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Abstract

In this paper we study the asymptotic behavior of the positive solutions of
certain rational difference equations.
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1 Introduction

In [8] the author studied the global behavior of the second order rational difference
equation having quadratic term

ATp—1

—— a>0,b6>0 1.1
e A (1.1)

Tn41 =

and the third order difference equation having quadratic term
AT Tp—1

— M a>0,b>0 1.2
e (1.2)

Tp1 =
wherex_,, z_1, xq are real numbers. For the study of equation (1.1) the author used the
fact that (1.1) reduces to a linear nonhomogeneous equation. Moreover, for the study of
(1.2) he showed that equation (1.2) reduces to (1.1).

Furthermore in [3] the authors investigated equation (1.1) with nonnegative initial
valuesz_1, xq. Moreover if we geb = 1in (1.1), then by dropping either the term
or x,,_; in the denominator of the equation (1.1), we obtain the equations

ATp—1 aTp—1

- x —_— e
) n+1

Tn =+ 1 Tn—1 + 1
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which have been studied in [2]. Finally, results concerning rational difference equations
having quadratic terms are included in [1,3-11] and the references cited therein.
Now in this paper we study the following equations
ATy —m(k+1)+1

L+l = A ,n:O,l,... (13)

H$n—m(s+1)+1 +1
s=0

k
axn—?k—len—Qs
s=0

Int1 = 507 2 % (1.4)
H Tp—s + Hxn—Qs + H‘rn—2s—1
s=0 s=0 s=0
and
AT nTn—m
Tl = BrDFL - — 0,1, .., (1.5)

)
Ty, + Tn—m(k+1)

wherea is a positive numbern, &k € {1,2,...} and the initial values of the above
equations are positive numbers. More precisely, we study the existence of periodic
solutions and the asymptotic behavior of the positive solutions for equations (1.3), (1.4),
(1.5). We note that equations (1.3), (1.4), (1.5) have a common property: They reduces
to a linear nonhomogeneous equation.

2 Study of Equation (1.3)

First we study the existence of positive periodic solutions of peridkH-1) for equation
(1.3).

Proposition 2.1. Consider equatioifl.3). Suppose that
a>1. (2.1)
Then equatiorfl.3) has periodic solutions of perioeh(k + 1).

Proof. Suppose that,, is a positive solution of (1.3) with initial values_,;1)+1,
Tm(k41)+2, - - - » To > 0 such that

k

[[zi-mey=a—1, i=01,...m—1. (2.2)
s=0
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We prove thatz,, is a periodic solution of (1.3) of periodh(k + 1). From (1.3) and
(2.2), we get

AT —m(k+1)+1

= - = T_m(k+1)+1,
Hx—m(s—&—l)—i—l +1
s=0

AT —m(k+1)+2

Ty = — = Tom(k+1)+25
Hﬂﬁ—m(s+1)+2 +1 (2.3)
s=0

.............. a:L‘_mk

Ty = & = T_mk
foms +1
s=0

Then from (1.3) and (2.3), we obtain

o AT —mk+1 o AT —mk+1
Tmt1 = L - L

lexfmerl +1 x—m(k—&—l)—l—lefms#»l +1

s=1 s=1

AT —mk+1 .
A = T_mk+41-

Hl’—m(s+1)+1 +1

s=0

Working inductively, we can prove that
Tmtj = T—mk+j, j :2737”'
and so the proof is completed. O

In the next proposition, we study the asymptotic behavior of the positive solutions
of (1.3). We need the following lemma.

Lemma 2.2. Letx,, be an arbitrary positive solution ofL.3). Then the following state-
ments are true:

@ If
n = H‘T;ism’ n= 17 27 s (24)
0
with

ti=][e; e G=1-m2—m,....0, (2.5)
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thent,, satisfies the nonhomogeneous linear difference equation
1 1

Ynil = —Ynt1-m +—, n=0,1,.... (2.6)
a a
Moreover,
B+ 2 n=12... ifa—1
m
t, = " (2.7)
(-)”LBH—, n=1,2.. ifa#l
a -1
where
—1 . .
. o . mT, if m is odd
B, = cicos( ﬂm) —l—disin( 7rm) , r=
P m m m . :
5 if m is even
(2.8)
andc;,d;, i = 0,1,...,r are constants which are derived frof2.5), (2.7) and
(2.8).
(i) If 4
Y9 = Tttty §=0,1,...,m(k+1) -1, (2.9)
then
n—1
i j tm s j—m .
g =y T[S g 1 m(k 1) 1. (2.10)
o tmk1)(s 1)+
Proof. Let z,, be an arbitrary solution of (1.3). Then we get
k
k axn—m(k+1)+1Hxn+1fsm
$n+1H$n+1—sm = & =
=t Hxn+l—(s+1)m +1
s=0
which implies that
k
k aH-’En+17(s+1)m
H:En—‘rl—sm = =0 (211)

k
s=0
Hxn+1—(s+1)m +1
s=0
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Then from (2.4) and (2.11), we have

a
1 _ tn+1,m
b1 - 1 +1
Zfn-i—l—m

which implies thatt,, satisfies the difference equation (2.6). Then relations (2.7) and
(2.8) follow immediately. This completes the proof of statement (i).
(i) From (2.4), we have

tn T T T Tn_m(k+1)
t - et oxt, gt - x
n—m n—m<“n—2m n—(k+1)m n
which implies that
ln—m
Tp = / xn_m(k+1), n = 1, 2, e (2.12)

So, from (2.9) and (2.12) it holds

] tm n |—m ; .
V) = DD m G) =0 1 m(k+ 1) — L (2.13)
b (k1) (n+1)+5

Therefore relation (2.13) implies that (2.10) is true. This completes the proof. [

Proposition 2.3. Consider equatioiil.3). Then the following statements are true.

() If
0<a<l, (2.14)

then every positive solution @¢1.3)tends to zero as — oo.
(i) If (2.1)holds, then every positive solution (¥.3)tends to a periodic solution of
periodm(k + 1).

Proof. Let x,, be an arbitrary positive solution of (1.3).
(i) Suppose first that
0<a<l. (2.15)

From (1.3), we getfoj =0,1,...,m(k+1) —1

Tkt Dntj < WTm(et1)(n-1)+5 < -+ < a"'T;. (2.16)

Then from (2.15) and (2.16), we take
hm $m(k+1)n+]‘ = 0, ] = 07 1, C. ,m(k -+ ].) — 1

which implies that:,, tends to zero as — oc.
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Let nowa = 1. We consider the functions

n—1
A,(f) T (th;(kﬂ) (s+1)+j— m> Zl ( m(k+1)(s+1)+j— m) 2.17)

=0 Um(k+1)(s+1)+j m(k+1)(s+1)+j

From (2.8) it is obvious that

Bm(k+l)(s+1)+jfm = Bm(k+1)(s+1)+j7 s = 07 17 ) j = 07 17 s 7m(k+1)_1 (218)

Hence relations (2.7), (2.8) and (2.18) imply that

tm(k+1)(8+l)+jfm - tm(kJrl)(erl)Jrj = _17 S = 07 17 SR ] = Oa 17 s 7m(k + 1) — L
(2.19)
In addition, ifa is a real number such that- ¢ > 0, then
In(1+a) <a. (2.20)

Then from (2.19) and (2.20), we get

[ay

3

Uin(k+1)(s+1)+j

-1 n—1
Lin(k41) (54 1) +j—m — Em(k+1)(s+1)+
bin(k+1)(s+1)+j

tm +1)(s+1)+5—m Zfm +1)(s+1)+J
hl ( (k+1)(s+1)+j (k+1)(s+1) J)

mlAgTolM

=0
Since from (2.7)
D ———— =%
o— tm k+1)(s+1)+7

we have from (2.21)

m(k+1)(s+1)+j

Zl k+1) s+1)+j— m) — . (222)

Therefore, from (2.17) and (2.22), we have

lim AY) = —00, j=0,1,..., m(k+1)—1

n—oo

which implies that

> tm S j—m
(k1) (s+D+j—m _ 0, j=0,1,...,m(k+1)—1. (2.23)
o Ime1)(s+1)4g

So from (2.10) and (2.23), we have thattends to zero as — oc. This completes the
proof of statement (i).
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(i) If a,b > 0, then using (2.20), we can easily prove that

(m(%)‘ < ]a—b]max{cll %} (2.24)

Then from (2.24), we have fgr=0,1,... m(k+1) — 1

-1
( m(k+1)(s+1)+j— m> Z ( m(k+1)( s+1)+jm>’
m(k+1)(s+1)+j -0 m(k+1)(s+1)+j
n—1 1 1
< Z [En(h+1)(5+1)+j—m — Cm(k+1)(s+1)+5] TAX - > :

o—0 m(k+1)(s+1)+j ‘m(k+1)(s+1)+j—m

(2.25)

Furthermore, from (2.1), (2.7) and (2.18), we have

m (k4 1) (s+1)+j

|t (k1) (s41)+j—m — b (k1) (s+ 1) 45| = (5) | Bkt 1)(s+1)+5] (@ —1). (2.26)

Then using (2.7) and (2.26), we can prove that there exists a positive nurhber)
such that

1 1
[ (k1) (s4+1)+j—m — Em(kt1)(s41)45] max{ ) }
Umn(k+1)(s+1) 45 Em(k-+1)(s+1)+j—m
1 m(k+1)(s+1)+j
§M<—> ,i=0,1,...,mk+1)—1.
a
(2.27)
Therefore, from (2.1), (2.25) and (2.27), it follows that
m(’““ Jettizm ) | < o, (2.28)
m(k+1)(s+1)+j
Then using (2.17) and (2.28), it is obvious that there exist
lim AY =1, <00, 7=0,1,....m(k+1)—1. (2.29)

n—oo

Relations (2.9), (2.10), (2.17) and (2.29) imply that
nh~>n<}o Tm(k+1)n+j = Pj < 00, J=0,1,... 7m(k + 1) -1

This completes the proof. O
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3 Study of Equation (1.4)

First we study the existence of positive solutions of petibd- 2 for the equation (1.4).
Proposition 3.1. Consider equatioiil.4) where

a > 2. (3.1)

Then equatiorfl.4) has positive periodic solutions of peri@d + 2.

Proof. Let z,, be a positive solution of (1.4) with initial values such that

k k
Hl’,gs = H(’E,Qs,l =a—2. (32)
s=0 s=0

Then from (1.4) and (3.2), we get

k
a$72k71H$72s
s=0

ala — 2)x_op_q

Ty = = = T_2k—1
2k+1 k k (a — 2)2 + 2((1 — 2) !
[Le+ TTr o+ [T e
s=0 s=0 s=0

k
al‘lﬂhzknxlﬁs
x - s=1
2T T okt k k
1 H T1-s + $1H$1—25 + H$—2s
s=1 s=1 s=0
k
a$72k71$72knx1725
_ s=1
- 2k-+1 k k
T_2k—1 H T1-s + 95—21<;—1H5E1—25 + H$—2S
s=1 s=1 s=0
k
a$—2ka—25—1
B 20 ala —2)r_gp
= = T_2k.

2k+1 k

k
[ o+ 1T
s=0 s=0 s=0

Working inductively, we can prove that

T (@a—22+2(a-2)

Tp = Tp—2k—2, N = 3,4,....

This completes the proof. O
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In the following proposition, we study the asymptotic behavior of the positive solu-
tions of (1.4). We need the following lemma.

Lemma 3.2. Let z,, be a positive solution of1.4). Then the following statements are
true:

@ If
t, —Hxn ey n=1,2,. .. (3.3)
with
t; = Hx] 0er J=—1,0, (3.4)
thent,,,n = 1,2, ... satisfies the foIIowmg difference equation
1 1 1
Ynil= —Yn+ —Yn1+—, n=0,1,.... (3.5)
a a a
Moreover,
1\" 1 .
cl(—§) +cz+§n, n=12,... ifa=2
t, = (3.6)
1 .
clp’f—i—cgpg—l——T n=12,... if a #2
a JE—
where . .
plzﬁ(l—\/l—l—éla), pgzﬁ(l‘l‘ \/1"‘4&), (37)
1, o are defined frong3.4) and (3.6).
(i) If '
ygj) = T2(k+1)n+j, .] - 07 17 BRI 2k + 17 (38)
then
ot s ‘
Y9 = ”H ARNEANEIZ2 5 g 2k + 1. (3.9)

Lo(kt1)(s+1) 45

Proof. (i) Let x,, be an arbitrary positive solution of (1.4). Then we get

k k
ATn—2k—1 Hxn—QsH-CEn—2s+l
xn—l—lHZEn—Qs—i—l 2%+1

= Hxn 5+Hxn 25+Hxn 2s5—1
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which implies that

k
Hxn—Qs-l-l - 2k+1 kS*O . (310)

k
s=0
H Tp—s + Hxn—2s + Hxn—Zs—l
s=0 s=0 s=0

Then relations (3.3) and (3.10) imply that

a
1 _ 2fntn—l
TRV S
tntn—l * tn * tn—l

from which we conclude that, satisfies the difference equation (3.5). Then relation
(3.6) follows immediately.
(i) Using (3.3), we take

1,1 -1
ln o Ty Tp_g Ty _op o Tp—2k—2
=1 1 -1 =
ln—2 Ly 0Ty g Ty_op_o Tn
which implies that
tn—2
Ty = " Tpok—2, N =1,2,.... (3.12)
n

So, from (3.8) and (3.11), it holds

) t i . )
() = 2ROt =2 0) 501 2k + 1. (3.12)

Lo(k+1)n+j
From (3.12) relation (3.9) follows immediately. This completes the proof. O

Proposition 3.3. Consider equatioi(l.4). Then the following statements are true:
@ If
0<a<2, (3.13)
then every positive solution @1.4)tends to zero as — oo.
(i) If
a> 2, (3.14)

then every positive solution ¢1.4)tends to a periodic solution fL.4) of period
2k 4 2.
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Proof. Let z,, be an arbitrary positive solution of (1.4).
(i) Suppose that (2.15) is satisfied. Relation (1.4) implies that fer0, 1, ..., 2k+1
T2(k+1)n+j < AT2(k+1)(n—1)+j <. .. < CLn.Tj. (315)
Therefore, from (2.15) and (3.15), we get

hm $2(k+1)n+]‘ = 0, j = 07 1, e ,Qk + ]. (316)

which imply thatz,, tends to zero ags — oc.
Suppose that
1<a<2. (3.17)

From (3.7) and (3.17), we can easily prove that
Ip1] <1, 1<po. (3.18)

We setforj =0,1,...,2k+1

n—1
. t s i
ng) —1n <] [ 2(k+1)(s+1)+j 2>‘ (3.19)

o Lakr)(s 1)+

Then from (2.20), we have fgr=10,1,...,2k + 1

s —1 s
Zln <1+ 2(k+1)(s+1)+j—2 ~ La(kt1)(s+1)4y )

Lo(k+1)(s+1)+7
’ (3.20)
< Z Eo(kt1)(s41)45—2 — L2(kt1)(s+1)+5
Lo(k+1)(s+1)+5
Moreover, from (3.6) and (3.20), we can prove that
) pr\ 20+ 1) (s+ 1)+ »
1 (—) Fepy?—1
Lo(k+1)(s+1)+5—2 — L2(k+1)(s+1)+7 ailpr ) D2 2(P2 )
) - 2(k+1)(s+1)+j 1 B s A'
ba(k+1)(s+1) 45 Cl(&) et —p; 2(k+1)(5+1)+]
P2 -2
(3.21)
Using (3.18) and (3.21), we have that
t s o — 1 s j _
lim (2 BN ) e <, (3.22)
500 Lo(k+1)(s4+1)+j
Therefore, from (3.20) and (3.22), we can prove that
lim BY) = —c0, j=0,1,...,2k+1 (3.23)

n—oo
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which from (3.19) imply that foj = 0,1,...,2k + 1

o0

t s i
H Ak (+DH=2 _ (3.24)

o Laer)(s1) 4

Hence, from (3.8), (3.9) and (3.24), we have that relations (3.16) are true angd so
tends to zero as — oo.
Suppose now that
a=2. (3.25)

So from (3.6) and (3.25), we get

Lok 1) (s+1)+j—2 — Lo(kt1)(s+1)+j

Lo(kt1)(s+1) 45
: (3.26)
301 (—%)2(k+1)(8+1)+'7 . %
Then from (3.26), we can easily prove
> [t s ot s .
Z 20k D) (s D)5 =2 T P20t (st D45 ) (3.27)
— Lo(k+1) (s+1)+7

Therefore, from (3.20), (3.27), we have that (3.23) is satisfied and so arguing as above,
(3.16) holds, which implies that, tends to zero ags — oo.
(if) Finally, suppose that (3.14) is satisfied. Then from (3.7) it is obvious that

‘Iﬂ‘ <1, || <1, po<l. (3.28)
D2

In addition, from (3.6), we have that fgr=10,1,...,2k + 1

Lo(k+1) (s+1)+5—2 — L2(k+1)(s+1)+j

) . ~ P\ 2(k+1) (s+1)+ -
— pg(k-‘rl)( +1)+3 (Cl(p1 2 1) <p_;) + 02(172 2 1))

(3.29)
In addition, from (2.24), we getfor=0,1,...,2k + 1

t )i
I [ B2 +-2
E2(k+1)(s+1)+j

1 1
< |t2(k‘+1)(s+1)—2+j - tz(k—i-l)(s—i—l)-&-j‘ max{ ) } .
Lo(k+1)(s+1)—2+5  L2(k+1)(s+1)+7
(3.30)




Asymptotic Behavior of the Solutions of Rational Difference Equations 245

Using (3.6), (3.28), (3.29) and (3.30), there exists a positive nhumbeuch that for

j=0,1,...,2k+1
t )i
1 [ f20+D(s )2
Lo(k+1)(s+1)+5

Therefore, from (3.19) and (3.31), we have that there exist

< Npg(k+1)(s+1)+j. (3.31)

lim BY) = y; <00, j=0,1,...,2k + 1. (3.32)

n—oo

Hence, relations (3.8), (3.9), (3.19) and (3.32) imply that
T}an}on(k-‘rl)n-i-j =qj < 90, .] - 07 17 cee 2k + 17

and so the proof is completed. O

4 Study of Equation (1.5)

In the first proposition, we study the existence of positive periodic solutions of (1.5) of
periodm(k + 1).

Proposition 4.1. Consider equatiorfl.5) where(3.25) holds. Letz,, be positive solu-
tion of (1.5) such that

To = T—m(k+1)- (4.1)
Thenz,, is a periodic solution of1.5)with periodm(k + 1).

Proof. Let x,, be a positive solution of (1.5) such that (4.1) holds. Then from (1.5),
(3.25), we get

200T (k4 1)+l 20T (k4 1)+1
T = = = T_m(k+1)+1
To + Tm(k+1) 2

and working inductively, we can prove that
Ty = Tpomk+1), N =1,2,....
This completes the proof. O

In the last proposition of this paper, we study the asymptotic behavior of the positive
solutions of (1.5). We need the following lemma.
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Lemma 4.2. Consider equatiorf1.5). Letx, be a positive solution of1.5). Then if
a#1,forj=0,1,...,m(k+1)—1andn=0,1,..., we have

n

1

Tpm(k+1)+5 = (CL - 1)nx]H 1 ] (42)
5:10<a o 1)(_)5m(k+1)+] 11
a
where
T _m(k+1) 1
c= — ,
o a—1

andifa=1,forj=0,1,...,m(k+1)—1landn =0,1,..., we have

- 1 T _m(k+1)
nm =4 -, d=—. 4.3
Tpm(k+1)+j x]!;[d-+-sn@(k-+-1)4—j 0 ( )
Proof. We set
Tn—m(k+1
yo = (4.4)
Then from (1.5) and (4.4), we get
1 1
yn+1:ayn+a, n=201,.... (4.5)

So from (4.4) and (4.5), relations (4.2) and (4.3) follow immediately. This completes
the proof. [

Proposition 4.3. Consider equatioii1.5). Then the following statements are true:
(i) If 0 < a < 2, then every positive solution ¢1.5)tends to zero as — oc.

(i) If a = 2, then every positive solution ¢1.5)tends to a periodic solution gfL.5)
of periodm(k + 1) asn — oo.

(i) If a > 2, then every positive solution ¢1.5)tends tooc asn — oc.
Proof. Let z,, be an arbitrary solution of (1.5).

(i) Suppose that (2.15) holds. Then using (1.5) and arguing as in Proposition 2.3, we
can prove that,, tends to zero as — .

Suppose that
l<a<?2. (4.6)
Letforj =0,1,..., m(k+1)—1
. - 1
DY =1] . (4.7)
s=1
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We have forj =0,1,...,m(k+1) —1

1 sm(k+1)+j
n(DY) Zln( (a—1 <a> +1). (4.8)

In addition, from (2.20), we get

—a
< . :
| In(1 + a)| _max{a, 1+a} (4.9)
Using (4.8) and (4.9) and since
1 <a, (4.10)
we can prove that
lim (In(DY) = L; <00, j=0,1,...,mk+1) -1 (4.11)
which implies that
lim DY) = M; < o0, j=0,1,....m(k+1)—1. (4.12)

n—oo

Therefore, from (4.2), (4.6), (4.7) and (4.12), we have that

im Zpmes1)+; =0, 7=0,1,...,mk+1) -1 (4.13)

n—oo

and sar,, tends to zero ag — .
Letnowa = 1. We setforj =0,1,...,m(k+1) — 1

, 1
KW = . 4.14
" Hd+sm(k+1)+j (4.19)
Then from (4.14) forj = 0,1,...,m(k + 1) — 1, we take
In(K9) = -3 ln<d +sm(k+1) + j). (4.15)
=1
So from (4.15), we can prove that
lim (In(KY) = =00, j=0,1,...,m(k+1)—1
which implies that
lim KV =0, j=0,1,...,m(k+1)— 1. (4.16)

n—oo

Then relations (4.3), (4.14), (4.16) imply that (4.13) are true, and,4ends to zero as

n — OoQ.
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(i) Suppose now that = 2. Then from (4.10), relations (4.12) are true. So from
(4.2), we have

lm pmkr1)+ = Mjz; < oo, j=0,1,....m(k+1)—1,

and sar,, tends to a periodic solution of (1.5) of peried k + 1) asn — oc.

(i) Finally, suppose that > 2. Then using (4.10), we have that relations (4.12)
hold, and so from (4.2) it is clear that, tends tooc asn — oo. This completes the
proof. ]
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