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Abstract: In a water distribution system (WDS), chlorine disinfection is important in preventing the spread 
of waterborne diseases.  By strictly controlling residual chlorine throughout the WDS, water quality 
managers can ensure the satisfaction and safety of their customers.  However, due to the travel time of water 
between the chlorine dosing point and any strategic monitoring points, water treatment plant (WTP) 
operators often receive information too late for their responses to be effective.  Given the ability to forecast 
the chlorine residual at strategic points in a WDS, it would be possible to have superior control over the 
chlorine dose, thereby preventing incidents of under- and over-chlorination.  In this research, a general 
regression neural network (GRNN) has been developed for forecasting chlorine residuals in the Myponga 
WDS to the south of Adelaide, South Australia, 24 hours in advance.  A number of critical model issues are 
addressed including: selection of an appropriate forecasting horizon; division of the available data into 
subsets for modelling; and, the determination of the inputs that are relevant to the chlorine forecasts.  In order 
to determine if the GRNN is able to capture any nonlinear relationships that may be present in the data set, a 
comparison is made between the GRNN model and a multiple linear regression (MLR) model.  When tested 
on an independent validation set of data, the GRNN models were able to forecast chlorine levels to a high 
level of accuracy, up to 24 hours in advance.  The GRNN also significantly outperformed the MLR model, 
thereby providing evidence for the existence of nonlinear relationships in the data set.
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1. INTRODUCTION

Providing safe drinking water to consumers, free 
from pathogenic and other undesirable organisms, 
is the primary goal of all water utilities.  
Disinfection is an important aspect in achieving 
this goal and in preventing the spread of 
waterborne diseases.  The most commonly used 
disinfectant in water distribution systems 
worldwide is chlorine (Rodriguez and Sérodes, 
1999).  A properly designed chlorine disinfection 
system provides an immediate kill of harmful 
bacteria and viruses and a protective residual 
throughout the water distribution system (WDS), 
thereby preventing recontamination. 

Dosing too much chlorine has a number of 
negative effects as it increases water treatment 
costs and has a deleterious effect on the taste and 
odour properties of the water.  High chlorine 
levels are frequently related to consumer 
complaints and are commonly the largest source 
of customer concern for water utilities.  Increased 
chlorine levels also raise the risk of forming 

disinfection by-products (DBPs), which may be 
harmful to human health (Milot et al., 2002).  
Therefore, it is important to achieve a balance 
between the objectives of ensuring an adequate 
chlorine residual for microbiological quality and 
preventing high chlorine residuals that impact on 
the aesthetic qualities of the drinking water and 
may also pose health problems. 

Water quality managers can maintain the 
satisfaction and safety of their customers by 
strictly controlling residual chlorine throughout 
the WDS.  At the water treatment plant (WTP), it 
is common practice for operators to control the 
chlorine dose by using information about the raw 
water quality and the chlorine residuals at 
strategic points in the WDS.  However, this 
results in a “knee-jerk” response, as this 
information is subject to time delays due to the 
travel time of water between the dosing point and 
the strategic point monitoring the chlorine 
residual.  As such, the information is often 
received too late for the operator’s response to be 
effective.  An understanding of this problem has 
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2. CASE STUDYled to an increase in the number of attempts to
model chlorine residuals in potable water 
distribution systems.  By forecasting the chlorine
residual at strategic points in the WDS, it is
possible to have greater control of the chlorine
dose, thereby preventing incidents of under- and
over-chlorination.

The Myponga WTP is managed and operated by
United Water International Pty Ltd.  The plant is
located to the south of Adelaide and serves a 
population of up to 45,000 people.  The Myponga
WTP has a chlorinator at the plant outlet, which is 
flow-paced.  The dose rate at the plant is set 
manually by the operators, using their knowledge
of such factors as the raw water quality,
temperature and the measured chlorine residual
after the filtered water storage tank.

The chemical kinetics of chlorine reactions within
distribution systems are not well understood
because of the complexities of the reactions
involved.  Consequently, simple process-based
models do not always adequately represent the
dynamics of chlorine decay within a WDS.  A
large number of process-based models have been
proposed, however, the performance of these
models depends on good estimation of a number
of chlorine decay parameters.  In addition, an 
accurate hydraulic model of the system is
required for estimation of the residence times.
More recently, data-driven methods, such as
artificial neural networks (ANNs), have shown
their utility in forecasting chlorine residuals
within distribution systems (e.g. Rodriguez and
Sérodes, 1999; Sérodes et al., 2001). In this
approach, historical data are collected on the
chlorine residual at strategic points in the
distribution network and on any variables that are 
likely to influence chlorine decay.  Feedforward 
ANNs have been shown to be capable of
approximating any continuous function (Hornik,
1991).  Consequently, given a sufficiently
representative set of data and an appropriate
training algorithm, feedforward ANNs can be
used to find the relationship between a set of
inputs and the concentration of chlorine at a
strategic point in the distribution system, at some
time in the future.  The advantage of this
approach is that it avoids the need for a hydraulic
model of the system and the underlying physical
processes governing the consumption of chlorine
do not need to be known explicitly.

2.1. Available Data

The system under investigation in this study spans
from the Myponga WTP to the forecasting point
in the trunk main approximately 20 km
downstream at Aldinga (Figure 1).  Flow, water
temperature, and chlorine residual data from
March 2002 to August 2002 have been collected
for this section of trunk main at a number of 
locations (Salhane, 2002).  These data were also
used for the present study.  Free chlorine residuals
and water temperature were measured using 
analysers at the WTP, Sampson, Cactus Canyon,
and Aldinga (Figure 1).  Data from the analysers 
were recorded at five-minute intervals. For this
study, these data were converted into hourly
averaged values.

The objective of this study is to develop an ANN
model that is capable of predicting chlorine
residuals in a distribution system.  The case study
considered in this research involves forecasting
free chlorine residuals in a WDS trunk main using
general regression neural networks (GRNNs).  As
a secondary objective, a number of fundamental
issues are also addressed, including:

Figure 1.  Myponga trunk main and the location
of the chlorine analysers.

There were spans of missing and erroneous values
for each of the chlorine and temperature time
series.  Consequently, it was decided to only use 
the Cactus Canyon and Aldinga chlorine time
series and the Cactus Canyon water temperature
time series for the periods 2:00 p.m. 26-03-2002
to 11:00 p.m. 07-05-2002 and 3:00 p.m.
19-06-2002 to 10:00 a.m. 24-07-2002, as these
were the periods of reliable data.  Flow data for
this period of time were available from the
telemetry system operated by United Water. Two
flow variables were identified as important,

What length of forecasting horizon is most
suitable?

What inputs are relevant to the chlorine
forecasts?

Does an ANN provide significant
improvement over a multiple linear 
regression model?
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where x  and y  are the means of the
corresponding series and the cross-correlation
function is computed for all shifts d = 0, 1, 2, …, 
n-1.

including: the trunk main flow, and flow at the
Sellicks Hill Pump Station off-take.  Data for 
additional variables at the Myponga WTP were 
also available.  The additional variables identified
as potential model inputs included: filtered water
trunk main chlorine residual (after filtered water
storage tank at the WTP), filtered water turbidity,
and pH.  A summary of the 8 variables used in
this study is given in Table 1.

In this study, the cross-correlation function was 
calculated between the furthest downstream 
chlorine input time series (i.e. Cactus Canyon)
and the chlorine at Aldinga (Figure 2). In this
plot the maximum correlation occurs at a time
shift of approximately 24 hours, suggesting that
this is the average residence time between the
Cactus Canyon and Aldinga sampling locations
for this given period of data.  Consequently, a
forecasting horizon of 24 hours was used in this
case study. 

Table 1.  Available data. 
Variable Location
Chlorine Filtered Water Tank Outlet (WTP)
Chlorine Cactus Canyon
Chlorine Aldinga

Flow Filtered Water Tank Outlet (WTP)
Flow Sellicks Hill Pump Station Off-take 

Temperature Cactus Canyon
Turbidity WTP

pH WTP
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2.2. Forecasting Horizon

An important consideration in modelling chlorine
residuals in a WDS is the selection of a suitable
forecasting horizon.  The residence time between
two points in the WDS will fluctuate depending
on network demand.  However, since water
flowing in a pipe can be considered as a plug-
flow, the optimal forecasting horizon for residual
chlorine should be comparable to the average
residence time in the segment being modelled
(Sérodes et al., 2001).  Since no hydraulic models
of the Myponga WDS were available and there 
have been no tracer studies conducted on this
segment of the WDS, an alternative method was
used to determine the average residence time.  In 
this method the cross-correlation function is
computed between the time series of chlorine 
residual at an upstream measurement location and 
the time series of chlorine at the downstream 
forecasting location.  The time shift at which the
correlation between the two series is a maximum
is an approximation of the average residence time
between these two points for the period
considered.  Even though chlorine residual is a
non-conservative constituent and will decay 
between the two points in the WDS, the
fluctuations in the time series will be preserved as 
damped fluctuations downstream and hence, will 
be most highly correlated at a shift equal to the
average residence time between the two points in
the WDS. To compute the cross-correlation r
between the two series xi and yi, (1) is used:

Figure 2.  Cross-correlation function between
Cactus Canyon chlorine and Aldinga chlorine.

3. MODEL DEVELOPMENT

The type of ANN model investigated was the
general regression neural network (GRNN). The
GRNN is a feedforward ANN developed by
Specht (1991). GRNNs were used in this study
because they are able to approximate continuous 
functions, only have one parameter (weight) that
needs to be optimised, are very fast to train, have
a fixed network architecture that does not need to
be determined, and are able to model nonlinear
relationships. The GRNN paradigm is briefly
outlined below.  Further information can be found
in Specht (1991).

Assume a vector x of p independent, random
variables is used to predict a dependent scalar
random variable y. Let X be a particular
measured value of the random variable x.  If the 
joint density  is known, then it is 
possible to compute the conditional mean of y
given X (or regression of y on X) by using (2):
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If, however, the joint density  is not

known, then an estimate  based on a 
sample of observations of x and y must be used.
The GRNN utilises a class of consistent
nonparametric estimators known as Parzen
window estimators.  Using Parzen window
density estimation, Specht (1991) has shown that
an estimate of the conditional mean, designated 

, can be written as: 
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where  is the smoothing parameter (sigma
weight) and .  The
regression in (3) is directly applicable to 
numerical data and can be easily implemented via
four layers of parallel ANN architecture as shown 
in Figure 3.  To implement (3), the A summation
layer processing elements (PEs) in Figure 3 have
their weights set to the actual output values i.e. 
A

))2 ii XXXX ((D T
i

i=Yi; i = 1, …n and the B summation layer PEs 
in Figure 3 have their weights set to unity i.e. 
Bi=1; i = 1, …n.  For the network to generalize
well, the optimal sigma weight  must be found
empirically.  The most common methods for
determining a suitable value for the sigma weight
are based on trial-and-error. The curve of mean
squared error (MSE) versus  typically exhibits a 
wide range of values near the minimum, and 
hence, it is not difficult to select a good value for

 (Specht, 1991).  In addition, the curve is usually
parabolic in shape, and because of this, a 
bracketing algorithm known as Brent’s method
(Press et al., 1992) was used in this research to
determine a near-optimal value of since this
method exhibits quadratic convergence near the
minimum.

3.1. Data Division

The way in which the available data are divided
into subsets can have a significant influence on an
ANN’s performance.  This is because ANNs (like
other statistical and empirical models) are 
typically unreliable when extrapolating beyond
the range of the data used for training (Bowden et
al., 2002).  For adequate generalisation ability,
given the available data, all of the patterns that are 
contained in the data need to be represented in the
calibration set.  By choosing calibration and
validation data arbitrarily, without any knowledge
of which types of patterns have been included in

either, the quality of the model developed, and
hence the performance of the model on the
validation data, has a large random component
associated with it.  It follows that if all of the
patterns that are contained in the available data
should be contained in the calibration set, then the 
toughest evaluation of the generalisation ability of
the model is if all of the patterns (and not just a 
subset) are contained in the validation data.
Consequently, the genetic algorithm (GA) data
division method (Bowden et al., 2002) was used
to divide the data into statistically representative
subsets.  This technique helps to ensure that the
training, testing, and validation data sets are 
statistically representative of the same population
so that a fair comparison of the models developed
can be made.
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xp

A1

A2

An

Bn

B2
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Input layer Pattern layer Summation layer Output layer

A

B

PE1

PE2

PEn

Y

Figure 3.  The GRNN architecture.

3.2. Input Determination

In this study, the maximum lag for each input
variable was set at 48 hours. Given the hourly
time step of the data, this was considered a 
sufficiently large lagging window to capture the
dynamics of the system under investigation.
Since there are 8 input variables (Table 1),
lagging the variables resulted in a total of 384
potential model inputs.  An unsupervised
technique known as the self-organizing map
(SOM) (Kohonen, 1982) was used to reduce the
number of lags for each input variable and ensure
that the remaining lags were approximately
independent.  In this approach, the SOM was used
to cluster the lags of each input variable into
groups of similar lags.  By then sampling one lag
from each cluster, it was possible to remove
highly correlated, redundant lags from the
original input set.  This procedure was repeated
for each of the 8 variables and reduced the total 
number of potential inputs to 140.
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To further refine the set of candidate inputs, a
new input determination technique known as the
general regression input determination algorithm
(GRID-A) was developed in this research.  The
approach proceeds as follows: 

1. Identify the set of variables that could be
useful predictors of the system being
modelled.  Denote this variable set as zin.

2. Select input xi from candidate set zin and train
a single-sigma GRNN model using xi and the
dependent (output) variable y.  Denote the 
mean squared error obtained from this model
as MSEi.

3. Force independence between xi and y by
randomising xi.  Repeat for 100 bootstrap
replicates of xi.

4. Train a single-sigma GRNN model using
each bootstrap and y.  Compute the MSE for 
each model.

5. Estimate the 95th percentile randomised input
MSE denoted rand_MSE95

6. If MSEi is lower than rand_MSE95 of step 5,
include the variable in the predictor set z, else 
discard from zin.

7. Repeat steps 2-6 for all d candidate inputs in
zin.

GRID-A was applied to the 140 inputs derived
from the SOM analysis. All 140 inputs were
identified as significant since the MSE obtained 
using each input was less than the corresponding
95th percentile randomised input MSE.  Even
though all inputs were found to be significant,
their relevance to the forecast can be obtained by
looking at their respective MSE.  Since 140 is a
large number of inputs to include in a model, an
input set consisting of the significant inputs with a 
MSE less than 0.02 was developed.  This set
consisted of only 21 inputs and is referred to as 
Input Set #1.  An input set consisting of the
significant inputs with a MSE less than 0.03 was 
also compiled.  This set had 74 inputs and is 
referred to as Input Set #2.  Finally, an input set 
consisting of all significant inputs was also 
compiled.  This set had 140 inputs and is referred
to as Input Set #3.

4. RESULTS AND DISCUSSION

GRNN models trained using Brent’s method were
developed using the 3 input subsets obtained in
Section 3.2.  The root mean squared
error (RMSE) was used to compare the different
models.  The training, testing and validation
results for each of these models are given in
Table 2.  By virtue of the GRNN’s architecture
(i.e. a separate pattern layer node for each training
sample), the training set can be predicted to a high
level of accuracy.  This was evident in the low 

training set forecasting errors that were obtained 
for each model.  The testing and validation sets 
provide a better representation of the model’s
generalisation ability.  It can be seen that all three
models exhibited good testing and validation set
performance.  Based on the test set performance,
Model 1 produced the lowest RMSEs.  Model 1
was developed using Input Set #1, which only
contained 21 inputs.

Table 2.  Forecasting errors for the GRNN
models developed using each of the input sets.

Training
Set

Testing
Set

Validation
SetData Set Model RMSE

(mg/L)
RMSE
(mg/L)

RMSE
(mg/L)

Input
Set #1 1 0.0004 0.015 0.015

Input
Set #2 2 0.0006 0.017 0.020

Input
Set #3 3 0.0014 0.025 0.029

In Figure 4 a plot is shown of the validation set
24-hour forecasts for the model developed using
Input Subset #1.  It can be seen that this model
produced good forecasts for the independent
validation set despite the fact that it only used
chlorine at Cactus Canyon and previous lags of
chlorine at Aldinga as inputs.  This is not
surprising, given the high correlation between
chlorine at Cactus Canyon and chlorine at 
Aldinga (Figure 2). Additional water quality
parameters (e.g. turbidity and pH) were not
important for the forecasts.  The influence of
these parameters would inherently be contained in
the temporal evolution of the chlorine time series,
and hence, this may explain why these parameters
were not needed.  Flow and temperature inputs
were also not needed to produce good forecasts,
for similar reasons.

R2 = 0.9912
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Figure 4.  Validation set 24-hour forecasts for the
model developed using input set #1 (Model 1).

A time series plot of the training, testing and
validation forecasts produced by Model 1 is
shown in Figure 5.  It is evident that the chlorine
forecasts were very good for this period, however,
it must be noted that this plot also contains the
training and testing data points, which were used
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in calibrating the model.  The validation set was
independent of the model calibration process, and
since the forecasts for this set were also good
(Figure 4), it is evident that this model is capable
of predicting the concentration of chlorine at
Aldinga, 24 hours in advance.
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Figure 5.  Training, testing, and validation set 
forecasts of chlorine at Aldinga, 24 hours in

advance (Model 1).

To determine if the GRNN was making use of 
any nonlinear relationships in the data set, a 
comparison was conducted with a multiple linear
regression (MLR) model.  The best set of inputs
identified in Table 2 (i.e. Input Set #1) was used
for both the GRNN and MLR models.  The MLR
model was implemented using the R statistical
package and the results of the comparison are
given in Table 3.  The GRNN achieved a
significantly lower error for the training, testing
and validation sets when compared to the MLR
model.  The improved performance exhibited by
the GRNN model indicates that this model was 
able to make use of additional nonlinearities in
the data set. Chlorine decay in a pipeline is a 
complex phenomenon, it is not surprising
therefore that the GRNN was able to provide
better predictions for this case study when
compared to a linear regression model.

Table 3.  Comparison of the GRNN with a 
Multiple Linear Regression model.

Training Set Testing Set Validation Set Data
Set RMSE

(mg/L)
RMSE
(mg/L)

RMSE
(mg/L)

GRNN 0.0004 0.015 0.015
MLR 0.062 0.061 0.060

5. CONCLUSIONS

From the results obtained in this study, GRNN
models were found to be useful tools for
forecasting chlorine residuals in a WDS.  One
difficulty in applying ANNs to this type of
problem is that the forecasting horizon is fixed.
In this study, a method based on cross-correlation
analysis was used to determine the average
residence time between two points in the WDS

for which chlorine time series were available.  In
the absence of additional information (e.g.
hydraulic models or tracer studies) this is a useful
approach for selecting the forecasting horizon and 
yielded good results for this case study.

An input determination algorithm (GRID-A) was 
devised in this study and was successful in
determining inputs that had a significant
relationship with the output variable.  However,
applying a tighter significance level (i.e. only
selecting inputs with a MSE < 0.02) helped to
further reduce input dimensionality and improved
the model’s performance. Only upstream
chlorine levels and previous chlorine levels at the
forecasting site were required to develop a 
successful model.  GRNN models were found to 
significantly outperform MLR models, suggesting
that they were able to make use of the nonlinear 
relationships in the data set. 
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