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Abstract

In this paper we study the asymptotic behavior of the positive solutions of
certain rational difference equations.
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1 Introduction

In [8] the author studied the global behavior of the second order rational difference
equation having quadratic term

xn+1 =
axn−1

xnxn−1 + b
, a > 0, b > 0 (1.1)

and the third order difference equation having quadratic term

xn+1 =
axnxn−1

xn + bxn−2

, a > 0, b > 0 (1.2)

wherex−2, x−1, x0 are real numbers. For the study of equation (1.1) the author used the
fact that (1.1) reduces to a linear nonhomogeneous equation. Moreover, for the study of
(1.2) he showed that equation (1.2) reduces to (1.1).

Furthermore in [3] the authors investigated equation (1.1) with nonnegative initial
valuesx−1, x0. Moreover if we getb = 1 in (1.1), then by dropping either the termxn

or xn−1 in the denominator of the equation (1.1), we obtain the equations

xn+1 =
axn−1

xn + 1
, xn+1 =

axn−1

xn−1 + 1
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which have been studied in [2]. Finally, results concerning rational difference equations
having quadratic terms are included in [1,3–11] and the references cited therein.

Now in this paper we study the following equations

xn+1 =
axn−m(k+1)+1

k∏
s=0

xn−m(s+1)+1 + 1

, n = 0, 1, . . . (1.3)

xn+1 =

axn−2k−1

k∏
s=0

xn−2s

2k+1∏
s=0

xn−s +
k∏

s=0

xn−2s +
k∏

s=0

xn−2s−1

(1.4)

and

xn+1 =
axnxn−m(k+1)+1

xn + xn−m(k+1)

, n = 0, 1, . . . , (1.5)

wherea is a positive number,m, k ∈ {1, 2, . . .} and the initial values of the above
equations are positive numbers. More precisely, we study the existence of periodic
solutions and the asymptotic behavior of the positive solutions for equations (1.3), (1.4),
(1.5). We note that equations (1.3), (1.4), (1.5) have a common property: They reduces
to a linear nonhomogeneous equation.

2 Study of Equation (1.3)

First we study the existence of positive periodic solutions of periodm(k+1) for equation
(1.3).

Proposition 2.1. Consider equation(1.3). Suppose that

a > 1. (2.1)

Then equation(1.3)has periodic solutions of periodm(k + 1).

Proof. Suppose thatxn is a positive solution of (1.3) with initial valuesx−m(k+1)+1,
x−m(k+1)+2, . . . , x0 > 0 such that

k∏
s=0

xi−m(s+1)+1 = a− 1, i = 0, 1, . . . ,m− 1. (2.2)
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We prove thatxn is a periodic solution of (1.3) of periodm(k + 1). From (1.3) and
(2.2), we get

x1 =
ax−m(k+1)+1

k∏
s=0

x−m(s+1)+1 + 1

= x−m(k+1)+1,

x2 =
ax−m(k+1)+2

k∏
s=0

x−m(s+1)+2 + 1

= x−m(k+1)+2,

....................................

xm =
ax−mk

k∏
s=0

x−ms + 1

= x−mk.

(2.3)

Then from (1.3) and (2.3), we obtain

xm+1 =
ax−mk+1

x1

k∏
s=1

x−ms+1 + 1

=
ax−mk+1

x−m(k+1)+1

k∏
s=1

x−ms+1 + 1

=
ax−mk+1

k∏
s=0

x−m(s+1)+1 + 1

= x−mk+1.

Working inductively, we can prove that

xm+j = x−mk+j, j = 2, 3, . . .

and so the proof is completed.

In the next proposition, we study the asymptotic behavior of the positive solutions
of (1.3). We need the following lemma.

Lemma 2.2. Letxn be an arbitrary positive solution of(1.3). Then the following state-
ments are true:

(i) If

tn =
k∏

s=0

x−1
n−sm, n = 1, 2, . . . (2.4)

with

tj =
k∏

s=0

x−1
j−sm, j = 1−m, 2−m, . . . , 0, (2.5)
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thentn satisfies the nonhomogeneous linear difference equation

yn+1 =
1

a
yn+1−m +

1

a
, n = 0, 1, . . . . (2.6)

Moreover,

tn =


Bn +

n

m
, n = 1, 2, . . . if a = 1

(
1

a

) n
m

Bn +
1

a− 1
, n = 1, 2, . . . if a 6= 1

(2.7)

where

Bn =
r∑

i=0

ci cos

(
2πni

m

)
+ di sin

(
2πni

m

)
, r =


m− 1

2
, if m is odd

m

2
, if m is even

(2.8)
and ci, di, i = 0, 1, . . . , r are constants which are derived from(2.5), (2.7) and
(2.8).

(ii) If
y(j)

n = xm(k+1)n+j, j = 0, 1, . . . ,m(k + 1)− 1, (2.9)

then

y(j)
n = y

(j)
0

n−1∏
s=0

tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

, j = 0, 1, . . . ,m(k + 1)− 1. (2.10)

Proof. Let xn be an arbitrary solution of (1.3). Then we get

xn+1

k∏
s=1

xn+1−sm =

axn−m(k+1)+1

k∏
s=1

xn+1−sm

k∏
s=0

xn+1−(s+1)m + 1

which implies that

k∏
s=0

xn+1−sm =

a
k∏

s=0

xn+1−(s+1)m

k∏
s=0

xn+1−(s+1)m + 1

. (2.11)
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Then from (2.4) and (2.11), we have

1

tn+1

=

a

tn+1−m

1

tn+1−m

+ 1

which implies thattn satisfies the difference equation (2.6). Then relations (2.7) and
(2.8) follow immediately. This completes the proof of statement (i).

(ii) From (2.4), we have

tn
tn−m

=
x−1

n x−1
n−m · · ·x−1

n−km

x−1
n−mx−1

n−2m · · ·x−1
n−(k+1)m

=
xn−m(k+1)

xn

which implies that

xn =
tn−m

tn
xn−m(k+1), n = 1, 2, . . . . (2.12)

So, from (2.9) and (2.12) it holds

y
(j)
n+1 =

tm(k+1)(n+1)+j−m

tm(k+1)(n+1)+j

y(j)
n , j = 0, 1, . . . ,m(k + 1)− 1. (2.13)

Therefore relation (2.13) implies that (2.10) is true. This completes the proof.

Proposition 2.3. Consider equation(1.3). Then the following statements are true.

(i) If
0 < a ≤ 1, (2.14)

then every positive solution of(1.3) tends to zero asn →∞.

(ii) If (2.1)holds, then every positive solution of(1.3) tends to a periodic solution of
periodm(k + 1).

Proof. Let xn be an arbitrary positive solution of (1.3).
(i) Suppose first that

0 < a < 1. (2.15)

From (1.3), we get forj = 0, 1, . . . ,m(k + 1)− 1

xm(k+1)n+j < axm(k+1)(n−1)+j < · · · < anxj. (2.16)

Then from (2.15) and (2.16), we take

lim
n→∞

xm(k+1)n+j = 0, j = 0, 1, . . . ,m(k + 1)− 1

which implies thatxn tends to zero asn →∞.
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Let nowa = 1. We consider the functions

A(j)
n = ln

(
n−1∏
s=0

tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

)
=

n−1∑
s=0

ln

(
tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

)
. (2.17)

From (2.8) it is obvious that

Bm(k+1)(s+1)+j−m = Bm(k+1)(s+1)+j, s = 0, 1, . . . , j = 0, 1, . . . ,m(k+1)−1. (2.18)

Hence relations (2.7), (2.8) and (2.18) imply that

tm(k+1)(s+1)+j−m − tm(k+1)(s+1)+j = −1, s = 0, 1, . . . , j = 0, 1, . . . ,m(k + 1)− 1.
(2.19)

In addition, ifa is a real number such that1 + a > 0, then

ln(1 + a) < a. (2.20)

Then from (2.19) and (2.20), we get

n−1∑
s=0

ln

(
1 +

tm(k+1)(s+1)+j−m − tm(k+1)(s+1)+j

tm(k+1)(s+1)+j

)

≤
n−1∑
s=0

(
tm(k+1)(s+1)+j−m − tm(k+1)(s+1)+j

tm(k+1)(s+1)+j

)
= −

n−1∑
s=0

1

tm(k+1)(s+1)+j

.

(2.21)

Since from (2.7)
∞∑

s=0

1

tm(k+1)(s+1)+j

= ∞,

we have from (2.21)
∞∑

s=0

ln

(
tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

)
= −∞. (2.22)

Therefore, from (2.17) and (2.22), we have

lim
n→∞

A(j)
n = −∞, j = 0, 1, . . . ,m(k + 1)− 1

which implies that

∞∏
s=0

tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

= 0, j = 0, 1, . . . ,m(k + 1)− 1. (2.23)

So from (2.10) and (2.23), we have thatxn tends to zero asn →∞. This completes the
proof of statement (i).
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(ii) If a, b > 0, then using (2.20), we can easily prove that∣∣∣ln(a

b

)∣∣∣ ≤ |a− b|max
{1

a
,
1

b

}
. (2.24)

Then from (2.24), we have forj = 0, 1, . . . ,m(k + 1)− 1∣∣∣∣∣
n−1∑
s=0

ln

(
tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

)∣∣∣∣∣ ≤
n−1∑
s=0

∣∣∣∣ln(tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

)∣∣∣∣
≤

n−1∑
s=0

|tm(k+1)(s+1)+j−m − tm(k+1)(s+1)+j|max

{
1

tm(k+1)(s+1)+j

,
1

tm(k+1)(s+1)+j−m

}
.

(2.25)

Furthermore, from (2.1), (2.7) and (2.18), we have

|tm(k+1)(s+1)+j−m−tm(k+1)(s+1)+j| =
(

1

a

)m(k+1)(s+1)+j
m

|Bm(k+1)(s+1)+j|(a−1). (2.26)

Then using (2.7) and (2.26), we can prove that there exists a positive numberM > 0
such that

|tm(k+1)(s+1)+j−m − tm(k+1)(s+1)+j|max

{
1

tm(k+1)(s+1)+j

,
1

tm(k+1)(s+1)+j−m

}

≤ M

(
1

a

)m(k+1)(s+1)+j
m

, j = 0, 1, . . . ,m(k + 1)− 1.

(2.27)
Therefore, from (2.1), (2.25) and (2.27), it follows that∣∣∣∣∣

∞∑
s=0

ln

(
tm(k+1)(s+1)+j−m

tm(k+1)(s+1)+j

)∣∣∣∣∣ < ∞. (2.28)

Then using (2.17) and (2.28), it is obvious that there exist

lim
n→∞

A(j)
n = lj < ∞, j = 0, 1, . . . ,m(k + 1)− 1. (2.29)

Relations (2.9), (2.10), (2.17) and (2.29) imply that

lim
n→∞

xm(k+1)n+j = pj < ∞, j = 0, 1, . . . ,m(k + 1)− 1.

This completes the proof.
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3 Study of Equation (1.4)

First we study the existence of positive solutions of period2k +2 for the equation (1.4).

Proposition 3.1. Consider equation(1.4)where

a > 2. (3.1)

Then equation(1.4)has positive periodic solutions of period2k + 2.

Proof. Let xn be a positive solution of (1.4) with initial values such that

k∏
s=0

x−2s =
k∏

s=0

x−2s−1 = a− 2. (3.2)

Then from (1.4) and (3.2), we get

x1 =

ax−2k−1

k∏
s=0

x−2s

2k+1∏
s=0

x−s +
k∏

s=0

x−2s +
k∏

s=0

x−2s−1

=
a(a− 2)x−2k−1

(a− 2)2 + 2(a− 2)
= x−2k−1,

x2 =

ax1x−2k

k∏
s=1

x1−2s

x1

2k+1∏
s=1

x1−s + x1

k∏
s=1

x1−2s +
k∏

s=0

x−2s

=

ax−2k−1x−2k

k∏
s=1

x1−2s

x−2k−1

2k+1∏
s=1

x1−s + x−2k−1

k∏
s=1

x1−2s +
k∏

s=0

x−2s

=

ax−2k

k∏
s=0

x−2s−1

2k+1∏
s=0

x−s +
k∏

s=0

x−2s−1 +
k∏

s=0

x−2s

=
a(a− 2)x−2k

(a− 2)2 + 2(a− 2)
= x−2k.

Working inductively, we can prove that

xn = xn−2k−2, n = 3, 4, . . . .

This completes the proof.
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In the following proposition, we study the asymptotic behavior of the positive solu-
tions of (1.4). We need the following lemma.

Lemma 3.2. Let xn be a positive solution of(1.4). Then the following statements are
true:

(i) If

tn =
k∏

s=0

x−1
n−2s, n = 1, 2, . . . (3.3)

with

tj =
k∏

s=0

x−1
j−2s, j = −1, 0, (3.4)

thentn, n = 1, 2, . . . satisfies the following difference equation

yn+1 =
1

a
yn +

1

a
yn−1 +

1

a
, n = 0, 1, . . . . (3.5)

Moreover,

tn =


c1

(
−1

2

)n

+ c2 +
1

3
n, n = 1, 2, . . . if a = 2

c1p
n
1 + c2p

n
2 +

1

a− 2
, n = 1, 2, . . . if a 6= 2

(3.6)

where

p1 =
1

2a
(1−

√
1 + 4a), p2 =

1

2a
(1 +

√
1 + 4a), (3.7)

c1, c2 are defined from(3.4)and (3.6).

(ii) If
y(j)

n = x2(k+1)n+j, j = 0, 1, . . . , 2k + 1, (3.8)

then

y(j)
n = y

(j)
0

n−1∏
s=0

t2(k+1)(s+1)+j−2

t2(k+1)(s+1)+j

, j = 0, 1, . . . , 2k + 1. (3.9)

Proof. (i) Let xn be an arbitrary positive solution of (1.4). Then we get

xn+1

k∏
s=1

xn−2s+1 =

axn−2k−1

k∏
s=0

xn−2s

k∏
s=1

xn−2s+1

2k+1∏
s=0

xn−s +
k∏

s=0

xn−2s +
k∏

s=0

xn−2s−1
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which implies that

k∏
s=0

xn−2s+1 =

a
2k+1∏
s=0

xn−s

2k+1∏
s=0

xn−s +
k∏

s=0

xn−2s +
k∏

s=0

xn−2s−1

. (3.10)

Then relations (3.3) and (3.10) imply that

1

tn+1

=

a

tntn−1

1

tntn−1

+
1

tn
+

1

tn−1

from which we conclude thattn satisfies the difference equation (3.5). Then relation
(3.6) follows immediately.

(ii) Using (3.3), we take

tn
tn−2

=
x−1

n x−1
n−2 · · ·x−1

n−2k

x−1
n−2x

−1
n−4 · · ·x−1

n−2k−2

=
xn−2k−2

xn

which implies that

xn =
tn−2

tn
xn−2k−2, n = 1, 2, . . . . (3.11)

So, from (3.8) and (3.11), it holds

y(j)
n =

t2(k+1)n+j−2

t2(k+1)n+j

y
(j)
n−1, j = 0, 1, . . . , 2k + 1. (3.12)

From (3.12) relation (3.9) follows immediately. This completes the proof.

Proposition 3.3. Consider equation(1.4). Then the following statements are true:

(i) If
0 < a ≤ 2, (3.13)

then every positive solution of(1.4) tends to zero asn →∞.

(ii) If
a > 2, (3.14)

then every positive solution of(1.4) tends to a periodic solution of(1.4)of period
2k + 2.
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Proof. Let xn be an arbitrary positive solution of (1.4).
(i) Suppose that (2.15) is satisfied. Relation (1.4) implies that forj = 0, 1, . . . , 2k+1

x2(k+1)n+j < ax2(k+1)(n−1)+j < . . . < anxj. (3.15)

Therefore, from (2.15) and (3.15), we get

lim
n→∞

x2(k+1)n+j = 0, j = 0, 1, . . . , 2k + 1 (3.16)

which imply thatxn tends to zero asn →∞.
Suppose that

1 ≤ a < 2. (3.17)

From (3.7) and (3.17), we can easily prove that

|p1| < 1, 1 < p2. (3.18)

We set forj = 0, 1, . . . , 2k + 1

B(j)
n = ln

(
n−1∏
s=0

t2(k+1)(s+1)+j−2

t2(k+1)(s+1)+j

)
. (3.19)

Then from (2.20), we have forj = 0, 1, . . . , 2k + 1

B(j)
n =

n−1∑
s=0

ln

(
1 +

t2(k+1)(s+1)+j−2 − t2(k+1)(s+1)+j

t2(k+1)(s+1)+j

)

≤
n−1∑
s=0

(
t2(k+1)(s+1)+j−2 − t2(k+1)(s+1)+j

t2(k+1)(s+1)+j

)
.

(3.20)

Moreover, from (3.6) and (3.20), we can prove that

t2(k+1)(s+1)+j−2 − t2(k+1)(s+1)+j

t2(k+1)(s+1)+j

=

c1(p
−2
1 − 1)

(p1

p2

)2(k+1)(s+1)+j

+ c2(p
−2
2 − 1)

c1

(p1

p2

)2(k+1)(s+1)+j

+ c2 +
1

a− 2
p
−2(k+1)(s+1)+j
2

.

(3.21)
Using (3.18) and (3.21), we have that

lim
s→∞

(t2(k+1)(s+1)+j−2 − t2(k+1)(s+1)+j

t2(k+1)(s+1)+j

)
= p−2

2 − 1 < 0. (3.22)

Therefore, from (3.20) and (3.22), we can prove that

lim
n→∞

B(j)
n = −∞, j = 0, 1, . . . , 2k + 1 (3.23)
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which from (3.19) imply that forj = 0, 1, . . . , 2k + 1

∞∏
s=0

t2(k+1)(s+1)+j−2

t2(k+1)(s+1)+j

= 0. (3.24)

Hence, from (3.8), (3.9) and (3.24), we have that relations (3.16) are true and soxn

tends to zero asn →∞.
Suppose now that

a = 2. (3.25)

So from (3.6) and (3.25), we get

t2(k+1)(s+1)+j−2 − t2(k+1)(s+1)+j

t2(k+1)(s+1)+j

=
3c1

(
−1

2

)2(k+1)(s+1)+j − 2
3

c2 + c1

(
−1

2

)2(k+1)(s+1)+j
+ 1

3
(2(k + 1)(s + 1) + j)

.

(3.26)

Then from (3.26), we can easily prove

∞∑
s=0

(
t2(k+1)(s+1)+j−2 − t2(k+1)(s+1)+j

t2(k+1)(s+1)+j

)
= −∞. (3.27)

Therefore, from (3.20), (3.27), we have that (3.23) is satisfied and so arguing as above,
(3.16) holds, which implies thatxn tends to zero asn →∞.

(ii) Finally, suppose that (3.14) is satisfied. Then from (3.7) it is obvious that∣∣∣p1

p2

∣∣∣ < 1, |p1| < 1, p2 < 1. (3.28)

In addition, from (3.6), we have that forj = 0, 1, . . . , 2k + 1

t2(k+1)(s+1)+j−2 − t2(k+1)(s+1)+j

= p
2(k+1)(s+1)+j
2

(
c1(p

−2
1 − 1)

(p1

p2

)2(k+1)(s+1)+j

+ c2(p
−2
2 − 1)

)
.

(3.29)

In addition, from (2.24), we get forj = 0, 1, . . . , 2k + 1∣∣∣∣∣ ln
(

t2(k+1)(s+1)+j−2

t2(k+1)(s+1)+j

)∣∣∣∣∣
≤ |t2(k+1)(s+1)−2+j − t2(k+1)(s+1)+j|max

{
1

t2(k+1)(s+1)−2+j

,
1

t2(k+1)(s+1)+j

}
.

(3.30)
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Using (3.6), (3.28), (3.29) and (3.30), there exists a positive numberN such that for
j = 0, 1, . . . , 2k + 1 ∣∣∣∣∣ ln

(
t2(k+1)(s+1)+j−2

t2(k+1)(s+1)+j

)∣∣∣∣∣ ≤ Np
2(k+1)(s+1)+j
2 . (3.31)

Therefore, from (3.19) and (3.31), we have that there exist

lim
n→∞

B(j)
n = µj < ∞, j = 0, 1, . . . , 2k + 1. (3.32)

Hence, relations (3.8), (3.9), (3.19) and (3.32) imply that

lim
n→∞

x2(k+1)n+j = qj < ∞, j = 0, 1, . . . , 2k + 1,

and so the proof is completed.

4 Study of Equation (1.5)

In the first proposition, we study the existence of positive periodic solutions of (1.5) of
periodm(k + 1).

Proposition 4.1. Consider equation(1.5) where(3.25)holds. Letxn be positive solu-
tion of (1.5)such that

x0 = x−m(k+1). (4.1)

Thenxn is a periodic solution of(1.5)with periodm(k + 1).

Proof. Let xn be a positive solution of (1.5) such that (4.1) holds. Then from (1.5),
(3.25), we get

x1 =
2x0x−m(k+1)+1

x0 + x−m(k+1)

=
2x0x−m(k+1)+1

2x0

= x−m(k+1)+1

and working inductively, we can prove that

xn = xn−m(k+1), n = 1, 2, . . . .

This completes the proof.

In the last proposition of this paper, we study the asymptotic behavior of the positive
solutions of (1.5). We need the following lemma.
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Lemma 4.2. Consider equation(1.5). Let xn be a positive solution of(1.5). Then if
a 6= 1, for j = 0, 1, . . . ,m(k + 1)− 1 andn = 0, 1, . . ., we have

xnm(k+1)+j = (a− 1)nxj

n∏
s=1

1

c(a− 1)(
1

a
)sm(k+1)+j + 1

(4.2)

where

c =
x−m(k+1)

x0

− 1

a− 1
,

and ifa = 1, for j = 0, 1, . . . ,m(k + 1)− 1 andn = 0, 1, . . ., we have

xnm(k+1)+j = xj

n∏
s=1

1

d + sm(k + 1) + j
, d =

x−m(k+1)

x0

. (4.3)

Proof. We set

yn =
xn−m(k+1)

xn

. (4.4)

Then from (1.5) and (4.4), we get

yn+1 =
1

a
yn +

1

a
, n = 0, 1, . . . . (4.5)

So from (4.4) and (4.5), relations (4.2) and (4.3) follow immediately. This completes
the proof.

Proposition 4.3. Consider equation(1.5). Then the following statements are true:

(i) If 0 < a < 2, then every positive solution of(1.5) tends to zero asn →∞.

(ii) If a = 2, then every positive solution of(1.5) tends to a periodic solution of(1.5)
of periodm(k + 1) asn →∞.

(iii) If a > 2, then every positive solution of(1.5) tends to∞ asn →∞.

Proof. Let xn be an arbitrary solution of (1.5).
(i) Suppose that (2.15) holds. Then using (1.5) and arguing as in Proposition 2.3, we

can prove thatxn tends to zero asn →∞.
Suppose that

1 < a < 2. (4.6)

Let for j = 0, 1, . . . ,m(k + 1)− 1

D(j)
n =

n∏
s=1

1

c(a− 1)

(
1

a

)sm(k+1)+j

+ 1

. (4.7)
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We have forj = 0, 1, . . . ,m(k + 1)− 1

ln(D(j)
n ) = −

n∑
s=1

ln
(
c(a− 1)

(
1

a

)sm(k+1)+j

+ 1
)
. (4.8)

In addition, from (2.20), we get

| ln(1 + a)| ≤ max
{

a,
−a

1 + a

}
. (4.9)

Using (4.8) and (4.9) and since
1 < a, (4.10)

we can prove that

lim
n→∞

(ln(D(j)
n ) = Lj < ∞, j = 0, 1, . . . ,m(k + 1)− 1 (4.11)

which implies that

lim
n→∞

D(j)
n = Mj < ∞, j = 0, 1, . . . ,m(k + 1)− 1. (4.12)

Therefore, from (4.2), (4.6), (4.7) and (4.12), we have that

lim
n→∞

xnm(k+1)+j = 0, j = 0, 1, . . . ,m(k + 1)− 1 (4.13)

and soxn tends to zero asn →∞.
Let nowa = 1. We set forj = 0, 1, . . . ,m(k + 1)− 1

K(j)
n =

n∏
s=1

1

d + sm(k + 1) + j
. (4.14)

Then from (4.14) forj = 0, 1, . . . ,m(k + 1)− 1, we take

ln(K(j)
n ) = −

n∑
s=1

ln
(
d + sm(k + 1) + j

)
. (4.15)

So from (4.15), we can prove that

lim
n→∞

(ln(K(j)
n ) = −∞, j = 0, 1, . . . ,m(k + 1)− 1

which implies that

lim
n→∞

K(j)
n = 0, j = 0, 1, . . . ,m(k + 1)− 1. (4.16)

Then relations (4.3), (4.14), (4.16) imply that (4.13) are true, and soxn tends to zero as
n →∞.
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(ii) Suppose now thata = 2. Then from (4.10), relations (4.12) are true. So from
(4.2), we have

lim
n→∞

xnm(k+1)+j = Mjxj < ∞, j = 0, 1, . . . ,m(k + 1)− 1,

and soxn tends to a periodic solution of (1.5) of periodm(k + 1) asn →∞.
(iii) Finally, suppose thata > 2. Then using (4.10), we have that relations (4.12)

hold, and so from (4.2) it is clear thatxn tends to∞ asn → ∞. This completes the
proof.
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