There is equally a good agreement between the two.

8.3. Melamine foam specimen

The recovered mechanical parameters for the melamine panel are Eb=180 kPa, nb ¼ 0:46 and rb ¼ 8:0 kg=m3. The
density rb of the melamine foam was determined from the weight on a balance and volume measurements (the density
given by BASF for Basotec foam is 8.35 kg/m3).

The retrieved L was 107mm. The average length of the foam ligament (taken between two ligaments, l� 49mm), the
edge breadth (be � 4:15mm) and the radius of the cross-section (rcs � 2:8mm) are measured on the micrographs (Fig. 2a).
Using these parameters and the formula for porosity given in [7]:

f¼ 1�
b2

e

ffiffiffi
3
p

2
þ6 l2arcsin

be

2l

� �
�

bel

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

b2
e

4r2
cs

s" # !
3
ffiffiffi
3
p

l2

2

,
(14)

a porosity of 0.97 is obtained. This is in good agreement with the recovered one from transmitted USW data of 0.96.
The elastic moduli pair (Young’s modulus, Poisson ratio) recovered by solving the inverse vibration spectroscopy

problem for melamine are (178 kPa, 0.44). Poisson ratio is compared with the one established from a formulation for low
density foam, function of relative density fs ¼ rb=rs. The formulation is from a constitutive model of the nonlinear elastic
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behavior of an isotropic low-density 3D open-cell using micromechanical analysis of an idealized tetrahedral unit cell [43],

nb ¼ 0:5�2:29fsþ8:73f2
s : (15)

A nb of 0.43 is retrieved using the porosity f (since fs ¼ 1�f) previously recovered from micromechanical analysis of
the melamine foam. Jaouen et al. [44] reported a value of around 0.45 obtained from uniaxial compression load testing.
Both values are in good agreement with the ones recovered employing the BJKCA and IVS methods.

The density used in the IVS scheme is from Table 1 which is also in good agreement (difference r2 percent) with the
one from BJKCA with transmitted USW.

8.4. Summary of the recovered parameters

The recovered poroelastic parameters using measured, incident and transmitted ultrasonic waves and the BJKCA model,
are summarized in Table 3. The parameters retrieved using the model of equivalent fluid [13] and real data employing
200 kHz transducers are also shown for the sake of comparison. The values are in excellent agreement. The recovered
densities agree well with the measured ones shown in Table 1. Densities of foams vary with the porosity [32]. YM depends
on cell-wall bending, cell-wall axial deformation and fluid flow between the cells.
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8.4.1. Validation of tortuosity a1 of the open-cell foam specimens

The asymptotes of the phase velocities for the three open pore foams are shown in Fig. 9. The measured velocity of
sound c0 in air was 342 m/s at 20 1C. The asymptotic phase velocities for melamine, GPUF, YPUF are 339, 329, 311 m/s and
the resulting tortuosities are 1.019, 1.08 and 1.21, respectively. These are in excellent agreement with those from the
BJKCA with transmitted USW. Since the asymptote of the phase velocity is beyond 200 kHz for the YPUF, three transducers
at different central frequencies (50, 100 and 200 kHz) were used to retrieve its parameters to verify that they were
approximately independent of transducer frequencies employed herein. Indeed these values are very close (Fig. 7) but vary
with the frequency — difference r2:5 percent. These are within the range of different measurement errors.
8.5. Phase diagrams

The configuration for the generation of transient flexural and compressional waves, as depicted in the setup in Fig. 4,
was employed. The temporal signal, representing the transient waves (longitudinal excitation) propagating in the
melamine beam is shown in the upper panel of Fig. 10. Ridges extracted from the computed TFR using the reassigned
Pseudo Wigner–Ville distribution (RPWV) [38] of the measured transient response are shown in the background of the plot
in the lower panel.

The superposition of the asymptotes of mode L(0,1) (the fundamental mode, i.e., low frequency) with the ridges
converging to the bar velocity time line tvbar

on the time–frequency curves confirms qualitatively the validity of the
parameters (Eb, rb) recovered from the BJKCA with transmitted USW. For the F(1,1) mode, the moduli (Eb and nb) and
density rb are used to calculate the time line tvray .

The computed phase velocities are transcribed onto the same curve as the TFR (lower panel of Fig. 10) using the
distance Lexc-sens. It is remarked that the computed 3D FEM L(0,1) and the Timoshenko beam model F(1,1) modes follow
similar trajectories as the ridges consequently indicating similar dispersion mechanisms in the beam as integrated in the
models.
9. Discussion and conclusion

This study highlights that employing an ultrasonic incident wave initially propagating in the air medium is able to carry
some information on the elastic properties of the frame. Usually, at 50 kHz or higher frequencies, the solid phase is
considered as immobile when solicited from air generated waves and the approximation of a rigid frame is often assumed,
i.e., that the waves inside the porous material propagate only inside the fluid phase. Implicitly, if the waves carry some
information on the elastic properties of the solid phase, this means that the waves are also propagating in the solid part
and that the approximation of the rigid frame is valid only as a first approximation. This is the first time the BJKCA model is
used to recover the poroelastic material parameters of soft plastic open-cell foams from measurements of transmitted
USW in air.

The inconvenience of using reflected waves to characterize high porosity cellular materials is the poor signal to noise
ratio (SNR) consequently penalizing the precision of the measurements. This is an advantage to the BJKCA model that
requires only the measured incident and transmitted USW for the characterization of the porous medium (recall that the
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model of equivalent fluid requires the incident, reflected and transmitted waves). However, a low SNR of the transmitted
wave also occurs in cases of high resistivity or very thick foams.

While time–frequency representations are often difficult to interpret, we have shown in the present study, using 3D
Finite element analysis and 1D Timoshenko beam model equation solved by a finite difference method, that the trajectories
of the TFR of the transient response represent the different propagating modes in the specimen with the L(0,1) mode the
most visible. Comparison to known asymptotic values such as the bar and Rayleigh velocities provided extra criteria for
validation of the recovered parameters. These asymptotes are well marked on the TFR plots consequently eliminating
ambiguities in the determination of these velocities. The superposition of the trajectories of the modes computed from the
elastodynamic models with those from the transient wave propagation experiment as visualized on the TFR plot indicates
that the dispersion mechanisms in the beam specimens are those predicted by the models (Poisson effect, shear and rotary
inertia).

A non-ambiguous technique for recovering the poroelastic parameters of cellular panels from cost functions that exhibit
several minima has been developed. They were constructed using the BJKCA model as estimator and real data obtained
from measured incident and transmitted ultrasound waves using several transducers with different central frequencies.
The skeletal elastic parameters were verified by solving the inverse problem of retrieval of the elastic moduli using
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Table 3
Summary of the poroelastic parameters recovered from the measured incident and transmitted USW using the BJKCA theory for open-cell foams and

vibration spectroscopy (VS) data on beam sub-specimens.

Foam f a1 L ðmmÞ Eb (MPa) nb rb (kg m�3)

BJKCA EFM BJKCA EFM BJKCA EFM BJKCA VS BJKCA VS BJKCA

Melamine 0.96 0.97 1.02 1.015 107 99 0.18 0.178 0.46 0.44 8.0

GPUF 0.95 0.96 1.07 1.08 265 252 0.18 – 0.42 – 30.0

YPUF 0.96 1.21 60 0.205 0.210 0.47 0.465 28

Values recovered using the model of equivalent fluid (MEF) and reflection and transmission data [13], obtained with USW transducers with center

frequencies at 200 kHz, are also listed. Herein Lu¼ 3L.
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vibration spectroscopy data measured on beam-like sub-specimens of the panels and a macroscopic 3D equivalent solid
elastodynamic finite element model as estimator. Since the porous media are saturated with a light fluid (air), the
recovered mechanical parameters (in the measurement frequency band) pertain to those of the skeleton. The mechanical
moduli retrieved from the transmitted USW with the BJKCA model and those recovered from vibration spectroscopy with
the elastodynamic model were found to be in excellent agreement.
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Validation of the acoustic parameters was made using the MEF (the reference model for the acoustic characterization of
open pore, soft plastic foams using USW data [13]). The results which were in excellent agreement show that the MEF (the
foam skeleton is considered rigid and motionless in the absence of mechanical excitation) is an appropriate approximate
model. However, the BJKCA model provides both the microstructural acoustic parameters (f, L, Lu¼ 3L, a1) and the
mechanical parameters of the skeleton (Eb, nb, rb). In the low frequency regime where the frame can no longer be
considered motionless, the BJKCA model should be employed.

A good agreement was also found between the retrieved a1 for open-cell foams using the measured asymptotic phase
velocities of the panels with a 200 kHz transducer.

Images acquired by a scanning electron microscope provided an idea of the pore geometry and an indication of size. The
acoustic method developed herein can be used for the validation of formulae developed for the calculation of parameters of
cellular materials based on optical or electron microscopy measurements of geometric microstructural dimensions (e.g.
porosity from ligament dimensions).

The plethora of foam types resulting from the diversity and constant evolution of their applications and foaming
techniques makes the obtention of reliable tabulated data of the acoustic and mechanical characteristics difficult. This
justifies the development of efficient and more reliable methods for recovering these parameters.
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Appendix A. Experimental determination of tortuosity using transmitted USW

The approximation of the complex wavenumber K at high frequencies for a rigid frame porous material saturated by air
is given in [45]

K¼ o
c0

ffiffiffiffiffiffiffi
a1
p

1þð1�jÞ
d
2

1

L
þ

g�1ffiffiffiffiffi
Pr

p
Lu

� �� �
, (A.1)

where c0 is the speed of sound in air and o the angular frequency. At sufficiently high frequencies the viscous skin depth d
tends to zero and the phase velocity is asymptotically cðoÞ � c0=

ffiffiffiffiffiffiffi
a1
p

, thus providing a method for measuring a1.
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The incident (in the absence of the porous panel sample) and the transmitted (in the presence of sample) waves at
normal incidence are acquired. The phase difference between the two signals is computed using the tfestimate function in
[46] which estimates the transfer function using Welch’s averaged periodogram method [47]. The input and output of the
system are the incident and transmitted signals, respectively. For foams with high tortuosity, the transmitted signal is very
attenuated consequently the phase recovered is erroneous. In this case the phase difference between the two signals is
calculated from the phases of their fast Fourier transforms (FFT). All the other phase differences have been computed using
the two methods and the tortuosities obtained are in good agreement with those from the transmitted USW and BJKCA
inverse method.

The phase velocity is computed from the expression

cðoÞ ¼ Lc0

Lþc0Dt
, (A.2)

where Dt is the time lag between the incident and the transmitted signals and is calculated from the phase yðoÞ of the
transfer function, Dt¼ yðoÞ=o.
Appendix B. Vibration spectroscopy — elastodynamic model

The body vibrates in response to the excitation and this phenomenon is described by the classical equations of the
elastodynamics of continuous elastic media. Dissipation in the body, which can be accounted for by the introduction of
Rayleigh damping [37], is neglected because only the resonance frequencies are of interest here.

The integral version of the governing partial differential equations (PDEs), which takes the form of the principle of
virtual work, is discretized [48]. The eigenvalue problem for the natural modes takes the form

ðl2
eigMþKÞF¼ 0, (B.1)

with M, K the mass and stiffness matrices, respectively, leig the eigenvalue and F the eigenvector (i.e., the
vibration mode).
Appendix C. Solving the Timoshenko beam model eigenvalue problem using finite difference method

Assuming a time-harmonic solution of the form vðx,tÞ ¼ vðx,oÞexp½jðUx�otÞ�, where v(x,t) is the lateral displacement,
U the wavenumber, the Timoshenko beam equation written as a single partial differential equation of the fourth order is

EI

rA

@4vðxÞ

@x4
þ
o2I

A
1þ

E

Gk

� �
@2vðxÞ

@x2
�o2vðxÞþ

o4rI

GAk vðxÞ ¼ 0: (C.1)

where E is Young’s, G¼ E=2ð1þnÞ the shear modulus, r the density, I the cross-sectional area moment of inertia, and A the
cross-sectional area of the beam. The values of the shear correction factor, k for simple geometrical cross-sections have
been calculated by several authors [49–52]. Hutchinson’s coefficients [52] were used here. An approximate numerical
solution of this complex problem is obtained by the finite difference method (FDM). The derivatives are replaced by their
appropriate fourth-order central-difference approximations. Consequently the eigenvalue problem which is solved to
obtain the natural frequencies of the beam is [53]

ð�aT vi�3þ12aT vi�2�39aT vi�4þ56aT vi�39aT viþ1�aT viþ3Þ

þo2ð�bT vi�2þ16bT vi�1�ð30bTþ1Þviþ16bT viþ1�bT viþ2Þþo4gT vi � 0 (C.2)

with i¼ 0,1, . . . ,aT ¼ ðEI=rAÞð1=6‘ 4
Þ, bT ¼ ðI=AÞð1þE=GkÞð1=12‘2

Þ and gT ¼ ðrI=GAkÞ. If n is the number of segments on the
length of the beam then ‘¼ Lbeam=n.

The boundary conditions (BC) corresponding to the stress-free beam are @2v=@x2 ¼ 0 and @3v=@x3 ¼ 0 at x=0 and at
x=Lbeam.

The introduction of BC (at i=0 and i=n) and employing the lower-order FDM relations, the fictive points are found to be

v�1 ¼ 2v0�v1, v�2 ¼ 4ðv0�v1Þþv2, v�3 ¼ 6ðv0�v1Þþv3,

vnþ1 ¼ 2vn�vn�1, vnþ2 ¼ 4ðvn�vn�1Þþvn�2, vnþ3 ¼ 6ðvn�vn�1Þþvn�3: (C.3)

Eq. (C.2) is put into matrix form:

Cvþo2Bvþo4Av¼ 0, (C.4)

whereby 0 is a matrix of zeros. The matrix calculation entry for each position i on the beam is given in Table 4.
Let OT ¼o2, Eq. (C.4) becomes

CþOT BþO2
T A¼ 0, (C.5)



Table 4
The matrix table for the stress-free Timoshenko beam showing the equations of the points along the axis at positions i.

i Equation

0 20aT v0�42aT v1þ24aT v2�2aT v3þo2ð�ð2bTþ1Þv0þ4bT v1�2bT v2Þþo4gT v0

1 �19aT v0þ48aT v1�40aT v2þ12aT v3�aT v4þo2ð14bT v0�ð29bTþ1Þv1þ16bT v2�bT v3Þþo4gT v1

2 10aT v0�38aT v1þ56aT v2�39aT v3þ12aT v4�aT v5o2ð�bT v0þ16bT v1�ð30bTþ1Þv2þ16bT v3�bT v4Þþo4gT v2

3 to n�3 �aT vn�3þ12aT vn�2�39aT vn�1þ56aT vn�39aT vnþ1þ12aT vnþ2

�aT vnþ3þo2ð�bT vn�2þ16bT vn�1�ð30bTþ1Þvnþ16bT vnþ1�bT vnþ2Þþo4gT vn

n�2 �aT vn�5þ12aT vn�4�39aT vn�3þ56aT vn�2�38aT vn�1þ10aT vno2ð�bT vn�4

þ16bT vn�3�ð30bTþ1Þvn�2þ16bT vn�1�bT vnÞþo4gT vn�2

n�1 �aT vn�4þ12aT vn�3�40aT vn�2þ48aT vn�1�19aT vnþo2ð�bT vn�3þ16bT vn�2�ð29bTþ1Þvn�1þ14bT vnÞþo4gT vn�1

n �2aT vn�3þ24aT vn�2�42aT vn�1þ20aT vnþo2ð�2bT vn�2þ4bT vn�1�ð2bTþ1ÞvnÞþo4gT vn
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whose solutions are

OT I¼
�B7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
�4AC

p
2

A�1, (C.6)

where I the identity matrix. In Eq. (C.6), the following matrix is computed:

X¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BB�4AC
p

:¼M1=2: (C.7)

If X is the square root of the principal matrix M, then XX=M. Which means, X, is a unique root for which the real part of
each eigenvalue is positive. If all the eigenvalues of M are negative, then the root is complex valued. If M is singular, then a
root does not exist. The solutions for OT are obtained from

detðOT I�1
2XA�1

Þ ¼ 0, (C.8)

where det stands for determinant. The eigenvalues are complex in this case:

OTk
¼$kþ jnk, (C.9)

where nk is the damping factor and $k the natural frequency of the mode (k).
The two solutions of Eq. (C.6) correspond to the two flexural wave modes propagating with different velocities. The

slower mode is the most visible in the time frequency curves (lower frequencies are consequently less attenuated) while
the faster (higher frequency) is more attenuated.

Appendix D. Solving the inverse vibration spectroscopy

Recall that in order to compute the resonance frequencies, the eigenvalue problem for the natural modes must be
solved employing the discretized form of the dynamic analysis equation given by Eq. (B.1) found in Appendix B.

The problem is solved iteratively by minimizing the cost function J (which is a measure of the discrepancy between the
model and experimental outputs):

JðEb,nbÞ ¼
Xm
p ¼ 1

ff p
experiment�f p

modelðEb,rb,nbÞg
2, (D.1)

with fexperiment
p the target resonance frequency obtained by experiment, p=1,2ythe mode number, m the number of modes

here m=2 for the beam and fmodel
p the natural frequency furnished by the model for the current trial value of Eb and nb. The

density is taken from data obtained from the previous inverse problem (confirmed by calculating the volume and weighing
the specimen). The minimization is carried out using the Levenberg–Marquardt algorithm (implemented in the lmdif

routine from Minpack, conceived at the Argonne National Laboratory). The inverse problem of the retrieval of Eb and nb

appears to be well-posed, that is, there exist a unique solution for the sought-for parameters [37].
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