
1

A System-Theoretic Clean Slate Approach to
Provably Secure Ad Hoc Wireless Networking
Jonathan Ponniah*, Member, IEEE, Yih-Chun Hu*, Member, IEEE, and P. R. Kumar**, Fellow, IEEE

Abstract—Traditionally, wireless network protocols have been
designed for performance. Subsequently, as attacks have been
identified, patches have been developed. This has resulted in an
“arms race” development process of discovering vulnerabilities
and then patching them. The fundamental difficulty with this
approach is that other vulnerabilities may still exist. No provable
security or performance guarantees can ever be provided.

We develop a system-theoretic approach to security that
provides a complete protocol suite with provable guarantees,
as well as proof of min-max optimality with respect to any
given utility function of source-destination rates. Our approach
is based on a model capturing the essential features of an ad-
hoc wireless network that has been infiltrated with hostile nodes.
We consider any collection of nodes, some good and some bad,
possessing specified capabilities vis-a-vis cryptography, wireless
communication and clocks. The good nodes do not know the
bad nodes. The bad nodes can collaborate perfectly, and are
capable of any disruptive acts ranging from simply jamming to
non-cooperation with the protocols in any manner they please.

The protocol suite caters to the complete life-cycle, all the way
from birth of nodes, through all phases of ad hoc network for-
mation, leading to an optimized network carrying data reliably.
It provably achieves the min-max of the utility function, where
the max is over all protocol suites published and followed by the
good nodes, while the min is over all Byzantine behaviors of the
bad nodes. Under the protocol suite, the bad nodes do not benefit
from any actions other than jamming or cooperating.

This approach supersedes much previous work that deals with
several types of attacks including wormhole, rushing, partial
deafness, routing loops, routing black holes, routing gray holes,
and network partition attacks.

Index Terms—Ad hoc wireless networks, security.

I. INTRODUCTION

OUR focus is on the problem of security of ad-hoc,
multi-hop, wireless networks. The wireless nodes in

these types of networks need to determine when to transmit
packets and at what power levels, discover routes from sources
to destinations, and ensure overall end-to-end reliability, all
without any centralized controller guiding the process. This
requires a suite consisting of multiple protocols.

Several candidates have been proposed. Medium access
control protocols include IEEE 802.11 [11] and MACAW [2],
power control protocols include COMPOW [13] and PCMA
[16], routing protocols include DSDV [19], AODV [18], DSR
[12], and OLSR [5], and transport protocols include TCP [22]
and variations for ad hoc networks [14], [7], [3], [23].

*CSL & ECE, Univ. of Illinois, 1308 West Main St., Urbana, IL 61801.
Email: {ponniah1,yihchun}@illinois.edu. Tel. 217-333-4220.

**Corresponding author: ECE, Texas A&M University, 3259 TAMU,
College Station, TX 77843-3259. Email: prk@tamu.edu. Tel: 979-862-3376.

This paper is partially based on work supported by NSF under Contract Nos.
CNS-1302182, CCF-0939370 and CNS-1232602, AFOSR under Contract No.
FA-9550-13-1-0008, and USARO under Contract No. W911NF-08-1-0238.

All the above protocols are designed on the assumption
that all nodes are “good,” and will conform to the protocol.
Some nodes can however be malicious, deliberately intent
on disrupting the network, a vulnerability especially acute
since the very purpose of ad hoc networks is to allow any
node to join a network. For wireless networks used in safety-
critical applications, e.g., vehicular networks, vulnerabilities
can be dangerous. Moreover, many wireless networking pro-
tocols have been based on wireline protocols, with possible
susceptibilities to novel over the air attacks.

The assumption of benignness, implicit or explicit, has
been the traditional starting point of protocol development.
Systems have been first designed to provide high performance.
Subsequently, as vulnerabilities have been discovered, they
have been patched on a case by case basis. For example, the
“wormhole” attack was discovered in [8], where an attacker
sets up a false link between two nodes. It is countered by
a fix using temporal and geographical packet leashes [8],
[21]. The “rushing” attack against DSR was discovered in
[9], in which attackers manipulate the network topology. This
is countered by a fix using network discovery chains. The
“partial deafness” attack against 802.11 was discovered in [4],
in which an attacker artificially reduces its link quality to draw
more network resources. It is countered by a fix using queue
regulation at the access point. Other attacks against DSR are
the routing loop attack in which an attacker generates forged
routing packets causing data packets to cycle endlessly; the
routing black hole attack in which an attacker simply drops
all packets it receives; and the network partition attack in
which an attacker injects forged routing packets to prevent
one set of nodes from reaching another. These attacks are all
countered in the Ariadne protocol [10] by the joint use of
routing chains, encryption, and packet leashes. Some protocols
such as Watchdog and Pathrater [15] try to pre-empt attacks
by maintaining a blacklist that tracks malicious behavior, but
this backfires if an attacker maligns a good node, causing
other good nodes to add that node to their blacklists. These
attacks are not targeted at violating privacy of communications
between nodes, which can be avoided simply by encryption.
Rather, they are generally Denial of Service attacks (DoS),
which usually take advantage of algorithms that assume the
participating users are good or cooperative.

The basic problem with this arms race approach of harden-
ing algorithms initially designed for good performance is that
one never knows what other vulnerabilities or attacks exist.
Thus no guarantees can be provided about the security of the
protocols at any stage of the arms race process.

Our goal is to propose an alternate clean slate system-
theoretic approach to security that provides provable per-

2

formance guarantees. We pursue a model-based approach,
comprising a physical model of node capabilities, clocks,
cryptography, and wireless communication. It is an initial
attempt to holistically model the entire dynamics of an ad-hoc
wireless network that has been infiltrated with hostile nodes.

Our goal is to design a protocol suite for the complete
life-cycle of the wireless system, all the way from the very
birth of the nodes, and continuing through all phases of the
network formation process, to a long-term operation where
the network is carrying data reliably from sources to their
destinations. The good nodes don’t know who the bad nodes
are, and are required to follow the published protocol suite.
Throughout all phases, the bad nodes can perfectly collaborate
and incessantly indulge in any disruptive behavior to make the
network formation and operation dysfunctional. They could
just “jam,” or engage in more intricate behavior such as not
relay a packet, advertise a wrong hop count, advertise a wrong
logical topology, cause packet collisions, disrupt attempts at
cooperative scheduling, drop an ACK, refuse to acknowledge
a neighbor’s handshake, or behave inconsistently.

We design a protocol suite that is provably secure against
all such attacks by the malicious nodes. Not only that, it guar-
antees min-max optimal performance, described by a given
utility function. The good nodes maximize it by publishing a
complete protocol suite and conforming to it, while the bad
nodes minimize it by indulging in all manner of “Byzantine”
behavior described above not conforming to the protocol.

This leads to a zero-sum game. Since the good nodes first
announce the protocol, the best value of the utility function that
the good nodes can hope to attain is its max-min, where the
maximization is over all protocol suites, and the minimization
is over all Byzantine behaviors of the bad nodes. We will prove
that the protocol suite designed attains this max-min to within
any ε > 0. Moreover, we establish three even stronger results.

First, this game actually has a saddle point, i.e., the protocol
suite attains the min-max (to within any ε > 0). (Generally,
min-max results in a higher utility than max-min, since the
bad nodes have to first disclose their tactics).

Second, the bad nodes can do no better than just jamming or
conforming to the published protocol suite on each “concurrent
transmission vector,” a generalization of the notion of an
“independent set” of nodes that can simultaneously transmit.
They do not benefit from more elaborate Byzantine antics.

Third, If the bad nodes behave suboptimally, i.e., are not
totally hostile, the protocol optimally exploits it. This is a
desirable feature since one would want them to exploit any
benignness in the environment.

Some important qualifications need to be noted. First, the
results are valid only for the postulated model of the network.
Future research may identify technological capabilities outside
the model that can attack the protocol suite. Such discoveries
will, one hopes, lead to the development of more general
models and procotols provably secure in them. The research
enterprise will thereby be elevated to a higher level; instead of
reacting to each proposed protocol one reacts to each proposed
model, with provable guarantees provided at each step. Section
VII provides some such directions for model generalization.

Second, the optimality is over a large time period, and

the overhead of transient phases of the protocol may be
high. However, there is much scope for optimizing protocol
overhead while preserving security.

Third, how should one view the proposed protocol suite?
The answer is layered. At a minimum, it can be regarded
as a constructive existence proof that one can indeed pro-
vide optimal performance while guaranteeing security, with
the identified model class only serving as an exemplar of
conditions under which this can be done. To a more receptive
reader, the designed protocol suite is suggestive of how one
can do so. The architectural decomposition into several phases
could perhaps be kept in mind by future protocol designers.

At any rate, we hope that this approach will trigger several
critical reactions among a skeptical readership, and lead to
follow up work that designs better protocols with guaranteed
security and performance for better models.

II. THE MODEL

The model of an ad-hoc wireless network infiltrated by
hostile nodes can be organized into four categories: the nodal
model (N), communication model (CO), clock behavior (CL),
and cryptographic capabilities (CR).

Nodal model: (N1) There are n nodes, some good and some
bad. Let G denote the set of good nodes, and its complement
B the set of bad nodes. (N2) The good nodes do not know
who the bad nodes are a priori. (N3) The bad nodes are able
to fully coordinate their actions, and are fully aware of their
collective states (equivalent to unlimited bandwidth with zero
delay between them). (N4) The good nodes are all initially
powered off, and they all turn on within U0 time units of the
first good node that turns on.

Communication model: We consider an abstraction of
a communication model that is fully deterministic. (CO1)
Each node i can choose from among a finite set of trans-
mission/reception modes Mi at each time. Each mode cor-
responds, if transmitting, to a joint choice of power level,
modulation scheme and encoding scheme for each other
intended receiver node, or to just listening and not transmitting,
or even to a distinguished mode called “jamming” (which
models using its power output to emit noise). (CO2) The
good nodes are half-duplex, i.e., cannot transmit and receive
simultaneously. (CO3) We call c = (c1, c2, . . . , cn) denoting
the mode choices of all the nodes made at a certain time, as
a “concurrent transmission vector” (CTV). (It is more general
than an independent set that is sometimes used to model
wireless networks). We will denote by cG = (ci : i ∈ G)
and cB = (ci : i ∈ B) the vectors of choices of modes
made by the good and bad nodes respectively, with each
ci ∈ Mi, and let CG and CB denote the sets of all such
choices. We will denote by C := CG × CB , the set of all
CTVs. (CO4) Each c results in a “link-rate vector” r(c) of
dimension n(n − 1). Its ij-th component, rij(c), is the data
rate at which bits sent by node i can be decoded at node j at
that time. Due to the shared nature of the wireless medium, the
rate depends on the transmission mode choices made by all the
other nodes, as well as the geographic locations of the nodes,
the propagation path loss, the ambient noise, and all other

3

physical characteristics affecting data rate. A component rij(c)
may be zero, for example if the SINR at j is below a threshold
value for decoding, or if node i is not transmitting to node j.
If a single node changes its mode to “jam,” the resulting rate
vector is coordinate wise no larger than what it is when that
node chooses any other mode. (CO5) If a certain rate vector is
achievable then lower rates are also achievable. To state this,
define Aij := {rij(c) : c ∈ C}, and let A := ∪i 6=jAijdenote
the finite set of all possible nonnegative rates that can be
achieved, with 0 ∈ A.1 We suppose that for every c, and
r′ ≤ r(c) (understood component wise) with all elements in
A, there is a choice c′ ∈ C such that r(c′) = r′. (CO6) In the
case of a bad node j, the rate rij(c) may be the result of some
other bad node being able to decode the packet from i at that
rate, and then passing on that packet to j, since bad nodes
can collaborate perfectly. In the case of a bad node i, the rate
rij(c) may be the result of some other bad node being able to
transmit the packet successfully to j at that rate, pretending to
be i. Meanwhile, in either case, the bad node may be jamming.
Thus a bad node can both jam and appear to be cooperating,
whether transmitting or receiving, at the same time. (CO7)
The bad nodes can claim to have received transmissions from
each other at any of the rates in the finite set A, as they please.
To state this, for c = (cG, cB), we will partition the resulting
link-rate vector as r(c) = (rGG(c), rGB(c), rBG(c), rBB(c)),
where rBG denotes the link-rates from the bad nodes to the
good nodes, etc. We suppose that for every c = (cG, cB) and
every r′ with all elements in A, there is a c′B ∈ CB such that
r(cG, c

′
B) = (rGG(c), rGB(c), rBG(c), r

′). with all elements
in A, (CO8) The good nodes know A, and an upper bound
on the cardinalities of the Mi’s, but do not know the values
of the vectors r(c) for any c ∈ C, and an upper bound on
the cardinalities of the Mi’s, but do not know the values of
the vectors r(c) for any c ∈ C. (CO9) The assumption that
the link-rate vector r(c) does not change with time implicitly
assumes that nodes are not mobile to any significant extent.

Clock model: (CL1) Each good node i has a local
continuous-time clock that it initializes to zero when it turns
on. Its time τ i(t) is affine with respect to some reference time
t ≥ 0, i.e., τ i(t) = ait + bi where ai and bi are called the
skew and offset respectively. Wlog, the time t above and in
(N4) is taken equal to the clock time of the first good node to
turn on. (CL2) Denoting the relative skew and offset between
nodes i and j by aij := ai

aj
and bij := bi − aijbj , node i’s

time with respect to node j’s time s is τ ij(s) = aijs+ bij . We
assume 0 < aij ≤ amax. As a corollary of (N4,CL1,CL2),
|bij | ≤ amaxU0, since τ i(U0) ≥ 0. (CL3) The good nodes do
not know their skew or offset a priori. (CL4) Finally, due to its
digital processor, a good node i can only observe a quantized
version of its continuous-time local clock τ i(t).

Cryptographic capabilities: (CR1) Each node is assigned
a public key and a private key; information encrypted by

1For example, A = {0, 6, 9, 12, 18, 24, 36, 48, 54} (Mbps) in IEEE
802.11a, with 6Mbps achieved by BPSK at code rate 1/2, 9Mbps achieved by
BPSK at code rate 3/4, 12 achieved by QPSK at code rate 1/2, 18 achieved
by BPSK at code rate 3/4, 24 achieved by 16-QAM at code rate 1/2, 36
achieved by BPSK at code rate 3/4, 48 achieved by 64-QAM at code rate
1/2, 54 achieved by BPSK at code rate 1/2.

a public key can only be decrypted with the corresponding
private key. A message signed by a private key can be verified
by any node with the public key. The private key is never
revealed by a good node to any other node. Possession of a
public key does not enable an attacker to forge, alter, or tamper
with an encrypted packet generated with the corresponding
private key. The good nodes encrypt all their transmissions.
(CR2) Each node possesses the public key of a central
authority. (CR3) Each node possesses an identity certificate,
signed by the central authority, containing node i’s public key
and ID number. The certificate binds node i’s public key to
its identity. (CR4) Each node possesses a list of all the other
n node IDs.

Now we describe a key “connectedness assumption” that
makes cooperation among the good nodes feasible even in the
face of hostile Byzantine attacks by the bad nodes. Consider a
mode c = (cG, cB). It attains a rate r(cG, cB). Now suppose
that the protocol at some point requires the implementation of
(cG, cB). Towards this end, the good nodes would faithfully
choose their portion cG. Now suppose that there exists a choice
c′B such that for some link (i, j), rij(cG, c′B) < rij(cG, cB).
That is, by their actions, the bad nodes can prevent the
intended rate from being realized, at least for one link. Then
we say that the CTV c = (cG, cB) can be disabled by the
bad nodes.2 Let D∗ denote the set of all such CTVs that can
be disabled. Let G∗ be defined as the directed graph over the
nodes, where there is an edge ij if and only if rij(c) > 0 for
some c /∈ D∗. This is the graph over which communication
cannot be disrupted by the bad nodes.
Connectedness Assumption (C): We will assume that the set
consisting of all good nodes is connected in the subgraph of
G∗ that consists only of edges ij for which both ij as well as
ji are edges in G∗.

We now consider a utility function of the throughputs of
any subset S of source-destination pairs. We define it for all
subsets since we will consider the utility of those nodes that
are perceived as conforming to the protocol.
Utility function assumption (U): For any subset S ⊆
{1, 2, . . . , n} and any n(n − 1)-dimensional end-to-end
throughput vector x, let U(x, S) depend only on xij for
i, j ∈ S. For every S, U(x, S) is continuous and monotone
increasing in the components of x.

In order to quantify how good a performance is achiev-
able, we need to specify what end-to-end rates are actually
feasible through multi-hop. Suppose that D ⊂ D∗ denotes
the particular set of CTVs that the bad nodes has chosen
to disable. Let us call the complement E := C \ D as the
“allowed set.” Let R(E) := ConvexHull({r(c) : c ∈ E}) be
the set of link rate-vectors supported by E by time-sharing
over the CTVs in E . Denote by Pij the set of all multi-hop
paths from i to j. We can now define the multi-hop capacity
region of n(n− 1)-dimensional end-to-end source-destination
throughput vectors in the standard way as C(E) := {x : For
some vector y ≥ 0 with 0 ≤

∑
p:`∈p yp ≤ r` for some

2As an example, if a bad node jams, it can prevent a rate vector from being
realized. Thus it “disables” the particular CTV. As another example, if a bad
node reports that it did not receive a packet sent at a certain target rate. Then
again it effectively disables that particular CTV.

4

r ∈ R(E), xij =
∑
p∈Pij yp for all 1 ≤ i, j ≤ n, j 6= i}.

We also define G(E) as the directed graph over the nodes,
where there is an edge ij if and only if rij(c) > 0 for some
c ∈ E .

We now consider the game where the good nodes wish
to maximize the utility for the nodes perceived to be good
by them, while the bad nodes wish to minimize it over
all their Byzantine behaviors. To obtain an upper bound on
utility, suppose that the bad nodes disable only the CTVs
in D and reveal this choice to the good nodes. If G(E)
has several strongly connected components, then, by the
connectedness assumption (C), the good nodes are all in the
same component, denoted by F (E), and thus know that the
nodes outside F (E) are bad. They will therefore only consider
the utility accrued as U(x, F (E)), and maximize it over all
x ∈ C(E). An upper bound on this achievable utility is
therefore min

D⊂D∗
max

x∈C(C\D)
U(x, F (C \ D)).

III. THE OUTLINE OF THE APPROACH

We will show in this paper that, in spite of perfect collusion
and collaboration between all the bad nodes in engaging in all
manner of Byzantine behaviors, such as, but not limited to, not
relaying a packet, advertising a wrong hop count, advertising
a wrong logical topology, behaving uncooperatively vis-a-vis
medium access, disrupting attempts at cooperative scheduling,
dropping ACKs, refusing to acknowledge a neighbor’s hand-
shake, behaving inconsistently, and given that the good nodes
have to build a complete network from scratch right from
birth without knowing who their neighbors are, and without
the good nodes knowing the identity of the bad nodes, the
good nodes can achieve the above optimized utility arbitrarily
closely. Moreover, the fact that it is the min-max and not just
the max-min that is achievable, has several implications. Our
proof is constructive, providing a complete protocol suite from
birth to network formation and operation of a utility optimizing
network.

Our scheme above relies heavily on the Byzantine agree-
ment algorithm. This allows the nodes to agree on a common
view, even in the presence of malicious nodes. Additionally,
we go beyond mere Byzantine agreement and ensure that the
common view is actually internally consistent.3 Subsequently,
after agreeing on a common view, which includes clocks,
each node can act in a distributed fashion, with no need
to exchange control messages, This enables our protocol to
withstand any malicious attacks on control packets. Since the
malicious nodes cannot attack control messages, they are left
with only attacking data messages. That is, they can only jam
if they want to. This explains why we are able to obtain the
min-max optimality result.

Our agreement on a common view includes an extension
of what one may call “logical topology,” as well as clock
information. The extension of logical topology is necessary
because a wireless network cannot simply be described as
a graph with rates on links, as wireline networks can. In a

3For example, we ensure that the product of the clock skews along, say,
one path node 1 to node 2 to node 3 is the same as the product of the clock
skews along, say, another path node 1 to node 4 to node 2.

wireless network, whether a pair of nodes can communicate
depends on what other nodes are concurrently transmitting
and at what power, as well as whether the recipient node
is itself “listening,” since we allow the good modes to be
only half-duplex. Thus what happens in a wireless network
depends on the nature of all the concurrent transmissions. So
our Byzantine agreement is about the rate vectors achieved by
various possibilities for concurrent transmissions, i.e., what we
have called “CTVs” above.

Our Byzantine agreement is also about the clocks at dif-
ferent nodes. Once that is done nodes can cooperate simply
by the times of their own clocks.4 Hence they will not need
further control messages to cooperate.

The heart of the approach after agreeing on a common view
is to investigate different CTVs, exploiting the fact that the
operation of the network consists of invoking which particular
CTV to use at any given instant. If a good node fails to receive
a scheduled packet, then that good node alerts the rest of
the network during a verification phase, and the offending
CTV set is never used again. After each such pruning the
network then re-optimizes its utility over the remaining CTVs.
5 The decreasing sequence of residual remaining sets of CTVs
necessarily converges to an operational collection of CTVs,
over which the utility is optimized by time sharing. Since
the set of disabled CTVs is determinable by the network, as
we show, it is the same as if it were revealed to the good
nodes a priori, which allows achievement of min-max. It also
shows that more complex Byzantine behaviors than jamming
or cooperating are not any more effective for the bad nodes.

There are however several problems that lie along the
way to realizing this scheme. How does one determine the
network topology and other parameters, while under attack
from bad nodes? During this period even control packets can
be attacked. We present a complete protocol suite that proceeds
through several phases to achieve this end result. After their
birth, the nodes need to first discover who their neighbors
are. This requires a two-way handshake, which presents one
problem already. Two good nodes that are neighbors can
successfully send packets to each other if there are no primary
(half-duplex) or secondary (collision) conflicts. To achieve
this we employ an Orthogonal MAC Code [20].6 Next, the
two nodes need to update their clock parameters. After this,
the nodes propagate their neighborhood information so that
everyone learns about the network topology. This also poses
some challenges when there are intermediary bad nodes. This
is addressed by a version of the Byzantine General’s algorithm

4This statement is more subtle than it sounds since it turns out that it is
impossible for nodes to ever determine each other’s clocks [6] whenever there
is asymmetric delay. However they can successfully time a packet transmission
to arrive at the intended node at a certain time according to that node’s cock,
which is all that the protocol needs.

5The verification phase, as indeed all else, uses Byzantine agreement
algorithm. Similarly, agreement is reached via the Byzantine agreement
algorithm after each pruning of what CTVs appear to be working. Thus the
Byzantine agreement algorithm is invoked multiple times at each pruning of
the set of CTVs to recursively generate common views.

6This is a code that specifies windows for each node according to their
own clocks when they should transmit and to whom, and when should just
listen. These times are so chosen that within a bounded time every pair of
nodes can exchange packets, even prior to clock synchronization.

5

of [1]. This paper proved both agreement and validity for
graphs in which the number of faulty nodes f is no more than
a third of the total, that is, n > 3f + 1, and the connectivity
of the graph G satisfies conn(G) > 2f . However, it is also
well established that agreement and validity hold in complete
graphs for n > f if the network employs perfect authentication
[17]. This result can also be extended to graphs such as ours, in
which the legitimate nodes are connected. Next, even though
all the good nodes converge to a common network view, that
view may be internally inconsistent, especially with respect to
clocks. To resolve this we employ a certain consistency check
algorithm. Next, the nodes proceed to determine an optimal
schedule for time sharing over the set of CTVs that have
performed consistently from the very beginning, and execute
it. However, a bad node that has cooperated hitherto may not
cooperate at this point. Hence the results of this operational
phase need to be verified, the dysfunctional CTV pruned, the
schedule re-optimized, and the procedure iterated.

The reader may wonder: Why do we even need a notion of
“time”? First, without it, we cannot even speak of throughput
or thus of utility. Second, we use local clocks to schedule
transmissions and coordinate activity (as is quite common,
e.g., time-outs in MAC and transport protocols). On the
other hand, dependence on distributed synchronized clocks for
coordinated activity opens yet another avenue for bad nodes
to sabotage the protocol – interfering with the clock synchro-
nization algorithm. Therefore, topics like scheduling, clock
synchronization, utility maximization, are deeply interwoven.
Therefore one needs a holistic approach that addresses all these
issues at every stage of the operating lifetime, and further
guarantees min-max optimality.

One obvious drawback of our approach is the complexity of
Byzantine agreement. Concerning this, there are several points
to be kept in mind. First, technically speaking, we amortize
this overhead by running a very long data transmission and
thus utility accruing phase. That is why we are able to
prove ε-min-max optimality. Nevertheless the transients are
unrealistically long if one implements our algorithm exactly
the way specified. However, one can optimize on this, and
we hope that follow up papers will do so, for example by
postponing verification until all data is exchanged, since it
may well be the case that there are no malicious nodes.
Thus one may be able to design lower complexity algorithms
where complex algorithms are only invoked if necessary, but
otherwise nodes proceed optimistically. All of the above is in
line with our dictum that one can optimize algorithms under
ultimate security guarantees. Finally, it must be kept in mind
that this paper is only intended to be an initial foray to show
that provable security is achieved under appropriate models
and how to do so, and also that we are hoping that others will
propose alternative models that are both more realistic as well
as more tractable. Some important further desirable directions
for extension are outlined in Section VII.

This is the raison d’être for this paper.

IV. THE PHASES OF THE PROTOCOL SUITE

The protocol suite we show to be optimal consists of six
phases: Neighbor Discovery, Network Discovery, Consistency

Check, Scheduling, Data Transfer, and Verification.
We first note the necessity for a key ingredient, guaran-

teed medium access control. Even two good nodes that are
neighbors as in assumption (C) are only guaranteed to be able
to successfully send packets to each other provided one is
transmitting, the other is listening (since good nodes are half-
duplex), and the remaining good nodes are all silent. The Or-
thogonal MAC Code (OMC) of [20] ensures the simultaneity
of all these events, even though the clocks of different nodes
have different skews and offsets. For each pair of nodes i, j,
it defines certain zero-one valued functions of local time at
each node, such that if i transmits a packet of duration W to
j at that time, then the packet is successfully received, and
the delay involved in waiting for such an eventuality is never
more than a certain TMAC(W).

A. The Neighbor Discovery Phase

In this phase, each node i will determine the identity and
relative clock parameters of nodes in its neighborhood Ni, and
include this data in a mutually authenticated link certificate.

In the first two steps, each node i attempts a handshake with
a neighbor node j by broadcasting a probe packet PRBij and
waiting for an acknowledgement ACKji. The probe packet
contains an identity certificate signed by a central authority.
Given Ni := {1, . . . , n}\i, an initial candidate for the set
of bidirectional neighbors of i (as in (C)), to indicate that
node i transmits PRBij to each node j ∈ Ni via the
OMC, and receives PRBjj from each node j ∈ Ni, we use
TxRxMAC(PRBi→Ni ,PRBNi→i). If a probe packet is not
received from some node j, then j is pruned from Ni.

Next, node i transmits an acknowledgment ACKij to node
j containing a signed confirmation of the received probe
packet PRBj . Node i also listens for an acknowledgment
ACKji from node j. Node i further removes from Ni any
nodes that failed to return acknowledgements.

Then node i transmits to each node j ∈ Ni a pair of timing
packets TIM (1)

i,j and TIM (2)
i,j that contain the send-times s(1)

ij

and s(2)
ij respectively as recorded by its local clock τ i(t). Node

i also receives a corresponding pair of timing packets TIM (1)
j,i

and TIM
(2)
j,i from node j, and records the corresponding

receive-times r(1)
ji and r

(2)
ji respectively, as measured by the

local clock τ i(t). Any node that fails to deliver timing packets
to node i is further removed from Ni. The timing packets are

used to estimate the relative skew aji by âji :=
r
(2)
ji −r

(1)
ji

s
(2)
ji −s

(1)
ji

.

The relative skew is used at the end of the Network
Discovery Phase, to estimate a reference clock with respect
to the local continuous-time clock. In the last two steps, node
i creates a link certificate LNK(1)

ij containing the computed
relative clock skew with respect to node j, and transmits this
link to node j using the OMC. Node i also listens for a similar
link certificate LNK(1)

ji from node j.
Finally, node i verifies and signs the received link certificate,

and transmits the authenticated version LNK(2)
ji back to node

j. Node i listens for a similar authenticated link certificate
LNK

(2)
ij from j. Any nodes that fail to return link certificates

are removed from the setNi. This set now represents the nodes

6

in the neighborhood of node i with whom node i has estab-
lished mutually authenticated link certificates. The Neighbor
Discovery Phase’s pseudocode is shown in Algorithm 1.

One problem is that the algorithm must be completed in
a partially coordinated manner even though the nodes are
asynchronous; the completion of any stage in the Exponential
Information Gathering (EIG) algorithm (see below) depends
on the successful completion of the previous stages by all
other good nodes. Consequently, we assign increasingly larger
intervals Sk := [tk, tk+1), k = 1, . . . 6, to each successive
protocol stage; see Section VI.

Algorithm 1 The Neighbor Discovery Phase
procedure NEIGHBORDISCOVERY
Ni := {1, . . . , n} \ i
while t ∈ S1 do

TXRXMAC(PRBi→Ni ,PRBNi→i)
UPDATE(Ni)

end while
while t ∈ S2 do

TXRXMAC(ACKi→Ni ,ACKNi→i)
end while
while t ∈ S3 do

TXRXMAC(TIM(1)
i→Ni

,TIM(1)
Ni→i

)
UPDATE(Ni)

end while
while t ∈ S4 do

TXRXMAC(TIM(2)
i→Ni

,TIM(2)
Ni→i

)
UPDATE(Ni)

end while
while t ∈ S5 do

TXRXMAC(LNK(1)
i→Ni

,LNK(1)
Ni→i

)
UPDATE(Ni)

end while
while t ∈ S6 do

TXRXMAC(LNK(2)
i→Ni

,LNK(2)
Ni→i

)
UPDATE(Ni)

end while
end procedure

B. The Network Discovery Phase
The purpose of this Phase is to allow the good nodes to

obtain a common view of the network topology and consistent
estimates of all clock parameters. To accomplish this, the good
nodes must disseminate their lists of neighbors to all nodes,
so that all can decide on the same topology view. However
good nodes do not know a priori which nodes are bad, and
so bad nodes can selectively drop lists or introduce false lists
to prevent consensus. We resolve this by using a version of
the Byzantine General’s algorithm of [1], requiring an EIG
tree data structure. Let Ti denote node i’s EIG tree, which by
construction has depth n. The root of Ti is labelled with node
i’s neighborhood, i.e., the nodes in Ni and the corresponding
collection of link certificates. First node i transmits to every
node j ∈ Nj in its neighborhood, the list of nodes in Ni
and corresponding link certificates, while receiving similar
lists from each node in Nj . Node i updates its EIG tree with
the newly received lists from its neighbors, by assigning each
received list to a unique child vertex of the root of Ti. Node
i then transmits the set of level 1 vertices of Ti to every node
in its neighborhood, receiving a set of level 1 vertcies from
each neighbor in turn. The EIG tree Ti is updated again. This
process continues through all n levels of the EIG tree.

The notation T
(k)
i in Algorithm 2 indicates the

k-level vertices of the EIG tree Ti. The notation

TxRxMAC(T (k)
i→Ni , T

(k)
Ni→i) indicates that, using the OMC,

node i transmits T (k)
i to each node j ∈ Ni, and receives T (k)

j

from each node j ∈ Ni.
We use UPDATE(Ti), to update the EIG tree Ti after the

arrival of new information, and the procedure DECIDE(Ti) to
infer the network topology based on the EIG tree. The n-stage
EIG algorithm guarantees that if the subgraph of good nodes
is connected, then each good node will decide on the same
topological view.

Algorithm 2 The EIG Byzantine General’s Algorithm
procedure EIGBYZMAC(Ni)
T

(0)
i := Ni

for k = 1, . . . n do
while t ∈ S6+k do

TXRXMAC(T (k)
i→Ni

, T
(k)
Ni→i

)
UPDATE(Ti)

end while
end for
DECIDE(Ti)

end procedure

C. The Consistency Check Phase

Unfortunately, a fundamental difficulty is that malicious
nodes along a path 1, . . . , n may have generated false time
stamps in the Neighbor Discovery Phase, and thus corrupted
the measured relative skews between adjacent nodes. There
may be several connecting paths infiltrated by bad nodes that
thereby generate different values for the relative skew. It is
impossible to determine the correct path from the relative
skews alone. Every pair of such inconsistent paths corresponds
to an inconsistent cycle in which the skew product is not
equal to one. We use an algorithm called Consistency Check
to identify the path that generated the correct relative skew.

Consistency Check works by circling a timing packet around
every cycle in which the skew product differs from one by
more than a desired maximum skew error εa. At its conclusion,
the test removes at least one link with a malicious endpoint
from the cycle, eliminating a connecting path. During the test,
each node in such a cycle is obliged to append a receive time-
stamp and a send time-stamp generated by the local clock
before forwarding the packet to the next node. These time-
stamps must satisfy a delay bound condition; the send and
receive times cannot differ by more than 1 clock count. A node
fails the consistency check otherwise, or if its time stamps do
not agree with its declared relative skew. The key idea is that
if the test starts after a sufficiently large amount of time has
elapsed, the clock estimates based on faulty relative skews
will have diverged so extensively from the actual clocks that
at least one malicious node in the cycle will find it impossible
to generate time-stamps that are consistent with its declared
relative clock skew and satisfy the delay bound condition (all
proofs are in Section VI):.

Theorem IV.1. Let Tj be the start-time of the Consistency
Check for the jth inconsistent cycle, consisting of nodes
i1, . . . , im. At least one malicious node in cycle j will violate
a consistency check condition, if Tj >

âim,i∗ (m+1)K+εb
εa

where
i∗ is the node with the smallest skew product âi∗,i1 .

7

Algorithm 3 depicts Consistency Check. Given a cycle j,
the indices k and m denote nodes that follow and precede
node i respectively in the cycle. If node i is the leader of the
cycle, i..e., the node with smallest ID, then node i initiates the
timing packet that traverses the cycle and transmits it to node
k. Otherwise, node i waits for the timing packet to arrive from
node m before forwarding it to node k.

Algorithm 3 Consistency Check Algorithm at Node i
procedure CONSISTENCYCHECK

START :=
(n+1)(amax)n+1+(n+1)(amax)n+1U0

εa
for each cycle Cj do
k =NEXT(Cj)
m =PREV(Cj)
if i=LEADER(Cj) and t ≥ START then

TRANSMIT(TIMi→k)
else if i ∈ Cj then

RECEIVE(TIMm→i)
TRANSMIT(TIMi→k)

end if
end for

end procedure

After all inconsistent cycles have been tested, each node
i disseminates the set of all timing packets Ti it received to
other nodes. The EIG algorithm is used to ensure a common
view of the timing packets generated. Each node removes from
the topology any link whose endpoints generate time-stamps
inconsistent with its declared relative skew or violated the
delay bound. The complete phase is shown in Algorithm 4.

Algorithm 4 The Network Discovery Phase at Node i
procedure NETWORKDISCOVERY

EIGBYZMAC(Ni)
CONSISTENCYCHECK
EIGBYZMAC(Ti)

end procedure

At the conclusion of Network Discovery Phase node i shares
a common view of the network topology with all other good
nodes. As a result, the network can designate the node with
smallest ID as the reference clock. Furthermore, each node i
has an estimate of the reference clock τ ri (t) with respect to its
local clock t using the formula τ̂ ri (t) := ârit, where estimated
âri and actual relative skews ari differ by at most εa.

D. The Scheduling Phase

In the Scheduling Phase the good nodes in the network
obtain a common schedule governing the transmission and
reception of data packets. A “schedule” is simply a sequence
of CTVs, each with specified start and end times. Each node i
divides the Data Transfer Phase into time-slots, and assigns a
CTV to each time-slot so that the resulting throughput vector
is utility optimal. All the good nodes independently arrive at
the same schedule since they independently optimize the same
utility function over the same C (ties broken lexicographically).

Since the good nodes must conform to a common schedule,
each node i generates a local estimate of the reference clock
τ̂ ri (t) with respect to its local clock t, as described in the
Network Discovery Phase. However, this estimate may not be
perfectly accurate; some of the nodes on a path along which

relative skew is estimated may be malicious and can introduce
an error of at most εa into the computed relative skew. To
address this, the time-slots are separated by a dead-time of
size D, where given any pair of nodes (i, j), D is chosen to
satisfy |τ̂ ri (t)− τ̂ rj (τ

j
i (t))| ≤ D.

Finally, n2(n−1) time-slots are enough to guarantee that ev-
ery pair of nodes can communicate once in either direction, via
multihop routing, during Data Transfer Phase. The algorithm
UtilityMaximization(C) for the Scheduling Phase is depicted
in Algorithm 5. At the end of Scheduling Phase, node i shares
a common utility maximizing schedule with other good nodes.

Algorithm 5 The Scheduling Phase at Node i
procedure SCHEDULING

UTILITYMAXIMIZATION(C)
end procedure

E. The Data Transfer Phase

In this phase the nodes exchange data packets using the
generated schedule. It is divided into time-slots, with each
assigned a CTV, a rate vector, and set of packets for each
transmitter in the set. To prevent collisions resulting from
two nodes assigning themselves to different time slots due to
timing error, node i begins transmission D time-units after the
start of the time-slot. The transmitted packet is then guaranteed
to arrive at the receiver in the same time slot, for appropriate
choice of D and time-slot size Bslot.

Algorithm 7 defines this phase, with mk denoting a message
to be transmitted or received by node i in the kth slot, Tstart
the start time of the phase measured by the local estimate of
the reference clock τ̂ ri (t)), Sk = [tk, tk+1), k = 1, . . . , N the
time-slots of the phase with N = n2(n− 1), t1 = Tstart, and
tk+1 := tk + Bslot + 2D, and TX(k) and RX(k) the CTV,
and receiving nodes during slot k.

Algorithm 6 The Data Transfer Phase at Node i
procedure DATATRANSFER(Tstart)

for k=1,. . . ,N do
if t ∈ Sk and t ≥ tk +D and i ∈ TX(k) then

TRANSMIT(mk)
else if t ∈ Sk and i ∈ RX(k) then

RECEIVE(mk)
end if

end for
end procedure

F. The Verification Phase

However, malicious nodes may not cooperate in the Data
Transfer Phase. So whenever a scheduled packet fails to arrive
at node j, it adds the offending CTV and associated packet
number to a list, and disseminates the list in the Verification
Phase using the EIG Byzantine General’s algorithm. These
CTVs are then permanently further pruned from the collection
of feasible CTVs. With Lk denoting the list that failed during
the kth iteration of the Data Transfer Phase, the set Ck of
feasible CTVs during the kth iteration of the Scheduling Phase
is updated to Ck+1 = Ck \ Lk in Algorithm 7.

All communication can be scheduled into slots separated by
a dead-time of 2D. Within each of the n stages of the EIG

8

Byzantine General’s algorithm, there are n(n − 1) pairs of
nodes that may communicate, and at most n nodes on the
connecting path. Therefore, the total number of time slots
required is n3(n− 1).

At the conclusion of the phase, the good nodes again share a
common view of the set of feasible CTVs for the next iteration
of the Scheduling Phase.

Algorithm 7 The Verification Phase at Node i
procedure VERIFICATION

EIGBYZ(Lk)
UPDATE(Ck+1)

end procedure

G. The Steady State

The network cycles through Scheduling, Data Transfer, and
Verification Phases for niter iterations. Eventually, by finite-
ness, it converges to a set of CTVs, and a utility-maximizing
schedule over it. The overall protocol is in Algorithm 8.

Algorithm 8 The Complete Protocol
NEIGHBORDISCOVERY
NETWORKDISCOVERY
for k = 1, . . . , niter do

SCHEDULING(Ck)
DATATRANSFER(t)
VERIFICATION

end for

V. THE MAIN RESULTS

Our main result, elaborated on in Theorem VI.2, is:

Theorem V.1. Consider a network that satisfies (N), (CO),
(CL), (CR), (C) and (U). Given an arbitrary ε, where 0 <
ε < 1, the protocol described above ensures that all the good
nodes obtain a common estimate of the connected component
that they are all members of, and achieves the utility (1 −
ε) min
{αk,Dk∈∆}

max
{x∈C(C\Dk)}

∑
k

αkU(x, F (C \Dk)), where αk,

the fraction of the operating lifetime in which the concurrent
transmission vectors in Dk are disabled, satisfies

∑
k αk = 1.

Some important consequences are the following. Normally,
one would expect that since the good nodes have to first
declare their protocol and follow it, they can only attain “max-
min,” which is generally smaller than min-max. Since the latter
can be attained (arbitrarily closely), it shows firstly that the bad
nodes are unable to benefit from having a priori knowledge of
the protocol. Second, since all that the bad nodes can benefit
from is deciding which sets to disable, they are effectively
limited to jamming and/or cooperating in each CTV. Other
more Byzantine behaviors are not any more effective.

The example below shows why a bad node may prefer to
“conform” rather than jam for some utility functions.

Example V.1. Consider the network of Figure 1. Nodes 1
and 2 are good and in close proximity, while node 3 is bad
and located far away. Consider the “fairness-based ”utility

function U(x) := min{x12, x32}. If node 3 jams, then the
connected component becomes {1, 2}, and the good nodes
proceed to maximize only x12, which node 3 can only slightly
impinge because it is so far away from node 2. However, if
node 3 cooperates, then the connected component is {1, 2, 3},
and the optimal solution for this “fair” utility function is to
make x32 = x12. However, link 32 being weak, it requires
much more airtime than link 12, thus considerably reducing
x12.

Fig. 1: Example V.1.

There are two important directions for future research that
arise from just a perusal of this example. First, it shows that
the choice of the utility function adopted in designing the
protocol is important. As we have seen above the choice of the
utility function U(x) := min{x12, x32} can be exploited by
the bad nodes using a partial deafness attack (i.e., pretending
to be very far away and thus receiving only a weak signal) to
hurt the performance obtained by the good nodes. However,
the utility function U(x) := x12 + x32 is less exploitable by
such a partial deafness attack. This points to the importance
of properly choosing the utility function in the design of the
protocol.

Second, as we have noted at the very outset of the paper,
the results obtained are specifically with respect to the model
of the capabilities available to the good and bad nodes. If
nodes have availability to geographical positions of other
nodes then claiming partial deafness due to being far away
can be secured against. The points to the importance of
investigating more general model classes that technology (e.g.,
GPS) can potentially support. Also, if malicious nodes have
other means of attack, then that also would point to the need
for generalizing the model.

The larger and important point is that we would have
thereby elevated the theory of security from responding to
attack by attack, to a theory that addresses models and utility
functions. This is a much higher level playing field.

VI. FEASIBILITY OF PROTOCOL AND OPTIMALITY PROOF

For the distributed wireless nodes to exchange data over the
network, they must have a consistent view of a reference clock
so that any activity will conform to this common schedule.
For this, we consider the consistency check algorithm of
Section IV-C. Consider a chain network 1, . . . , n, where the
endpoints, nodes 1 and n are good, and the intermediate nodes
2, . . . , n−1 are bad. Note that this network can also be reduced
to a cycle of size n − 1 by making both endpoints the same
node. We assume that the two good endpoints do not know if
any of the intermediate nodes are bad.

Now suppose that each pair of adjacent nodes (i, i− 1) for
i = 2, . . . , n has declared a set of relative skews and offsets
{âi,i−1, b̂i,i−1}, and that each node in the chain knows this set.

9

The two good nodes wish to determine whether the declared
skews are accurate, i.e., whether an,1 =

∏n
i=2 âi,i−1. As per

the consistency check, node 1 initiates a timing packet that
traverses the chain from left to right after waiting a sufficiently
long period of time. Each node in the chain is obligated to
forward the packet after appending receive and time-stamps
that satisfy the skew consistency and delay bound conditions.

In order to defeat this test, the bad nodes, having collectively
declared a false set of relative skews and offsets, must support
two sets of clocks for each node i ∈ {2, . . . , n}: a “left”
clock τ i,l(t) to generate receive time-stamps, and a “right”
clock τ i,r(t) to generate send-time stamps. The bad nodes are
free to jointly select any set of clocks {τ i,l(t), τ i,r(t),∀i =
2, . . . , n−1} that are arbitrary functions of t, a much larger set
than the affine clocks being emulated. However, we will show
that if node 1 waits sufficiently long enough, there is no set
of clocks {τ i,l(t), τ i,r(t), i = 2, . . . , n− 1} that can generate
time-stamps which satisfy both conditions of the consistency
check.

Let ri,i−1 and si,i+1 denote the receive and send time-
stamps generated by a bad node i with respect to the left
and right clocks τ i,l(t) and τ i,r(t) respectively. Let ti,l and
ti,r denote the time with respect to the global reference clock
at which the receive and send time-stamps are generated at
node i. We have ri−1,i := τ i,l(ti,l) and si,i+1 := τ i,r(ti,r).
Let t1 and tn denote the time with respect to the global
reference clock at which the timing packet was transmitted
by node 1 and received by node n respectively. We have
s1,2 := τ1(t1), rn−1,n := τn(tn). To simplify notation we
will define left and right clocks at the endpoints so that t1,r :=
t1, tn,l := tn and τ1,r(t1,r) := τ1(t1), τ

n,l(tn,l) := τn(tn).
In order to prove that both conditions of the consis-

tency check cannot be satisifed by any set of clocks
{τ i,l(t), τ i,r(t), i = 2, . . . , n − 1}, we will assume that the
first condition is satisfied, and show that second must fail.
Therefore, the clocks must satisfy:

τ i,l(ti,l) = ai,i−1τ
i−1,r(ti−1,r) + bi,i−1 for i ≤ 2 ≤ n. (1)

In addition, by virtue of causality, we also have:

τ i,l(ti,l) ≤ τ i,r(ti,r). (2)

We prove that delay bound condition must be violated if node
1 waits for a sufficiently large period of time before before
initiating the timing packet, i.e., if τ1(t1) is sufficiently large,
then for some i, we have τ i,r(ti,r)−τ i,l(ti,l) > K. More pre-
cisely, we show

∑n−1
i=2

(
τ i,r(ti,r)− τ i,l(ti,l)

)
> nK, which

implies that some node has violated delay bound condition.
We have the following equality τn,l(tn,l) = τ1,r(t1,r) +S1 +
S2, where S1 :=

∑n
i=2

(
τ i,l(ti,l)− τ i−1,r(ti−1,r)

)
, S2 :=∑n−1

i=2

(
τ i,l(ti,l)− τ i−1,r(ti−1,r)

)
. The value S2 is the sum

of the forwarding delays. We will use (1) and (2) to obtain an
upper bound on S1. Inserting this upper bound and using the
fact that τn,l(t) and τ1,r(t) are both affine functions of t, will
allow us to obtain a lower bound on S2. The proof will then
follow easily. We now obtain an upper bound on S1 when the
forward skew product

∏j
i=2 âi,i−1 ≥ 1 for all j ≥ 2.

Lemma VI.1. Suppose
∏j
i=2 ai,i−1 ≥ 1 for 2 ≤

i ≤ n. Then
∑n
i=2(τ

i,l(ti,l) − τ i−1,r(ti−1,r)) ≤(
ân,1−1
ân,1

)
τn,l(tn,l)

∑n
i=2

b̂i,i−1

âi,1
.

Proof. We have by definition τn+1,l(tn,l) :=
ân+1,nτ

n,r(tn,r) + b̂n+1,n. For n = 2, we have
τ2,l(t2,l) − τ1,r(t1,r) =

(
a2,1−1
a2,1

)
τ2,l(t2,l) +

b2,1
a2,1

.
Now assume the lemma is true for n. We will
show that it also holds for n + 1:

∑n+1
i=2 (τ

i,l(ti,l) −
τ i−1,r(ti−1,r)) =

∑n
i=2(τ

i,l(ti,l) − τ i−1,r(ti−1,r)) +

τn+1,l(tn+1,l) − τn,r(tn,r) ≤
(
ân,1−1
ân,1

)
τn,l(tn,l) +∑n

i=2
b̂i,i−1

âi,1
+ τn+1,l(tn+1,l) − τn,r(tn,r) ≤(

ân,1−1
ân,1

)
τn,r(tn,r) +

∑n
i=2

b̂i,i−1

âi,1
+ τn+1,l(tn+1,l) −

τn,r(tn,r) =
(
ân,1−1
ân,1

)(
τn+1,l(tn+1,l)−b̂n+1,n

ân+1,n

)
+∑n

i=2
b̂i,i−1

âi,1
+
(
ân+1,n−1
ân+1,n

)
τ̂n+1,l(tn+1,l) +

b̂n+1,n

ân+1,n
=(

ân+1,1−1
ân+1,1

)
τn+1,l(tn+1,l) +

∑n+1
i=2

b̂i,i−1

âi,1
, which follow from

the induction hypothesis above in the lemma statement, and
the fact that τn,r(tn,r) ≥ τn,l(tn,l) and ai,1 ≥ 1 for all
2 ≤ i ≤ n+1 (that is, the coefficient âi,1−1 is negative).

We next bound S1 in the special case when the reverse skew
product

∏j
i=1 ân−(i−1),n−i ≤ 1 for all j ≥ 1.

Lemma VI.2. Suppose
∏j
i=1 an−(i−1),n−i ≤ 1 for 2 ≤ j ≤

n− 1. Then
∑j
i=1(τ

n−(i−1),l(tn−(i−1),l)− τn−i,r(tn−i,r)) ≤
(ân,n−j − 1) τn−j,r(tn−j,r)+ b̂n,n−1 +

∑n−1
i=n−j+1 ân,ib̂i,i−1.

Proof. We have by definition τn−(k−1),l(tn−(k−1),l) :=

ân−(k−1),n−kτ
n−k,r(tn−k,r) + b̂n−(k−1),n−k. For j = 1,

τn,l(tn,l)− τn−1,r(tn−1,r) = (an,n−1 − 1)τn−1,r(tn−1,r).
Now assume the lemma holds for j. We will show that

it must hold for j + 1:
∑j+1
k=1(τ

n−(k−1),l(tn−(k−1),l) −
τn−k,r(tn−k,r)) =

∑j
k=1(τ

n−(k−1),l(tn−(k−1),l) −
τn−k,r(tn−k,r)) + τn−j,l(tn−j,l) − τn−(j+1),r(tn−(j+1),r) ≤
(ân,n−j−1)τn−j,r(tn−j,r)+b̂n,n−1+

∑n−1
k=n−j+1 ân,k b̂k,k−1+

τn−j,l(tn−j,l) − τn−(j+1),r(tn−(j+1),r) ≤ (ân,n−j −
1)τn−j,l(tn−j,l) + b̂n,n−1 +

∑n−1
k=n−j+1 ân,k b̂k,k−1 +

τn−j,l(tn−j,l) − τn−(j+1),r(tn−(j+1),r) ≤ (ân,n−(j+1) −
1)τn−(j+1),r(tn−(j+1),r) + b̂n,n−1 +

∑n−1
k=n−j ân,k b̂k,k−1.

The above follow from induction hypothesis in Lemma VI.2,
since τ i,l(ti,l) ≤ τ i,r(ti,r) and ân,n−j ≤ 1 for 1 ≤ j ≤ n− 1
(that is, the coefficient ân,n−j − 1 is negative), and from
substitution into τn−j,l(tn−j,l) and simplification.

We will combine both special cases in Lemma VI.1 and
Lemma VI.2 to obtain an upper bound on S1. First we define
i∗ as the node with the smallest skew product âi∗,1 in the
chain network, that is less than one. That is, âi∗,1 = min

k
âk,1

and âi∗,1 ≤ 1. If no such node exists, set i∗ = 1.
Now we consider an arbitrary set of skews {âi,i−1, i =

2, . . . , n}. Next we show that if i∗ ≥ 2 then the forward skew
product starting from i∗ is greater than 1, and the reverse skew
product starting from i∗ − 1 is always less than one.

Lemma VI.3. If i∗ ≥ 2 then âj,i∗ ≥ 1 for i∗ + 1 ≤ j ≤ n
and âi∗,i∗−k+1 ≤ 1 for 1 ≤ k ≤ i∗. Otherwise, âj,1 ≥ 1 for
2 ≤ j ≤ n.

10

Proof. Consider i∗ ≥ 2, and suppose the first part of the
assertion is false. I.e., for some j′, âj′i∗ < 1. It follows
that âj′1 = âj′i∗ âi∗1 ≤ âi∗1. But then j′ is a node with
a smaller skew product âj1 than node i∗, which contradicts
the definition of i∗. Now suppose that the second part of the
assertion is false. I.e., for some j′ we have âi∗j′ > 1. It follows
that âi∗1 = âi∗j′ âj′1 ≥ âj′1. But then j′ is a node with a
smaller skew product than node i∗, which again contradicts the
definition of i∗. Now consider the case when i∗ = 1. Then by
definition of i∗ it follows that âj1 ≥ 1 for all 2 ≤ j ≤ n.

We now obtain an upper bound on S1 for arbitrary skews.

Lemma VI.4. Suppose i∗ ≥ 2. We have the following inequal-
ity:

∑n
j=2 τ

j,l(tj,l) − τ j−1,r(tj−1,r) ≤ (âi∗,1 − 1)τ1,r(t1,r)

+
(
ân,i∗−1

ân,i∗

)
τn,l(tn,l) +

b̂n,1
ân,i∗

.

Proof.
∑n
j=2 τ

j,l(tj,l) − τ j−1,r(tj−1,r) =
∑i∗

j=2 τ
j,l(tj,l) −

τ j−1,r(tj−1,r)+
∑n
j=i∗+1 τ

j,l(tj,l)−τ j−1,r(tj−1,r) = (âi∗,1−
1)τ1,r(t1,r) +

(
ân,i∗−1

ân,i∗

)
τn,l(tn,l) +

b̂n,1
ân,i∗

.which follow by
applying Lemma VI.2 and Lemma VI.1, by multiplying the
terms in each summation by ân,i∗

ân,i∗
and simplifying, and from

the definitions of b̂ij and d̂(i)
ji .

Now that we have an upper bound on S1, we can obtain a
lower bound on S2, the sum of the forwarding delays.

Lemma VI.5. The sum of forwarding delays in the
chain network satisfies:

∑n−1
j=2

(
τ j,l(tj,l)− τ j,r(tj,r)

)
≥

(an,1−ân,1)
ân,i∗

τ1,r(t1,r) +
(bn,1−b̂n,1)

ân,i∗
.

Proof.
∑n−1
j=2

(
τ j,l(tj,l)− τ j,r(tj,r)

)
= τn,l(tn,l) −

τn,r(tn,r) −
∑n
j=2 τ

j,l(tj,l) − τ j−1,r(tj−1,r)

≥ τn,l(tn,l) − τn,r(tn,r) − (âi∗,1 − 1)τ1,r(t1,r)

−
(
ân,i∗−1

ân,i∗

)
τn,l(tn,l)− b̂n,1

ân,i∗
≥ τn,l(t1,r)

ân,i∗
− âi∗,1τ1,r(t1,r)−

b̂n,1
ân,i∗

=
(an,1−ân,1)

ân,i∗
τ1,r(t1,r) +

(bn,1−b̂n,1)
ân,i∗

, which follow by
applying Lemma VI.4, because tn,l ≥ t1,r since node n could
not have received the timing packet before node 1 transmitted
it, and since node n’s clock is relatively affine with respect
to 1’s.

To complete the proof, we show that if the start time of the
consistency check is sufficiently large, and the left and right
clocks {τ i,l(ti,l), τ i,r(ti,r)} satisfy the parameter consistency
condition, then at least one node will violate delay bound
condition.

Proof. We assume node 1 is a good node. Now
(an,1−ân,1)

ân,i∗
τ1,r(t1,r) +

(bn,1−b̂n,1)
ân,i∗

> nK. But by Lemma
VI.5 the LHS of this inequality is the lower bound of the
sum of the delays in the chain

∑n
j=2

(
τ j,l(tj,l)− τ j,r(tj,r)

)
.

By substitution,
∑n
j=2

(
τ j,l(tj,l)− τ j,r(tj,r)

)
> nK. It

follows that for some malicious node j ∈ {2, . . . , n},
τ j,l(tj,l) − τ j,r(tj,r) > K which violates the delay bound
condition.

Now we can show that neighbor and network discovery
phases together allow the good nodes to form a rudimentary
network, where the good nodes have the same topological

view and consistent estimates of a reference clock. The first
obstacle is that the protocol is composed of stages that must be
completed sequentially by all the nodes in the network, even
prior to clock synchronization. Suppose that [tk, tk+1) is the
interval allocated to the kth stage. Any messages transmitted
between adjacent good nodes must arrive in the same interval
they were transmitted. Since send-times are measured with
respect to the source clock, and receive-times with respect
to the destination clock, the intervals must be chosen large
enough to compensate for the maximum clock divergence
caused by skew aij ≤ amax and offset bij ≤ amaxU0.

Lemma VI.6. There exists a sequence of adjacent time-
intervals [tk, tk+1) and corresponding schedule that guaran-
tees any message of size W transmitted (via OMC) by node
i in the interval [tk, tk+1) (as measured by i’s clock) will be
received by node j in the same interval as measured by node
j’s clock.

Proof. Set tk+1 := (amax)
2tk + 2(amax)

3U0 +
(amax)

3TMAC(W). Suppose a message from node i to
node j during [tk, tk+1) is transmitted (via the OMC)
at ts := amaxtk + (amax)

2U0 with respect to node i’s
clock. By substitution and simplification it follows that
τ ji (ts) ≥ tk and τ ji (ts + TMAC(W)) < tk+1. Hence
τ ji ([ts, ts + TMAC(W))) ⊂ [tk, tk+1), and so j receives
this message during the same interval with respect to j’s
clock.

Theorem VI.1. After Network Discovery, the good nodes have
a common view of the topology and consistent estimates (to
within εa) of the skew of the reference clock.

Proof. From Lemma VI.6 all good nodes will proceed through
each stage of Neighbor and Network Discovery Phases to-
gether, and therefore establish link certificates with their good
neighbors. Since they form a connected component, the good
nodes obtain a common view of their link certificates using the
EIGByzMAC algorithm and the schedule in Lemma VI.6. The
good nodes can therefore infer the network topology and the
relative skews of all adjacent nodes based upon the collection
of link certificates. Using Consistency Check, the good nodes
can eliminate paths along which bad nodes have provided false
skew data. The good nodes can disseminate this information to
each other using the EIGByzMAC algorithm and Lemma VI.6
and thus obtain consistent estimates of the reference clock to
within εa.

Lemma VI.7. The sequence of adjacent intervals [tj , tj+1),
j = 0, . . . , k is contained in [t0, c1t0 + c2W) where constants
c1 and c2 depend on amax, k, U0, and n.

Proof. For the OMC TMAC(W) ≤ cW , where c depends on
amax, and n. The result for k = 1 follows from definition of
tk, and substitution of cW into TMAC(W), and for general k
by induction and definition of tk.

Lemma VI.8. The time to complete Neighbor and Network
Discovery Phases Tnei + Tnet is less than c1 log Tlife +

c2
εa

where c1, c2 depend only on n, amax, U0.

11

Proof. From Algorithms 1, 2, 3 and 4 there are at most
6 + n + n|C| + n protocol stages in the Neighbor and
Network Discovery Phases. Hence the time required is at
most c1t0 + c2W , where W is the size of a message to
be transmitted, and c1, c2 are constants depending on the
number of protocol stages amax, U0, n. The maximum size of
a message is proportional to the timing packet size log Tlife.
To account for the effect of the minimum start-time Ts for
the consistency check, we can assume the worst case that the
Ts comes into effect during the first protocol stage (instead of
later in the Network Discovery Phase). From Theorem IV.1 the
consistency check start-time is at most c

εa
, where c depends

on U0, amax, n. Substitution into t0 proves the lemma.

Lemma VI.9. The time required for the Data Transfer Phase
is at most c3B + c4D where B is the time spent transmitting
data packets, D is the size of the dead-time separating time
slots, and c3, c4 depend on n alone.

Proof. The total number of time-slots for data transfer be-
tween all source-destination pairs is n2(n−1), each supporting
data transfer of size Bs and a dead-time D.

Lemma VI.10. The time required for the Verification Phase
is at most c5D where c5 depends on n alone.

Proof. In each stage of the EIG Byzantine General’s al-
gorithm, there are at most n! vertex values that must be
transmitted with each node in the neighborhood. The value
of a vertex is a list of CTVs. There are at most 2n CTVs and
at most n nodes in a CTV. Therefore the size of any message to
be transmitted by a node during EIG algorithm is at most cD,
where c is a constant dependent on n. Since there are n(n−1)
possible source-destination pairs, there are at most n(n − 1)
time slots in each stage, separated at the beginning and end
by a dead-time D. Therefore the duration of each stage is at
most cD + n(n− 1)2D. There are at most n stages.

Theorem VI.2. The protocol ensures that the network pro-
ceeds from startup to a functioning network carrying data.
There exists a selection of parameters niter, D, B, εa and
Tlife that achieves min-max utility over the allowed set, to
within a factor ε, where the min is over all policies of the bad
nodes that can only adopt two actions in each CTV: conform
to the protocol and/or jam. The achieved utility is ε-optimal.

Proof. We begin by choosing parameters so that the protocol
overhead, which includes Neighbor Discovery, Network Dis-
covery, Verification, all dead-times, and iterations converging
to the final rate vector, is an arbitrarily small fraction of
the total operating lifetime. With τ̂ ri (t) := ârit the esti-
mate of reference clock r with respect to the local clock
at node i, the maximum difference in nodal estimates is
bounded as |τ̂ ri (τ i(t))− τ̂ rk (τki (τ i(t)))| ≤ 2(amax)

2εaTlife +
(amax)

2U0. With kr be the number of rate vectors in the
rate region, we can choose niter, D, B, εa and Tlife to
satisfy: niter

niter+2nkr
≥ 1 − εl, B

c1 log Tlife+
c2
εa

+B+c3D+c4D
≥

1 − εd, niter((c1 log Tlife + c2
εa

+ B + c3D + c4D) ≤ Tlife,
2(amax)

2εaTlife + (amax)
2U0 ≤ D. These ensure that the

rate loss due to failed CTVs is arbitrarily small, the time

spent transmitting data is an arbitrarily large fraction of the
duration of that iteration, the operating lifetime is large enough
to support niter protocol iterations, and the dead-time D is
large enough to tolerate the maximum divergence in clock
estimates caused by skew error εa.

Consider a protocol iteration in which the estimate of the
set of feasible non-disabled concurrent transmission vectors is
correct and equal to Dk for some k. Suppose x achieves the
maximum utility for Dk over the nodes in the same component
as the good nodes. No protocol can do better when Dk is
disabled. The proposed protocol attains x(1− εd) during this
iteration. By design, the fraction of the iterations in which
this estimate is correct is (1 − εl). The theorem follows by
noting that the fraction of the operating lifetime in which Dk
is disabled is αk.

VII. CONCLUDING REMARKS

We have presented a complete suite of protocols that enables
a collection of good nodes interspersed with bad nodes to form
a functioning network from start-up, operating at a utility-
optimal rate vector, regardless of what the bad nodes conspire
to do, under a certain system model. Further, the attackers
cannot decrease the utility any more than they could by just
conforming to the protocol or jamming on each CTV.

This paper is only an initial attempt to develop a theoretical
foundation for a much needed holistic all-layer approach to
secure wireless networking, and there are several open issues,
some more addressable than others. This paper essentially
assumes the network to be time-varying; in particular that
it is not mobile. Extension to quasi-static mobility appears
feasible, and is worth doing. Since the protocol presented has
poor transient behavior, though overall asymptotically optimal,
it is worthwhile to explore how to increase efficiency in
the transient phase. One possibility is to use mere flooding
algorithms and not invoke Byzantine agreement unless it turns
out that there are indeed malicious nodes, which fact can be
checked in a post-facto verification phase. An important po-
tential generalization is to allow probabilistic communication.
Showing similar results in a “with high probability” sense
appears feasible. Finally, the gap between information theory
and security appears formidable, since the former does not
recognize complexity-based cryptography.

Much further work remains to be done.

REFERENCES

[1] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears:
changing algorithms on the fly to expedite Byzantine agreement. PODC
’87, pages 42–51, New York, NY, USA, 1987. ACM.

[2] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. Macaw: a
media access protocol for wireless lan’s. In ACM SIGCOMM Computer
Communication Review, volume 24, pages 212–225. ACM, 1994.

[3] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A
feedback-based scheme for improving TCP performance in ad hoc
wireless networks. IEEE Personal Communications Magazine, 8(1):34–
39, Feb. 2001.

[4] J. Choi, J. T. Chiang, D. Kim, and Y.-C. Hu. Partial deafness: A novel
denial-of-service attack in 802.11 networks. In Security and Privacy in
Communication Networks, volume 50 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering, pages 235–252. Springer Berlin Heidelberg, 2010.

12

[5] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR).
RFC 3626, Oct. 2003.

[6] Nikolaos M. Freris, Scott R. Graham and P. R. Kumar, Fundamental
Limits on Synchronizing Clocks over Networks. IEEE Transactions on
Automatic Control, 56:1352–1364, 2011.

[7] Z. Fu, B. Greenstein, X. Meng, and S. Lu. Design and implementation
of a tcp-friendly transport protocol for ad hoc wireless networks. In
IEEE International Conference on Network Protocols’02, 2002.

[8] Y.-C. Hu, A. Perrig, and D. Johnson. Packet leashes: a defense against
wormhole attacks in wireless networks. In INFOCOM 2003, volume 3,
pages 1976 – 1986 vol.3, march-3 april 2003.

[9] Y.-C. Hu, A. Perrig, and D. B. Johnson. Rushing attacks and defense
in wireless ad hoc network routing protocols. WiSec ’03, pages 30–40,
2003.

[10] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: a secure on-demand
routing protocol for ad hoc networks. Wirel. Netw., 11(1-2):21–38, Jan.
2005.

[11] IEEE Protocol 802.11. Draft standard for wireless lan: Medium access
control (MAC) and physical layer (PHY) specifications. IEEE, July
1996.

[12] D. Johnson, Y. Hu, and D. Maltz. The dynamic source routing protocol
(dsr) for mobile ad hoc networks for ipv4. RFC 4728, Feb. 2007.

[13] V. Kawadia and P. R. Kumar. Principles and protocols for power
control in wireless ad-hoc networks. IEEE Journal on Selected Areas
in Communications, 23:76–88, 2005.

[14] J. Liu and S. Singh. ATCP: TCP for mobile ad hoc networks. IEEE
J-SAC, 19(7):1300–1315, July 2001.

[15] S. Marti, T. J. Giuli, K. Lai, M. Baker, et al. Mitigating routing
misbehavior in mobile ad hoc networks. In International Conference on
Mobile Computing and Networking: Proceedings of the 6 th annual in-
ternational conference on Mobile computing and networking, volume 6,
pages 255–265, 2000.

[16] J. P. Monks, V. Bharghavan, and W.-M. Hwu. A power controlled
multiple access protocol for wireless packet networks. In INFOCOM
2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 1, pages 219–
228. IEEE, 2001.

[17] M. Pease, R. Shostak and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27:228234, 1980.

[18] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on demand distance
vector (aodv) routing. RFC 3561, July 2003.

[19] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced
distance-vector routing. In SIGCOMM, pages 234–244, London, UK,
Aug. 1994.

[20] J. Ponniah, Y.-C. Hu, and P. R. Kumar. An orthogonal multiple access
coding scheme. Communications in Information and Systems, 12:41–76,
2012.

[21] M. Poturalski, P. Papadimitratos, and J.-P. Hubaux. Secure neighbor
discovery in wireless networks: formal investigation of possibility.
ASIACCS ’08, pages 189–200, New York, NY, USA, 2008. ACM.

[22] W. R. Stevens and G. R. Wright. TCP/IP Illustrated: Vol. 2: The
Implementation, volume 2. Addison-Wesley Professional, 1995.

[23] F. Wang and Y. Zhang. Improving TCP performance over mobile ad-hoc
networks with out-of-order detection and response. In Proceedings of
the third ACM international symposium on Mobile ad hoc networking
and computing, pages 217–225. ACM Press, 2002.

