
Two-Finger Squeezing Caging of Polygonal and Polyhedral Object

Peam Pipattanasomporn, Pawin Vongmasa and Attawith Sudsang

Abstract— The problem of object caging is defined as a
problem of designing a formation of fingers to restrict an object
within a bounded space. Assuming two pointed fingers and a
rigid polygonal or polyhedral object, this paper addresses the
problem of two-finger squeezing caging, i.e., to characterize all
possible formations of the fingers that are capable of caging
the object via limiting their separation distance. Our study
is done entirely in the object’s frame allowing the object to
be considered as a static obstacle so that the analysis can be
performed in terms of the finger motion. Our solution is based
on partitioning the configuration space of the problem into
finite subsets called nodes. A graph of these nodes can then
be constructed to represent all possible finger motion where a
search based method can be applied to solve the caging problem.
The partitioning of the configuration is based on convex
decomposition of the free space. Let m be the number of convex
subsets from the decomposition, our proposed algorithm reports
all squeezing cage sets in O(n2+nm+m2 log m) for a polygonal
input with n vertices and O(nN3 + n2 + nm + m2 log m) for
a polyhedron with n vertices and having N edges exhibiting a
reflex angle. After reporting all squeezing cages, the proposed
algorithm can answer whether a given finger placement can
cage the object within a logarithmic time.

I. INTRODUCTION

An object is caged when it is restricted to stay in a
bounded space by a formation of fingers. The caging problem
was originally posed by Kuperberg in [1] as a problem of
designing an algorithm for finding a set of points that prevent
a polygon from moving arbitrarily far from a position. In the
past few decades, the concept of caging has been applied
to a number of manipulation and related problems such as
transportation using mobile robots [2], part feeding [3], and
object grasping [4].

A number of works have attempted to solve the caging
problem in 2D. In particular, the problem of two-finger
caging of concave planar objects has received considerable
attention. Rimon and Blake [5] applied the stratified Morse
theory to solve the problem of caging an object in the
plane with two fingers and introduced the notion of caging
set (also known as capture region [6]), a set of system
configurations (e.g., finger formation) that can prevent the
object from escaping. Although their solution can be applied
to general planar objects, it requires complex numerical
computation. Sudsang and Luewirawong [7] confined their
problem to polygonal objects and proposed an analytical
method for computing, for any immobilizing pair of vertices,
an acceptable separation distance between the two fingers

P. Pipattanasomporn, P. Vongmasa and A. Sudsang are with Department
of Computer Engineering, Faculty of Engineering, Chulalongkorn Univer-
sity, 10330 Bangkok, Thailand attawith@cp.eng.chula.ac.th

that guarantees caging. Since their method takes into ac-
count only immediate edges of the immobilizing vertices
without considering neighboring edges, it can report only
subset of entire caging (i.e., larger separation distance could
be missing). Recently, Pipattanasomporn and Sudsang [8]
and Vahedi and Stappen [9] have independently developed
complete O(n2 log n) algorithms for characterizing all two-
finger squeezing and stretching cage sets of a polygon with
n vertices. They also provided data structures for querying
whether a given finger placement forms a cage in O(log n).

To the best of our knowledge, the two-finger squeezing
caging problem for polyhedral objects has never been ex-
plored. It is the main objective of this paper to present a
solution to the problem. Like our previous work [8], our
study is done entirely in the object’s frame allowing the
object to be considered as a static obstacle so that the
analysis can be performed in terms of the finger motion.
Our solution requires partitioning the configuration space of
the problem (i.e., set of all admissible finger placements)
into finite subsets called nodes. A graph of these nodes can
then be constructed to represent all possible finger motion
where a search based method can be applied to solve the
caging problem. The partitioning of the configuration is
based on convex decomposition of the free space. Let m
be the number of convex subsets from the decomposition,
our proposed algorithm reports all squeezing cage sets in
O(n2+nm+m2 log m) for a polygonal input with n vertices
and O(nN3 +n2 +nm+m2 log m) for a polyhedron with n
vertices and having N edges exhibiting a reflex angle. After
reporting all squeezing cages, the proposed algorithm can
answer whether a given finger placement can cage the object
within a logarithmic time. Note that the main algorithm is
designed to be independent from the dimension of the object,
so it can be easily applied to the polyhedral case and the
polygonal case as well. However, for readability, illustrations
given in the paper are drawn based on the polygonal cases.

The remainder of the paper is organized as follows. In
Section II, necessary background and assumptions are given.
This section begins with an informal definition of caging and
gradually defines formal notations to transform the definition
into a more formal version in which the idea of critical
distance given in Section III can be applied. The application
of the idea leads to the main result in Section IV where
the proposed algorithm for reporting all squeezing cage sets
is presented. The running time analysis of the algorithm is
given in Section V. Finally, in Section VI, we conclude the
paper with some discussion and future works.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA7.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 205

II. DEFINITIONS AND ASSUMPTIONS

The caging problem is defined here to be the problem
of designing a placement of fingers for restricting an object
to stay within a bounded space. We assume freely movable
pointed fingers and a rigid polygonal or polyhedral object,
possibly more than one connected components but behave
like a single rigid body (i.e. the distance between any two
points, either of the same component or of two distinct com-
ponents, is preserved during the object’s motion). The object
is also assumed that it must not contain any inaccessible
regions (i.e. the free space is a connected component) for
simplicity. Without loss of generality, our study is conducted
entirely in the object’s frame. As a result, the object can be
viewed as a static obstacle while the fingers are allowed to
move in the free space. This viewpoint enables the caging
problem to be conveniently analyzed in terms of the fingers’
motion. As for our squeezing caging problem, we can state
the definition of caging as follows.

Definition 1: An object is squeezing caged by a finger
placement with separation distance δ when there is no
collision-free finger motion to bring the fingers arbitrarily far
from the object given that the separation distance between
the fingers never exceeds δ during the entire motion.

It is important to notice that if the fingers can go arbitrarily
far while limiting their separation distance not to exceed δ
(equivalent to that the object can escape from the finger
placement), it is true that the fingers can thereafter move
to the same location (both fingers are at the same point)
without increasing their separation distance and once at the
same location, they can move together anywhere in the free
space. With this observation, the definition of caging above
can be modified by replacing the condition on nonexistence
of finger motion to bring the fingers arbitrarily far from the
object by the condition on nonexistence of finger motion to
bring both fingers to the same location. In Section IV, it
will be shown that this modified definition translates nicely
to the proposed algorithm for computing all caging sets. For
convenience, let us refer to a finger placement having both
fingers at the same location as an escapable placement. In
the rest of this section, a more formal version of Definition
1 will be derived.

Let us be more precise about the configuration of the
problem. Our system consists of two pointed fingers and a
rigid object (either polygonal or polyhedral). Each finger can
be placed anywhere outside the interior of the object. Let us
refer to the set of all locations where a finger can be placed
by W. Any formation of two fingers for which each finger
is in the workspace W is called a finger placement (in the
configuration space of the problem, i.e., C = W × W). A
finger placement x = (a ∈ W, b ∈ W) in C is said to have
a separation distance [x] = ‖a− b‖ where ‖a− b‖ denotes
the Euclidean distance between a and b.

Clearly, the fingers in one placement can be brought to
another by executing a synchronized collision-free motion.

This motion is essentially a trajectory in C. However, the
trajectory’s velocity can be ignored in our caging analysis,
so it suffices to consider only the underlying configuration
curve path of the trajectory. We say that placements x and
y are connected by a configuration curve Γ when x ∈ Γ
and y ∈ Γ. Let us also define the upper bound separation
distance of a configuration curve Γ to be

dΓe = max
x∈Γ

[x].

With the newly introduced notations, our squeezing cage’s
definition can be restated.

Definition 2: An object is squeezing caged by a finger
placement x with a separation distance [x] = δ when
there is no configuration curve Γ from x to some escapable
placement such that dΓe ≤ δ.

If the placement x with [x] = δ forms a squeezing
cage, it then follows from Definition 2 that any placement y
connected with x by any configuration curve Γ such that
dΓe ≤ δ will also form a squeezing cage (because if y
was not a squeezing cage, there would exist a configuration
curve Γ′ with dΓe ≤ [y] from y to an escapable placement
and combining Γ with Γ′ would lead x to an escapable
placement as well). What this means is that if we start out
from the squeezing cage placement x and move the fingers
by keeping their separation distance not to exceed [x] = δ,
it is guaranteed that any finger placement reachable by the
motion must also form a squeezing cage (Fig. 1)

At a squeezing cage placement x, what will happen if
we gradually move the fingers away from each other? Of
course, at some point the finger placement will lose ability
to cage the object. Let us call the separation between the
fingers when this event occurs as the critical distance of x,
denoted δ∗(x). We can define the notion of critical distance
in our terms as follows.

Definition 3: The critical distance of a finger placement x,
denoted δ∗(x), is the least upper bound separation distance
among all configuration curves from x to an escapable
placement. That is,

δ∗(x) = min
Γ∈C(x)

dΓe,

where C(x) denotes the set of all configuration curves from
x to any escapable placements.

If a placement x forms a squeezing cage, it then follows
from Definition 2 and Definition 3 that any placement y
connected with x by any configuration curve Γ such that
dΓe < δ∗(x) will also form a squeezing cage. we also
automatically have δ∗(y) = δ∗(x). This allows us to define
the notion of squeezing cage set.

Definition 4: A connected set of finger placements with
the same critical distance forms a squeezing cage set.

Squeezing cage sets form disjoint open connected subsets
of the configuration space C. Subtracting all squeezing cage
sets from C will result in a single connected component
containing all escapable placements (and all placements that

WeA7.3

206

(a)

±

(b)

δ

Fig. 1. From a squeezing cage placement x shown as a pair of black dots,
the object is squeezing caged (even if the fingers move from x to a pair of
white dots) as long as their separation distance does not exceed [x] = δ.
Squeezing caging are generally formed at two opposite concave sections
of the object (a) a squeezing cage of a polygon (b) a squeezing cage of a
polyhedron (the I-shaped object is sandwiched with two solid plates creating
two concave sections).

can be brought to an escapable placement without increasing
the separation between the fingers). In words, a squeezing
cage set is essentially the set of all squeezing cages for which
each cage can be transformed to another cage in the set by
executing a finger motion that keeps the separation distance
between the fingers lower than the critical distance associated
with the set during the entire motion.

Given an input object, our goal is to characterize all dif-
ferent squeezing cage sets along with their critical distances.
In the following section, let us first explain how a critical
distance of a finger placement is computed.

III. CRITICAL DISTANCE COMPUTATION

Let us consider two finger placements u and v shown
in Fig. 2(a) and Fig. 2(b) respectively. It is obvious that
when the fingers are at the placement v, the object can
escape. Since the fingers at v can be brought to an escapable
placement without increasing the separation distance, we can
therefore derive from Definition 3 that the critical distance
of v must be equal to [v]. On the contrary, when the
fingers are at placement u, the object is in a squeezing
cage. This means that for the object to be able to escape,
the separation distance between the fingers has to increase.
Again, following Definition 3, we can conclude that the
critical distance of u must be greater than [u].

(a)

±

(b)

±

Fig. 2. (a) the object is squeezing caged by a finger placement u. (b) the
object is not squeezing caged when the fingers are placed at v.

As mentioned above, whether a given placement can
form a squeezing cage depends on its critical distance.
however, computing a critical distance for an arbitrary finger
placement x need some workaround since it is not feasible to
find the least upper bound separation distance by examining
all configuration curves from x to an escapable placement.
Fortunately, the least upper bound separation distance can
be analytically determined for some classes of configuration
curves.

Proposition 1: Let W a and W b be convex subsets of
the workspace W. For any x,y ∈ W a × W b, there exists
a configuration curve Γ from x to y such that dΓe ≤
max {[x], [y]}.

Proof: Let us consider a configuration curve Γ defined
by the linear interpolation between x and y, i.e., Γ =
{l(t) = (1− t)x + ty | t ∈ [0, 1]}. Since both W a and W b

are convex, W a ×W b is also convex set and contains Γ, a
straight line between x and y in W a × W b. Since [l(t)]2

is a non-negative quadratic polynomial in t, we obtain that
dΓe = max {[x], [y]}.

Since max {[x], [y]} is obviously the least possible upper
bound separation distance for any configuration curves from
x to y, the following proposition can be stated.

Proposition 2: For any x,y ∈ W a × W b, there is no
configuration curve from x to y with lower upper bound
separation distance than that of Γ defined in the proof of
Proposition 1.

Propositions 1 and 2 already enable us to determine
the least upper bound separation distance for configuration
curves having both ends in the same W a × W b. The rest
of this section explains how this idea can be extended to the
case of arbitrary configuration curves.

Let us suppose that C is divided into several subsets each
of which is the cartesian product of two convex subsets of
W. Let us refer to such subset of C as a node. We have
already shown how to find the least upper bound separation
distance for configuration curves with both ends in the same
node. Let us now consider configuration curves traversing
only in two adjacent nodes (a pair of nodes with non-empty
intersection) ν0 and ν1 by starting at x0 ∈ ν0 and ending
at a placement in ν0 ∩ ν1 6= ∅. Using Proposition 1, the
least upper bound separation distance of such curves can
be written as max {[x0],min {[x]|x ∈ ν0 ∩ ν1}}. With this
reasoning, computing the least separation distance of curves

WeA7.3

207

traversing through a longer sequence of nodes can be done
in the same manner as the fingers need to hop from one
node to the next, passing through the intersection of every
two consecutive nodes in the sequence.

Proposition 3: Among the curves that traverse through
a sequence of nodes: ν0,ν1, ...,νm, the least upper
bound separation is max {δ1, δ2, ..., δm} where δi =
min {[x] | x ∈ νi−1 ∩ νi}

With the above proposition, we can now compute the
critical distance for an arbitrary placement x in some node
ν. Since we can have a finite partition of C, this is done by
enumerating and examining all sequences of nodes from ν
to a node containing an escapable placement. This idea will
be described in detail in the algorithm presented in the next
section.

IV. REPORTING ALL SQUEEZING CAGE SETS

In this section, we shall establish the algorithm for report-
ing all squeezing cage sets from the fundamental methodol-
ogy developed in the previous section.

Let us partition the workspace W into closed convex
subsets {W 1,W 2, ...,W m} such that any two convex sub-
sets near each other, say W i and W j must have a non-
empty intersection (W i ∩ W j 6= ∅). Such intersection is
called a partition between W i and W j . An example of
a workspace partitioning satisfying the above properties is
shown in Fig. 3 – the convex subsets from the partitioning
are the blank areas divided by partitions shown in dashed
lines. It follows from this approach of partitioning that these
convex subsets can be easily grouped into nodes covering
the configuration space C. Such nodes are ν11,ν12, ...,νmm

where νij = νji = W i × W j . A pair of nodes νij , νkl

are said to be adjacent to each other when their intersection
is not empty, νij ∩ νkl 6= ∅. Note that νij ∩ νkl 6= ∅, if
and only if, W i ∩W k 6= ∅, and W j ∩W l 6= ∅. In further
analysis, let us refer to this structure as an undirected graph
i.e. nodes of this graph are the previously defined nodes and
any two nodes are linked with an edge when they are adjacent
to each other. Each edge, say E = {νij ,νkl}, has a distance
δE which is equal to the the least upper bound separation
distance among the curves that traverse between νij and νkl.
This distance notation is also applied to all paths in the graph.
Distance of a path is defined as the maximum of δE for every
E being an edge in such path. It can also be interpreted as
the least upper bound separation distance among curves that
traverse through a sequence of nodes defined by the path. We
address the path that has the least distance and routes from a
node containing an escapable placement (e.g. νkk for some
k) to a node ν as critical path to ν. In this light, the problem
of finding a critical distance of a placement x inside a node
ν is transformed into the problem of finding a critical path to
ν. It follows from Proposition 1 that, once the critical path is
known, the critical distance of x is either [x] or the critical
path’s distance depending on which one is greater. Though
the concept of distance in this context is slightly different

Fig. 3. An example of a valid workspace partitioning (see text).

from that in the Dijkstra’s shortest path problem, we shall
show that it is possible to solve the problem of finding a
critical path to a node, say the critical path problem, with
the shortest path algorithm. To begin with, let us compare
the how the two problems determine their optimal distances.

In case of the shortest path problem, the shortest distance
from an initial node to a node ν, denotes d∗ν , is the minimum
distance of the sum of shortest distance to some adjacent
node ν′ (d∗ν ′) and the distance between ν and ν′ (d{M,N}).
Let E be the set of all edges in the graph, we have:

d∗ν = min
{
d∗ν ′ + d{ν,ν ′} | {ν,ν′} ∈ E

}
(1)

For the critical path problem, the distance of a critical path
to a node ν (δ∗ν) is the minimum distance of the maximum
between the distance of a critical path to some adjacent node
ν′ (δ∗ν ′) and the distance between ν and ν′ (δ{ν,ν ′}). That
is:

δ∗ν = min
{
max

{
δ∗ν ′ , δ{ν,ν ′}

}
| {ν,ν′} ∈ E

}
(2)

To reduce the critical path problem to the shortest path
problem, we equate (1) with (2):

min
{
δ∗ν ′ + d{ν,ν ′} | {ν,ν′} ∈ E

}
=

min
{
max

{
δ∗ν ′ , δ{ν,ν ′}

}
| {ν,ν′} ∈ E

}
(3)

Without loss of generality, we specify that the best path to
ν need to visit a node ν∗ adjacent to ν. Therefore:

d{ν,ν∗} = max
{
δ∗ν∗ , δ{ν,ν∗}

}
− δ∗ν∗ (4)

Equation (4) indicates that the distance between any two
adjacent nodes (d{ν,ν∗}) is non-negative. This allows us to
apply the shortest path algorithm to solve this problem.

After the execution, we obtain distances of critical paths
to all nodes in the graph which can be used in reporting
all squeezing cage sets or performing queries for critical
distance of any finger placement. A mean to reporting all
squeezing cage sets is to list all groups of nodes with the
same critical distance. Note that each group is a connected
component of the graph and there exist a path to any pair
of nodes in the group with distance less the group’s critical
distance. For critical distance query, the critical distance of
a finger placement x in a node ν is simply max {[x], δ∗ν}.

In the following section, we shall proceed to running time
analysis, and fill in implementation details of the algorithm.

WeA7.3

208

V. RUNNING TIME ANALYSIS

The running time of the algorithm for reporting all
squeezing cage sets involves the time spent in the following
sequential tasks:

A. partitioning W into convex subsets,
B. preprocessing and
C. computing critical distance of all nodes

A. Convex Partitioning

Let n, m be the number of vertices of the input object
(either polygons or polyhedra) and the number of convex
subsets (resp.). For polygons, several O(n log n) algorithms
are readily available for an approximated minimal convex
decomposition [10]. The number of convex subsets is in
the order of input vertex, m = O(n), and is guaranteed to
be less than four times of the minimum number of convex
subsets. For polyhedra, partitioning takes O(nN3) where
N is the number of edges with a reflex angle [11]. The
algorithm produces m = O(N2) convex subsets. Note that
chosen partitioning algorithms for this analysis decompose
the workspace into disjoint convex subsets. In order to satisfy
the partitioning requirement stated in the beginning of the
previous section, the partitioned convex subsets need to be
grown (infinitesimally) into closed subsets. Let p be the
number of partitions, p always has a linear relationship with
m, p = O(m), according to Euler Characteristic [12].

B. Preprocessing

The preprocessing task pre-computes δE for an edge E of
the graph in the form {W i ×W k,W j ×W k}. δE depends
on the shape of the convex subset W k and the partition
W i ∩W j , in that:

δE = min {[x] | x ∈ (W i ×W k) ∩ (W j ×W k)}
= min {‖a− b‖ | a ∈ W i ∩W j ∧ b ∈ W k}

It follows from the chosen convex partitioning approach that
a partition W i ∩ W j is merely a face (or a line segment,
in case of polygonal object). δE is therefore equal to the
distance1 between some pair of a vertex and a face (or a
line segment) such that:
(a) the vertex is in W i ∩ W j and the face (or the line

segment) is in W k (Fig. 4(a)), or
(b) the vertex is in W k and the face (or the line segment)

is in W i ∩W j (Fig. 4(b)).
A chosen strategy to compute δE for all E is as follows:

1) Initially, δE , for all edge E of the graph, is set to a
sufficiently large value.

2) Enumerate a vertex v and a face F such that v and F
is a vertex of W a and a face of W b (resp.), for some
integer a, b which take value from 1 to m.

3) Compute the distance δ between v and F .

1Let v and P be a vertex and a set of points, the least distance from a
vertex to a set of points is min {|v − u| | u ∈ P }.

(a)

jW\ iW

iW

jW

kW
E±

(b)

kW
E±

jW\ i
W

iW
jW

Fig. 4. δE of E : {W i ×W k, W j ×W k}. W i, W j , and W k are
shown as dashed lines surrounding the sets. W i ∩W j is shown as a solid
line.

4) For every partition W i ∩ W j and a convex subset
W k such that v ∈ (W i ∩ W j) ∧ F ∈ W k or F ∈
(W i ∩W j) ∧ v ∈ W k, the distance of an edge E =
{W i ×W k,W j ×W k}: δE is updated to δ if it is
greater than δ.

In step (4), F is contained within at most two convex subsets;
while the number of convex subsets containing v ranges from
one to m convex subsets. This results in at most 2m updates
for a pair of a vertex and a face. Nevertheless, the overall
preprocessing time is governed by O(n2 + nm + m2). This
fact, again, can be proven based on Euler Characteristic, see
Appendix A.

C. Computing Critical Distances

Running time for the shortest path algorithm is O(e log v)
[13] where e and v is the number of edges and nodes (resp.).
We have v = m2 as the number of nodes is m2. Since e
depends on the number of partitions p, a partition represents
a possibility to move from one convex subset to another,
say W i to W j . For each of such possibility, an arbitrarily
chosen convex subset, say W k, can be paired with W i

and W j to form an edge (e.g. {W i ×W k,W j ×W k}).
Though it is possible for an edge to involve four different
convex subsets of W (i.e. {W i ×W k,W j ×W l}), these
edges may be dropped without effecting the critical distances
since they always can always be replaced by a two successive
hops on existing edges: either {W i ×W k,W j ×W k} →
{W j ×W k,W j ×W l} or {W i ×W k,W i ×W l} →
{W i ×W l,W j ×W l}, depending on which path has
lower upper bound distance. It follows that e = O(pm) =
O(m2) and, consequently, the running time is O(m2 log m).

D. Summary

The time required for constructing the graph and comput-
ing δ∗ν for all possible ν is:

t(n) + O(n2 + nm + m2) + O(m2 log m)

where t(n) denotes the time spent in partitioning the
workspace W into convex subsets. With rough estimation,
this becomes O(n2 log n) for polygons, and O(n4 log n) for
polyhedra.

After the all nodes are assigned with their critical distance,
the pre-computation prior to point-location query requires
O(n log n) for both convex polygons and polyhedra [14].

WeA7.3

209

TABLE I

RUNNING TIME OF THE ALGORITHMS

Input Object Partitioning Preprocessing Critical Distance All Squeezing Cage Sets Query Preprocessing Query
Polygons O(n log n) O(n2 + nm + m2) O(m2 log m) O(n2 + nm + m2 log m) O(n log n) O(log n)

Polyhedra O(nN3) O(n2 + nm + m2) O(m2 log m) O(nN3 + n2 + nm + m2 log m) O(n log n) O(log2 n)

Once the preparation is complete, a node containing a finger
placement can be queried within O(log n) and O(log2 n) in
case of polygons and polyhedra, respectively.

The results of running time analysis are summarized in
Table I.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a more efficient algorithm for re-
porting all squeezing cage sets for polygons and polyhedra
based on convex decomposition of the workspace. Still, the
algorithm is limited to point fingers. For round fingers, this
algorithm would give an approximation of caging sets (small
caging sets may not be reported) as the object need to
be expanded by the radius of the finger prior to polygons
or polyhedra approximation. Whether a finger placement
can perform squeezing caging can also be queried within
logarithmic time after the all-caging-set report is completed.
This approach is much more efficient than our previously
proposed ray-shooting based approach, [8]. However, the
new approach may not handle the case of stretching caging
conveniently because more than one stretching cage set may
reside in a node – a more sophisticated graph formulation is
required. It is remained open for further researches on more
efficient way to report all stretching caging sets for polygons
and polyhedra and for systems with more fingers.

APPENDIX

A. Preprocessing Running Time

From Euler Characteristic, the relationship between the
number of convex subsets wi surrounding a vertex vi can be
formulated as:

wi = fi − εi + 2 (5)

where fi and εi are the number of faces and line segments
(of the object or a partition) (resp.) containing vi (i.e. εi is
equal to the degree of vi). For each vertex vi, vi have to be
paired with all F faces where F is equal to the total number
of faces of the object including the partitions. The distance
between such pair is computed once and the distance updated
is performed for 2Fwi edges. It follows that the total number
of distance updates is:

n∑
i=1

2Fwi = 2F · (
n∑

i=1

fi +
n∑

i=1

εi + 2n) (6)

We can further simplify this using the fact that:
1) a face is connected to three vertices, and
2) a line segment is connected to two vertices.

Let E is the total number of all line segments composing
the object and the partitions, we have that

∑n
i=1 εi = 2E,∑n

i=1 fi = 3F ; therefore, (6) becomes:

2F · (3F + 2E + 2n) = O(n2 + nm + m2) (7)

since F = O(n + m) and E = O(n + m).

REFERENCES

[1] W. Kuperberg, “Problems on polytopes and convex sets,” DIMACS
Workshop on Polytopes, pp. 584–589, January 1990.

[2] A. Sudsang, F. Rothganger, and J. Ponce, “An implemented planner for
manipulating a polygonal object in the plane with three disc-shaped
mobile robots,” in Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 3, October 2001, pp. 1499–
1506.

[3] S. J. Blind, C. C. McCullough, S. Akella, and J. Ponce, “Manipulating
parts with an array of pins: A method and a machine,” The Interna-
tional Journal of Robotics Research, vol. 20, no. 10, pp. 808–818,
2001.

[4] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in Preecedings of IEEE International Conference on Robotics and
Automation, vol. 1, April 2000, pp. 348–353.

[5] E. Rimon and A. Blake, “Caging 2d bodies by 1-parameter two-
fingered gripping systems,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 2, April 1996, pp. 1459–
1464.

[6] A. Sudsang, J. Ponce, and N. Srinivasa, “Algorithms for constructing
immobilizing fixtures and graps of three dimensional objects,” Algo-
rithmic Foundations of Robotics II, pp. 363–380, 1997.

[7] A. Sudsang and T. Luewirawong, “Capturing a concave polygon
with two disc-shaped fingers,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 1, September 2003, pp.
1121–1126.

[8] P. Pipattanasomporn and A. Sudsang, “Two-finger caging of concave
polygon,” in Proceeding of IEEE International Conference on Robotics
and Automation, May 2006.

[9] M. Vahedi and A. F. van der Stappen, “Caging polygons with two
and three fingers,” in Workshop on the Algorithmic Foundations of
Robotics (WAFR) 2006, July 2006.

[10] J. M. Keil, Handbook of Computational Geometry. Elsevier
Science/North-Holland: North-Holland Publishing Co. Amsterdam,
2000, ch. 11. Polygon Decomposition, pp. 491–518.

[11] B. M. Chazelle, “Convex decompositions of polyhedra,” in STOC ’81:
Proceedings of the thirteenth annual ACM symposium on Theory of
computing. New York, NY, USA: ACM Press, 1981, pp. 70–79.

[12] J. L. Gross and J. Yellen, Eds., Handbook of Graph Theory, 2003, p.
614.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. The MIT Press, 2001, ch. Graph Algorithms, pp. 595–
599.

[14] J. Snoeyink, Handbook of Discrete and Computational Geometry,
2nd ed. New York: Chapman & Hall/CRC, 2004, ch. 34. Point
Location, pp. 767–785.

WeA7.3

210

