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Abstract

Cloud object stores today are deployed using a single set of

configuration parameters for all different types of applica-

tions. This homogeneous setup results in all applications ex-

periencing the same service level (e.g., data transfer through-

put, etc.). However, the vast variety of applications expose

extremely different latency and throughput requirements. To

this end, we propose MOS, a Micro Object Storage architec-

ture with independently configured microstores each tuned

dynamically for a particular type of workload. We then ex-

pose these microstores to the tenant who can then choose to

place their data in the appropriate microstore according the

latency and throughput requirements of their workloads. Our

evaluation shows that compared with default setup, MOS

can improve the performance up to 200% for small objects

and 28% for large objects while providing opportunity of

tradeoff between two.

1. Introduction

Cloud object stores, such as S3 [1], Google Cloud Store

(GCS) [6], Swift [7] and Ceph [3], have become the most

widely used form of cloud storage in recent years. They

combine key advantages such as high availability, elastic-

ity and a “pay-as-you-go” pricing model, which allows ap-

plications to scale as the usage increases or decreases, with

HTTP-based RESTful APIs for data management. These de-

sirable features coupled with the advances of virtualization

infrastructure are driving the uses of cloud object stores by a

myriad of applications, ranging from web applications [12]

to backup services [4, 5] , and big data analytics frame-

works [8, 18].

Cloud object stores today are deployed using a single set

of configuration parameters for all different types of appli-

cations. This homogeneous setup results in all applications
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experiencing the same service level (e.g., average latency

per request, data transfer throughput, and queries per second

(QPS)). However, the vast variety of applications expose ex-

tremely different latency and throughput requirements. For

example, a social networking or photo sharing application

requires low latency to keep a responsive user experience,

whereas backup services can tolerate higher latency but re-

quire sustained high throughput. Extant object storage ser-

vices compromise application performance to gain the flexi-

bility advantages.

From the cloud provider’s perspective, supporting the

widely different workloads of different applications using a

single homogeneous configuration results in a loss of opti-

mization opportunities. For example, a photo sharing appli-

cation such as Instagram [10], would have a large number of

small-medium sized files (e.g, KB- to MB-level image ob-

jects) In contrast, an enterprise backup application such as

Arq [2] or Tarsnap [9], consists largely of write requests for

large cold archive files with reads only sparsely arising.

The situation is further complicated by the fact that due to

regular system upgrades, data centers hosting object stores

are becoming increasingly heterogeneous. However, with

the “one-size-fits-all” style of object store deployment, it

is impossible to match each set of specific types of hard-

wares with the right type of application workload. For ex-

ample, latency-sensitive small-object workloads would re-

quire low-latency storage devices and powerful CPU pro-

cessing capacity whereas large object write-only workloads

can be supported with a combination of high network band-

width and weaker CPU power. Under this scenario, meeting

service level agreement (SLA) requirement for one of the

workload is challenging, and may require, (i) adding hard-

ware resources that may not be a ideal fit for other work-

loads, (ii) software tuning that may affect the performance

of the other workloads.

In this paper, we argue that it is more beneficial to sep-

arately entertain these workloads in finer-grained object

stores launched on sub-clusters formed using the available

hardware resources. To demonstrate this, we studied differ-

ent types of workloads that are commonly used in practical

scenarios. we looked at four different real-world applications

that use cloud object storage as listed in Table 1. We de-

ployed and evaluated Swift [7] in a multi-tenant environment
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Figure 1: Performance achieved under various object store configurations in a multi-tenant environment.

Workload Workload characteristics Application scenario

Object size Distribution

Workload A 1-128 KB G: 90%, P: 5%, D:5% Web hosting

Workload B 1-128 KB G: 5%, P: 90%, D:5% Online game hosting

Workload C 1-128 MB G: 90%, P: 5%, D:5% Online video sharing

Workload D 1-128 MB G: 5%, P: 90%, D:5% Enterprise backup

Table 1: Different types of workloads and application scenarios

used for testing the behaviors of object stores. G means GET, P

means PUT and D means DELETE.

using COSBench [22] as workload generator configured for

the four types of workloads mentioned previously. Swift is a

popular object store implementation provided by OpenStack

that is increasingly becoming de facto cloud computing soft-

ware platform. In motivational tests, we used three different

Swift configurations (setups). We ran COSBench workload

generator on designated machines to saturate the Swift store.

Each benchmark was executed for 15 minutes with ramp up

time of 2 minutes. We used two nodes as proxy servers in

each of the configuration. To simulate the datacenter hetero-

geneity, one of the proxy server was a 32-core machine and

the other was 8-core. The proxy server running on a 32-core

machine was connected to the storage nodes via 1 Gbps in-

terconnect while the proxy server on an 8-core machine was

connected via 10 Gbps network. In addition, four 32-core

machines were used as storage nodes. Each storage node

had 3 SATA SSDs attached as a storage device. The storage

nodes were configured in such a way that they do not act as

performance bottleneck for any of the studied configuration:

Config. 1: The default monolithic Swift setup. Both 8-

core and 32-core machines acted as proxy server. It was

handled by all resources and round robin DNS was used for

load balancing. Config. 2: All resources were divided into

two sub-object stores, one for small objects workload and

the other for large objects. One 8 core machine (connected

via 10 Gbps) serves as proxy for Workload A and B, and

Workload C and D uses one 32-core machine connected via

1 Gbps NIC. Config. 3: One 32-core machine (connected via

1 Gbps) served as proxy for Workload A and B while one 8-

core machine (connected via 10 Gbps) served as proxy for

Workload C and D.

Figure 1 shows the comparison of performance achieved

by different configurations. As shown in Figure 1(a), sep-

arating proxy servers for different workloads improved the

overall QPS by 700% for Configuration 2 and by 225% for

Configuration 3 as compared with the default Swift setup. It

is interesting to note that even though the Configuration 2

resulted in very high QPS for small objects (Workload A

and B), it is not the best configuration as it significantly

affects the MB/s (dropped by from 350% to 500%, as ob-

served in Figure 1(b)) for workloads dominated with large

object (Workload C and D). On the other hand, in Config-

uration 3 the throughput for large objects remained same.

Similarly, the latency of Configuration 3 is also less than

that achieved by the default configuration for all the work-

loads (Figure 1(c)). Configuration 2 provides best and worst

latency for small and large object workloads, respectively.

We also observed that switching NIC’s of proxy servers in

configuration one resulted in similar results.These results

demonstrate that comprehensive study of the impact of dif-

ferent configuration on performance is needed.

Key Insights From our experiments, we infer the follow-

ing. (i) Cloud object store workloads can be classified based

on the size of the objects in their workloads. In case of small

objects cloud tenants are mostly interested in QPS and la-

tency whereas for large objects data throughput is considered

more important. (ii) When multiple tenants run workloads

with drastically different behaviors, they compete for the

object store resources with each other, the workload domi-

nated with small objects experience a dramatic performance

down. This is because the available network bandwidth is

exhausted to transfer TCP packets containing payload for

large object hence wasting the CPU power that would have

been utilized to serve workloads with small objects on object

storage nodes. That is why using a separate proxy server in

Configuration 2 and 3 gives fair chance to small object work-

loads to be properly handled by the storage nodes. Thus,

there is an urgent need for cloud object stores to efficiently

utilize the available resources to make sure that each tenant

is treated as a first class citizen.

In this paper, we make the following contributions:

1. We evaluate the impact of conventional object storage

configuration on performance and resource efficiency by

conducting experiments on a local Swift testbed.

2. We perform a detailed performance and resource effi-

ciency analysis on identifying major hardware and soft-

ware configuration opportunities that can be used to fine-

tune object stores for specific workloads.

3. Based on our analysis, we design MOS, an object store

that (1) dynamically provisions fine-grained microstores,

each configured with different combination of hardware
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Figure 2: Different software/hardware configuration options. In (c), small-object workloads refer to bars (QPS) while large-object ones

linepoints (GB/s).

and software options, and (2) exposes the interfaces of

microstores to the tenants according to their application

requirements.

4. We demonstrate using simulation that MOS results in up

to 2× more QPS compared to the baseline object store

setup, as well as good resource utilization using a fixed

set of resources.

2. A Case for Cloud Object Storage

In this section we present a detailed analysis of how object

stores behaves under various software and hardware config-

uration options. To this end, we classify the workloads on

the basis of object size. For workloads dominated by small

objects (at KB level) the interested metric is the QPS and re-

sponse latency while for workloads dominated by large ob-

jects (at MB-GB level) throughput in terms of MB/s or GB/s

is the most important metric. We then study the effects of

tuning various configuration knobs and develop a set of use-

ful configuration rules-of-thumbs that can be used to guide

the design of MOS.

Proxy as a knob First, we study the effect of scaling proxy

nodes on workload performance. We use a 32-core ma-

chine as a proxy node with two 32-core storage nodes each

equipped with 3 SSDs (to eliminate the storage bottleneck).

We vary the computational capacity of proxy by increasing

proxy’s allotted CPU cores. Figure 2(a) shows the proxy tun-

ing effect. As we increase the proxy workers in one proxy

node the QPS is improved linearly until we reach 32 proxy

workers. The observed CPU utilization reaches closed to

85% (bounding the throughput) with both 32 and 64 proxy

workers, implying that CPU becomes the bottleneck. Adding

one more proxy node (2x) almost doubles the performance

(QPS increased from 2, 200 to 3, 700), clearly demonstrating

that proxy’s performance is constrained by the CPU capac-

ity. We perform the same test with large object workloads.

In Figure 2(b), the network bandwidth limit is reached as

soon as the number of proxy workers reaches 4, with modest

CPU utilization (about 25%) observed on proxy node. This

is because for large object intensive workload, the perfor-

mance is constrained by the network bandwidth before CPU

is saturated. We make the following observations – proxy’s

computational capacity can be the bottleneck for workloads

dominated with small objects, whereas the network band-
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Figure 3: Hardware effect 〈storage devices, NICs〉 on throughput.

width is the most precious resource for large-object intensive

workloads.

Storage as a knob Second, we study the effect of scaling

object storage nodes on workload performance. As shown

in Figure 2(c), the peak QPS for small object workloads is

achieved with 16 object storage workers, which is exactly the

same as the number of proxy workers launched to achieve

this QPS (recall that two object storage nodes are deployed

behind one proxy server node). This implies that the maxi-

mum performance can only be achieved when both the proxy

and storage nodes are equipped with the same amount of

CPU resources, which strengths our observation that CPU is

the most important resource for small-object workloads. For

large-object workloads, in contrast, the network constraint

is quickly reach with only 4 object storage workers. This is

because for large objects the performance is bottlenecked by

the network given higher disk bandwidth (recall that each

storage node has 3 SATA SSDs).

Hardware as a knob Third, we study the effect of vary-

ing storage device and network connectivity on workload

throughput. Figure 3(a) shows that faster network intercon-

nect (1 Gbps NIC → 10 Gbps NIC) results in only 12% in-

crease in QPS for small object workloads with HDD as stor-

age medium, and 70% increase when SATA SSD is used.

The interesting observation shows that small-object inten-

sive workload is more sensitive to the storage devices rather

than the network bandwidth, implying that in some situ-

ation such kind of workload, which does not impose ex-

tremely high requirement, may be efficiently handled using

weaker network interconnect but good storage devices. On

the other hand, increasing network interconnect improves

performance by as much as 900% (using SSDs) in case for

large-object intensive workloads (Figure 3(b)), which clearly
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indicates such kind of workloads prefer good network inter-

connect as first-priority resource.

3. MOS Design

We design MOS in light of the rules-of-thumbs developed

in §2 and existing workload and datacenter heterogene-

ity. Conventional cloud object storage, such as OpenStack

Swift, adopts a monolithic storage architecture, where all

tenants/workloads share the storage resources. This design

is simple in implementation and configuration but is not nec-

essarily resource efficient. For example, a backup workload

consisting mostly of large objects may easily consume all the

available network bandwidth that might have been assigned

to workloads dominated with small objects, thus wasting the

CPU resources that would have been allocated to serve the

small object requests.

To address this issue, MOS performs dynamic resource

partitioning and provisioning, allowing each microstore

within an object storage setup to run as a fully-functional

object store unit. As depicted in Figure 4, MOS consists of

two layers: (1) Microstores: consists of multiple instances

of object stores, each called a microstore that is allocated

a subset of proxy nodes and storage nodes that matches

the requirements of the workload it is meant to support.

The number of microstores configured in a deployment of

MOS depends on the kinds of workloads that need to be sup-

ported. (2) MOS substrate: consists of a resource manager

that monitors the load on each microstore using a work-

load monitor and automatically reconfigures the resources

assigned to the microstore to cope with workload shifts. Re-

source manager makes decisions about when and how to

add or redistribute resources. The decisions are made using

a simple greedy algorithm detailed in Algorithm 1.

Algorithm 1 takes as input microstores, a vector of all

microstores storing statistics (including hardware configura-

tion, current load served, and the resource utilization such

as CPU and network bandwidth utilization) of all micros-

tores. Initially, the algorithm allocates the same amount of

resources to each microstore conservatively. It then enters

into the main loop, where the resource manager periodically

Algorithm 1: Resource Provisioning Algorithm.

Input: microstores: Microstore array, free pool: free resource

pool, utillow: low utilization threshold, utilhigh: high

utilization threshold, epoch: configurable monitoring interval
1 begin

2 microstores.hw ← init(free pool)
3 while true do

4 foreach ms in microstores do

// periodically collect monitoring stats
5 if utillow ≤ util(ms.hw)≤ utilhigh then

6 ms.firstT ime← true

7 continue
8 else

9 if ms.firstT ime then

10 ms.firstT ime← false

11 ms.toChange← 1

12 else

13 ms.toChange← ms.toChange ∗ 2
14 if util(ms.hw) > utilhigh then

// to add in more resources
15 ms.hw ← ms.hw + ms.toChange

/* allocate resource from free resource pool */

16 alloc(free pool, ms, ms.toChange)

17 else if util(ms.hw) < utillow then

// to remove resources
18 ms.hw ← ms.hw − 1

/* return resource to free pool */

19 dealloc(free pool, ms, 1)
20 sleep(epoch)

polls each microstore. In each iteration, if the resource uti-

lization (fetched using util(ms.hw)) of one microstore lies

within a pre-defined threshold range, the algorithm simply

iterates to the next microstore. If the microstore is in sub-

optimal state, the algorithm decides to quadratically add or

linearly remove resources. This way it is guaranteed that

it will not overdo when deallocating resources while being

able to quickly respond to sudden workload increases.1

4. Preliminary Results

In this section, we present our simulation based preliminary

results to demonstrate how MOS performs in practice. The

simulator was designed based on observations discussed in

§2. The shifts in simulated performance due to configuration

changes was calculated based on the trends learned through

extensive analysis of how object store behaves under various

scenarios. More than one thousand experiments (each ran

for 15 minutes) were executed under varying load/hardware

configuration to further fine-tune the simulator. We use a

pool of 50 machines with heterogeneous hardware config-

urations (e.g., CPU, network, and storage devices, etc.): i)

3 32-core machines, 4 16-core, 31 8-core machines, and 12

4-core machines, ii) 18 10 Gbps and 32 1 Gbps NICs, and

iii) an HDD to SSD ratio of 70% : 30%.

We first conduct simulation under constant load to com-

pare the performance of MOS with the default single ob-

ject store instance setup. We then simulate a dynamically-

changing long workload that exhibits heterogeneous charac-

teristics to test the effectiveness of MOS’s online resource

1 As part of our future work, we are exploring more sophisticated techniques

for handling adversary workload shifts.
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Figure 5: Aggregated throughput seen by different setups.

provisioning algorithm. Both simulations run the mix of the

four workloads listed in Table 1.

In static case, all 32-core and 16-core along with 3 8-core

machines were used as proxy servers. Each proxy server was

connected via 10 Gbps network. Rest of the machines were

used as object storage nodes. We test two baseline cases –

the default object storage setup (Default), and a static MOS

setup (MOS static) where resources are divided according

to the rules from §2, on the same set of proxy servers. We

further run dynamic MOS (MOS dynamic) on the same set

of resources to show the benefit of Algorithm 1. Figure 5

shows the results. As observed, at any given time the QPS

improvement of MOS static against Default is greater than

180% whereas the maximum decrease in throughput to be

less than 8%. This is because MOS static isolates and pre-

serves resources so that Workload C and D will not eat up the

whole network bandwidth. The aggregated GB/s is slightly

reduced as the network bandwidth utilization is almost 95%
(bounding the performance of MOS static). MOS dynamic is

able to improve both the QPS and GB/s since the online pro-

visioning algorithm effectively detects object storage under-

utilization and eventually move the under-utilized resources

to serve as proxies for Workload C and D. As a result, the av-

erage network utilization of microstore C and D is reduced

to 85% while the overall performance improvement is seen.

Figure 6 shows how MOS behaves under dynamically-

changing Workload A-D. The test runs for about 14 hr and

we divide the workloads in four major stages. In Stage 1,

the load for small objects, i.e., Workload A and B, increases.

As the load increases (in Figure 6(a)), MOS uses resources

from free resource pool to keep the resource utilization un-

der control untill the utilization is stabilized and lies in

[utillow, utilhigh] (in A and B of Figure 6(b)). This results in

increased QPS for Workload A and B and sustained through-

put for Workload C and D. In Stage 2, the load for large ob-

jects (i.e., Workload C and D) is increased untill it reaches

the same level as in static simulation of Figure 5. Starting

around 310 min, MOS adds more resources in microstore

C and D, hence lowering down the network utilization from

95% to 85% (C and D of Figure 6(b)). In Stage 3, the load of

Workload C and D is decreased. As a result, MOS reclaims

resources from microstore C and D to the pool, as seen in

gradual increase in network utilization. Finally, in Stage 4,

the load for Workload A and B is further increased and MOS
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Figure 6: Throughput and resource utilization timeline under

dynamically-changing workload. The overall workload is a com-

bination of Workload A, B, C, and D.

grabs resources freed up in Stage 3 from Workload C and

D. We see that the throughput for Workload B is improved

by 49% and that for Workload A is kept the same. MOS

quickly detects performance improvement opportunity for

Workload B as the throughput of Workload B is still at a low

level, while more resources are added into microstore A with

the goal to maintain the CPU utilization within the “sweet”

range (hence, tenants will not experience performance lost

as the workload shifts). This demonstrates that as workloads

shift, MOS is able to effectively and quickly tune the con-

figurations of microstores to provide high performance guar-

antee while maintaining high resource utilization.

5. Related Work

hatS [19] and Skute [13] proposes a fault-tolerant and scal-

able replication scheme for HDFS and cloud storage, respec-

tively. MOS has a wider scope – as a cloud object store, it

provides fault tolerance functionality; more importantly, it

aims to improve the overall performance by efficiently ex-

ploiting the data center and workload heterogeneity. [11]

proposes a metric based on CPU, I/O wait and memory us-

age that are critical for Hadoop. Similarly, MET [17] pro-

poses several system metrics that are critical for a NoSQL

database and highly impacts server utilization’s estimation.

In contrast, we focus on automated elasticity for cloud ob-

ject store. φSched [20] and Walnut [14] propose sharing of

hardware resources across hitherto siloed clouds of differ-

ent types. CAST [15] and its extension [16] perform coarse-

11



grained cloud storage (including object stores) management

for data analytics workloads. At a finer granularity, MOS ex-

plicitly partitions the conventional single storage setup into

multiple dynamically fine-tuned microstores, each serving a

particular type of workload. Finally, IOFlow [21] solves a

similar problem by providing a queue and control function-

ality at two OS stages – the storage drivers in the hypervisor

and the storage server. Unlike IOFlow, MOS requires no OS

level changes.

6. Conclusion

In this paper, we first presented results of our exhaustive

study of cloud object store. Second, we proposed a set of

rules to help cloud object store administrator to efficiently

utilize resources. Third, we presented MOS which can out-

perform extant object store under multi-tenant environment.

Our analysis shows that it is possible to exploit heterogene-

ity inherited by modern datacenter to the advantage of object

store providers. Simulation results show that MOS outper-

forms extant object store under multi-tenant.
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