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Abstract. Let H be a subgroup of a finite group G, then we say that H is weakly SS-
quasinormal in G, if there exists a normal subgroup T of G such that HT is s-permutable
and H ∩ T is SS-quasinormal in G. In this paper, we investigate the influence of some
weakly SS-quasinormal subgroups on the structure of G. Some new criterias about the
p-nilpotency and supersolubility of a finite group were obtained. We also generalized
some known results about formations.
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1. Introduction

All groups considered in this paper will be finite and we use conventional notions
and notation, as in D. Gorenstein [5]. Let F denote a formation, we use U to
stand for the class of all supersoluble groups. Let H be a subgroup of G, T ≤ G
is said to be a supplement of H in G if HT = G. A subgroup H of G is said to
be F -supplemented in G if there exists a subgroup L ∈ F such that G = HL. In
this case, we say that L is an F -supplement of H in G.

Recall that a subgroup H of G is said to be s-permutable [11] (or s-quasinormal
[3]) in G, if H permutes with every Sylow subgroup P of G. Following Wang in
[18], a subgroup H is c-normal in G if G has a normal subgroup T such that
G = HT and H ∩ T ≤ HG, where HG is the normal core of H in G. By assuming
that some subgroups of G satisfying the s-permutability or c-normality, many in-
teresting results have been derived (see for example, [16], [1], [15], [12], [20], [22],
[2], [10]). As a development, recently in [7], the concept of S-embedded subgroup
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was introduced: a subgroup H is said to be S-embedded in G if there exists a
normal subgroup N such that HN is s-permutable in G and H ∩N ≤ HsG, where
HsG is the largest s-permutable subgroup of G contained in H. In [7], the authors
obtained that:

Theorem C and D. Let F be a saturated formation containing all supersoluble
groups and G a group with a normal subgroup E such that G/E ∈ F . Suppose
that for every non-cyclic Sylow subgroup P of E (or F ∗(E), respectively), every
maximal subgroup of P or every cyclic subgroup H of P with prime order or order
4 (if P is a non-abelian 2-group and H * Z∞(G)) is S-embedded in G. Then
G ∈ F .

These two theorems generalized a lot of meaningful results. As another gener-
alizations of the s-permutability, in [14] the authors introduced that: a subgroup
H of G is said to be an SS-quasinormal subgroup (Supplement-Sylow-quasinormal
subgroup) of G if there is a supplement B of H to G such that H permutes with
every Sylow subgroup of B. In this paper, we integrated the above concepts and
introduce that:

Definition 1.1 A subgroup H of a group G is said to be weakly SS-quasinormal
in G, if there exists a normal subgroup T of G such that HT is s-permutable and
H ∩ T is SS-quasinormal in G.

Remark. Obviously, every S-embedded subgroup and SS-quasinormal subgroup
of G is weakly SS-quasinormal in G. In general, a weakly SS-quasinormal sub-
group of G need not be S-embedded or SS-quasinormal in G. For instance:

Example 1. Let G = S5 be the symmetric group of degree 5, H = S4 and P a
Sylow 5-subgroup of G. Since P is a supplement of H to G and H permutes with
P , H is SS-quasinormal and thus weakly SS-quasinormal in G. But neither H
nor H∩A5 = A4 is s-permutable in G, because they are not subnormal subgroups
of G. Since the only normal subgroups of G are A5 and G itself, H = S4 is not
S-embedded in G.

Example 2. Let G = S5, K = 〈(12)〉 and T = A5. Since T E G is a complement
of K, K is weakly SS-quasinormal in G. But the only supplement of K to G
are A5 and G itself and K〈(12345)〉 6= 〈(12345)〉K, thus we know K is not SS-
quasinormal in G.

In this paper, we investigate the influence of some weakly SS-quasinormal
subgroups on the structure of a finite group G. Our main result is:

Main results. Let F be a saturated formation containing all supersoluble groups
U . Then a group G ∈ F if and only if G has a normal subgroup E such that
G/E ∈ F and for every non-cyclic Sylow subgroup P of E (or F ∗(E), respec-
tively), every maximal subgroup of P not having a supersoluble supplement in G
or every cyclic subgroup H of P with prime order or order 4 (if P is a non-abelian
2-group and H * Z∞(G)) without a supersoluble supplement in G is weakly
SS-quasinormal in G.
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2. Preliminaries

We list here some basic results which will be used in the sequel.

Lemma 2.1 ([11]) Suppose that H is an s-permutable subgroup of G, K ≤ G and
N E G. Then the following statements hold:

(1) If K ≤ G, then H ∩K is s-permutable in K.

(2) HN and H ∩N are s-permutable in G, HN/N is s-permutable in G/N .

(3) H is subnormal in G.

(4) If H is a p-group for some prime p, then NG(H) ≥ Op(G).

Lemma 2.2 ([14, Lemma 2.1]) Suppose that H is SS-quasinormal in a group G,
K ≤ G and N is a normal subgroup of G. Then

(1) If H ≤ K, then H is SS-quasinormal in K.

(2) HN/N is SS-quasinormal in G/N .

Lemma 2.3 ([14, Lemma 2.2]) Let P be a p-subgroup of G, where p is a prime.
Then the following statements are equivalent:

(1) P is s-permutable in G.

(2) P ≤ Op(G) and P is SS-quasinormal in G.

Lemma 2.4 ([14, Lemma 2.5]) If a p-subgroup P of G is SS-quasinormal in G,
then P permutes with every Sylow q-subgroup of G with q 6= p.

Now, we can prove that:

Lemma 2.5 Suppose that H is weakly SS-quasinormal in a group G, K ≤ G
and N E G.

(1) If H ≤ K, then H is weakly SS-quasinormal in K.

(2) If N ≤ H, then H/N is weakly SS-quasinormal in G/N .

(3) Let π be a set of primes, H a π-subgroup and N a normal π′-subgroup of G.
Then HN/N is weakly SS-quasinormal in G/N .

(4) If K EG and H ≤ K, then G has a normal subgroup L contained in K such
that HL is s-permutable and H ∩ L is SS-quasinormal in G.

(5) If H ≤ Op(G), then H is S-embedded in G.
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Proof. By hypothesis, there exists a normal subgroup T of G such that HT is
s-permutable and H ∩ T is SS-quasinormal in G.

(1) First, we have K ∩ T E K. By Lemma 2.1(1) and Lemma 2.2(1), we can
see that H(K ∩ T ) = K ∩ HT is s-permutable and H ∩ (K ∩ T ) = H ∩ T is
SS-quasinormal in K, respectively. Hence H is weakly SS-quasinormal in K.

(2) Clearly, we have TN/N EG/N , (H/N)(TN/N) = HT/N is s-permutable
in G/N and (H/N)∩ (TN/N) = (H∩TN)/N = (H∩T )N/N . By Lemma 2.2(2),
(H ∩ T )N/N is SS-quasinormal in G/N . Hence H/N is weakly SS-quasinormal
in G/N .

(3) It is easy to see that TN/N E G/N , (HN/N)(TN/N) = HTN/N is
s-permutable in G/N . Since H is a π-group and N a π′-group,

|H ∩ TN | = |H| · |TN |π
|HTN |π =

|H| · |T |π
|HT |π = |H ∩ T |π = |H ∩ T |.

This implies that H ∩ TN = H ∩ T , so (HN/N) ∩ (TN/N) = (HN ∩ TN)/N =
(H∩TN)N/N = (H∩T )N/N which is SS-quasinormal in G/N by Lemma 2.2(2).
Hence HN/N is weakly SS-quasinormal in G/N .

(4) Let L = K ∩ T , then it is easy to see that L E G, HL = K ∩ HT is
s-permutable in G and H ∩ L = H ∩ T is SS-quasinormal in G.

(5) From Lemma 2.3, it is clear.

Lemma 2.6 Let G be a group and p a prime dividing |G| with (|G|, p− 1) = 1.

(1) If N is normal in G of order p, then N lies in Z(G).

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.

(3) If M is a subgroup of G with index p, then M is normal in G.

Lemma 2.7 ([4, A, Lemma 1.2]) Let U , V and W be subgroups of a group G.
Then the following statements are equivalent:

(1) U ∩ V W = (U ∩ V )(U ∩W );

(2) UV ∩ UW = U(V ∩W ).

Lemma 2.8 ([17, Lemma 2.20]) Let A be a p
′
-group of automorphisms of the

p-group P of odd order. Assume that every subgroup of P with prime order is
A-invariant, then A is cyclic.

3. Main results

Theorem 3.1 Let P be a Sylow p-subgroup of a group G, where p is a prime
divisor of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P not having
a p-nilpotent supplement in G, or every cyclic subgroup H of P with prime order
or order 4 (if P is a non-abelian 2-group and H * Z∞(G)) without a p-nilpotent
supplement in G is weakly SS-quasinormal in G, then G is p-nilpotent.
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Proof. Suppose that the result is false and let G be a counterexample of minimal
order. We treat with the following two cases:

Case 1. Every cyclic subgroup H of P with prime order or order 4 (if P is a
non-abelian 2-group and H * Z∞(G)) without a p-nilpotent supplement in G is
weakly SS-quasinormal in G.

Let K be a proper subgroup of G and P0 ∈ Sylp(K). Then there exists
some x ∈ G such that P x

0 ≤ P . Since K is p-nilpotent if and only if Kx is
p-nilpotent. Without loss of generality, we may assume that P0 ≤ P . Since
Z∞(G)∩K ≤ Z∞(K), by hypothesis and Lemma 2.5(1) every cyclic subgroup H
of P0 with prime order or order 4 (if P0 is a non-abelian 2-group and H * Z∞(K))
is weakly SS-quasinormal in K. Thus K is p-nilpotent by induction. Therefore,
G is a minimal non-p-nilpotent group. Then we have: (i) G = [P ]Q, where P is a
normal Sylow p-subgroup and Q a non-normal cyclic Sylow q-subgroup of G; (ii)
P/Φ(P ) is a chief factor of G; (iii) the exponent of P is p or 4.

Let X/Φ(P ) be a minimal subgroup of P/Φ(P ), then there exists x ∈ X\Φ(P )
such that X/Φ(P ) = 〈x〉Φ(P )/Φ(P ) and |〈x〉| = p or 4. If 〈x〉 has a p-nilpotent
supplement B in G, then BΦ(P )/Φ(P ) is a p-nilpotent supplement of X/Φ(P ) in
G/Φ(P ) and |G/Φ(P ) : BΦ(P )/Φ(P )| ≤ p. Thus we have BΦ(P )/Φ(P )EG/Φ(P )
and the normal p-complement of BΦ(P )/Φ(P ) is also a normal p-complement of
G/Φ(P ). Since the class of all p-nilpotent groups formed a saturated formation
and Φ(P ) ≤ Φ(G), G is p-nilpotent, which is a contradiction. Therefore, by
hypothesis either 〈x〉 ⊆ Z∞(G) or 〈x〉 is weakly SS-quasinormal in G. In the
former case, we have P ∩Z∞(G) * Φ(P ). Then by the fact that P/Φ(P ) is a chief
factor of G, we have (P ∩ Z∞(G))Φ(P ) = P and hence P ≤ Z∞(G). In this case,
it is easy to see that G is nilpotent, which is a contradiction. Next, we suppose
that 〈x〉 is weakly SS-quasinormal in G. By Lemma 2.5(4), there are some s-
permutable subgroup C and normal subgroup T of G such that 〈x〉T = C ≤ P
and 〈x〉∩T is SS-quasinormal in G. If X/Φ(P ) is s-permutable in G/Φ(P ), then
we can easily deduce that X/Φ(P ) E G/Φ(P ) since P/Φ(P ) is a chief factor of
G. Therefore, P/Φ(P ) = X/Φ(P ) is a cyclic group. Hence P is cyclic and G is p-
nilpotent. This contradiction shows that X/Φ(P ) is not s-permutable in G/Φ(P ).
Therefore, 〈x〉 is not s-permutable in G. Since 〈x〉 ∩ T is s-permutable in G by
Lemma 2.3, we have 1 < T < P . Hence TΦ(P ) 6= P , which implies that T ≤
Φ(P ). But then X/Φ(P ) = 〈x〉Φ(P )/Φ(P ) = 〈x〉TΦ(P )/Φ(P ) = CΦ(P )/Φ(P ) is
an s-permutable subgroup of G/Φ(P ), a contradiction.

Case 2. Every maximal subgroup of P not having a p-nilpotent supplement in
G is weakly SS-quasinormal in G.

In this case, we break the proof into the following six steps:

(1) P is not cyclic and every maximal subgroup of P has no p-nilpotent supple-
ment in G.
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By Lemma 2.6(2), we may assume that P is not cyclic. Suppose that H is a
maximal subgroup of P which has a p-nilpotent supplement T in G, we prove
that G is p-nilpotent. If not, let K be a non-p-nilpotent subgroup of G which
contains P and is such that every proper subgroup of K is p-nilpotent. Then by
[8, IV, Theorem 5.4], K is a minimal non-nilpotent group and the following hold:
(i) K = [P ]Kq, where P is a normal Sylow p-subgroup and Kq a cyclic Sylow
q-subgroup of K; (ii) P/Φ(P ) is a chief factor of K.

Since G = HT , K = K∩HT = H(K∩T ). The facts K∩T ≤ T is p-nilpotent
but K is not p-nilpotent implies that L = K∩T is a proper subgroup of K. Hence
L is nilpotent. Let L = Lp × Lq. Obviously, Lq is also a Sylow q-subgroup of K.
Since P = HLp, Lp is not contained in Φ = Φ(P ). Now we consider the factor
group K/Φ. The fact Lq ≤ NK(Lp) implies that LqΦ/Φ ≤ NK/Φ(LpΦ/Φ). On the
other hand, since P/Φ is an elementary abelian group, we have LpΦ/Φ E P/Φ.
Hence LpΦ/Φ E 〈LqΦ/Φ, P/Φ〉 = K/Φ. Since LpΦ/Φ 6= 1 and P/Φ is a chief
factor of K, LpΦ/Φ = P/Φ. It follows that Lp = P . Consequently, we get that
L = K. This contradiction completes the proof of (1).

(2) G is not a non-abelian simple group.

Assume that G is a non-abelian simple group. Let P1 be a maximal subgroup
of P , by (1) we know P1 is weakly SS-quasinormal in G. Then there exists
a normal subgroup T of G such that P1T is s-permutable and P1 ∩ T is SS-
quasinormal in G. Note that T = 1 or G since G is a simple group. If T = 1,
then P1 = P1T is s-permutable in G. Hence P1 is a proper subnormal subgroup of
G, a contradiction. Thus T = G and therefore P1 = P1 ∩ T is SS-quasinormal in
G. Then there exists some supplement B of P1 such that P1 permutes with every
Sylow subgroup of B. From G = P1B, we know |B : P1 ∩ B|p = |G : P1|p = p.
Hence P1 ∩ B is of index p in Bp, a Sylow p-subgroup of B containing P1 ∩ B.
Thus S * P1 for all S ∈ Sylp(B) and P1S = SP1 is a Sylow p-subgroup of G. By
comparison of orders, we know that S ∩ P1 = B ∩ P1 holds for each S ∈ Sylp(B).
So B ∩ P1 =

⋂
b∈B(Sb ∩ P1) ≤

⋂
b∈B Sb = Op(B). Since |Op(B) : B ∩ P1| = p or

1, |B/Op(B)|p = p or 1. Then by Lemma 2.6(2), B/Op(B) is p-nilpotent, and so
B is p-soluble. Hence B has a Hall p

′
-subgroup K. It is clear that K is also a

Hall p
′
-subgroup of G. Thus, P1 permutes with every Sylow subgroup of K and

so P1K is a subgroup of G. Since |G : P1K| = p, P1K is normal in G by Lemma
2.6(3), which is a contradiction. Therefore, G is not a non-abelian simple group.

(3) G has a unique minimal normal subgroup N , G/N is p-nilpotent and Φ(G)=1.

Let N be a minimal normal subgroup of G. By Lemma 2.6(2), we may assume
that PN/N is non-cyclic and |PN/N | ≥ p2. Let M/N be a maximal subgroup
of PN/N , then M = P1N for some maximal subgroup P1 of P and P ∩ N =
P1 ∩ N ∈ Sylp(N). By (1), we know P1 is weakly SS-quasinormal in G. Then
there exists a normal subgroup T of G such that P1T is s-permutable and P1∩T is
SS-quasinormal in G. Clearly, TN/N is a normal subgroup of G/N and P1N/N ·
TN/N = P1TN/N is s-permutable in G/N . Moreover, since P1 ∩ N is a Sylow
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p-subgroup of N , |(P1 ∩N)(T ∩N)|p = |P1 ∩N | = |N |p = |N ∩ P1T |p. Since P1

is a p-group,

|N ∩ P1T |p′ =
|N |p′ · |P1T |p′
|NP1T |p′

=
|N |p′ · |T |p′
|NT |p′

= |N ∩ T |p′ = |(P1 ∩N)(T ∩N)|p′ .

This implies that (N ∩ P1)(N ∩ T ) = N ∩ P1T . Thus by Lemma 2.7, we have
P1N ∩ TN = (P1 ∩ T )N . It follows from Lemma 2.2(2) that P1N/N ∩ TN/N =
(P1 ∩ T )N/N is SS-quasinormal in G/N . Hence M/N is weakly SS-quasinormal
in G/N . Therefore, G/N satisfies the hypothesis and so it is p-nilpotent by the
minimal choice of G. Since the class of all p-nilpotent groups formed a saturated
formation, N is the unique minimal normal subgroup of G and Φ(G) = 1.

(4) Op′(G) = 1.

If Op′(G) 6= 1, then N ≤ Op′(G) and G/Op′(G) is p-nilpotent by (3). Hence G is
p-nilpotent, a contradiction.

(5) Op(G) = 1 and N is not p-nilpotent.

If Op(G) 6= 1, then N ≤ Op(G). Since Φ(G) = 1, G has a maximal subgroup M
such that G = [N ]M . Since Op(G) ≤ F (G) ≤ CG(N) and CG(N) ∩M E G, the
uniqueness of N yields that N = Op(G). Since P = N(P ∩M) and N ∩M = 1,
P ∩M is a Sylow p-subgroup of M and there exists a maximal subgroup P1 of P
such that P ∩M ≤ P1 and P = NP1. By (1), P1 is weakly SS-quasinormal in G.
Then G has a normal subgroup T such that P1T is s-permutable in G, and there
exists some supplement B of P1 ∩ T to G such that (P1 ∩ T )Bq = Bq(P1 ∩ T ) for
any Bq ∈ Sylq(B). If T = 1, then P1 = P1T is s-permutable in G. It follows that
P1 ≤ Op(G) = N and so P = P1N = N is a minimal normal subgroup of G. Since
NG(P1) ≥ Op(G) by Lemma 2.1(4) and P1 E P , P1 is a proper normal subgroup
of G contained in P = Op(G), a contradiction. Thus we have T 6= 1 and then
N ≤ T . In this case, N ∩P1 = N ∩P1 ∩T = N ∩ (P1 ∩T )Bq E (P1 ∩T )Bq for any
Bq ∈ Sylq(B) with q 6= p. Hence Bq ≤ NG(N ∩ P1) holds for any q 6= p. Since
N ∩ P1 E P , it is normal in G. Thus N ∩ P1 = 1 and |N | = p. By Lemma 2.6(1),
N ≤ Z(G). Since G/N is p-nilpotent, G is also p-nilpotent, a contradiction.

If N is p-nilpotent, then Np′ char N E G, so Np′ ≤ Op′(G) = 1 by (4). Thus
N is a p-group and hence N ≤ Op(G) = 1, a contradiction.

(6) The final contradiction.

Since N is not soluble, N = S1×S2×· · ·×Sk, where Si are isomorphic non-abelian
simple groups. Let Sp ∈ Sylp(S1), we now prove that Sp ≤ P1 for some maximal
subgroup P1 of P . If P ∩ S1 < P , it is clear. If P ≤ S1, then by hypothesis
and Lemma 2.5(1), we know that every maximal subgroup of P is weakly SS-
quasinormal in S1. With a similar argument as in (2), we can get a contradiction.
Thus Sp ≤ P1, where P1 is a maximal subgroup of P . Then there exists a normal
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subgroup T of G such that P1T is s-permutable in G, and there is a supplement
B of P1 ∩ T to G such that P1 ∩ T permutes with every Sylow subgroup of B.

If T = 1, then P1 is s-permutable in G and so Op(G) 6= 1, which contradicts
with (5). Thus T 6= 1 and so N ≤ T . If P1 ∩ T = 1, then |T |p ≤ p. Hence T
is p-nilpotent by Lemma 2.6(2), N is also p-nilpotent. This contradiction shows
that P1 ∩ T 6= 1. Let Bq be a Sylow q-subgroup of B, where q 6= p. Then

|Bq ∩ P1T | = |Bq| · |P1T |q
|BqP1T |q =

|Bq| · |T |q
|BqT |q = |Bq ∩ T | = |(Bq ∩ P1)(Bq ∩ T )|.

This implies that Bq ∩ P1T = (Bq ∩ P1)(Bq ∩ T ). Thus by Lemma 2.7, we have
BqP1 ∩ BqT = Bq(P1 ∩ T ). Therefore, N ∩ P1Bq = N ∩ (P1Bq ∩ TBq) = N ∩
(P1 ∩ T )Bq. Then we can conclude that S1 ∩ (P1 ∩ T ) = S1 ∩ P1 = Sp is a Sylow
p-subgroup of S1. This means that for any prime q ( 6= p), S1∩(P1∩T )Bq is a Hall
{p, q}-subgroup of S1. Since N is non-abelian, p = 2. Then for any prime divisor
q (q 6= 2) of |S1|, the non-abelian simple group S1 has a Hall {2, q}-subgroup,
which contradicts with [13, Lemma 2.6]. This contradiction completes the proof
of the theorem.

Since a supersoluble group G is p-nilpotent for the minimal prime divisor p
of |G|, every subgroup H of G not having a p-nilpotent supplement in G also has
no supersoluble supplement in G. Thus, from Theorem 3.1 we can easily deduce
that:

Corollary 3.2 Let P be a Sylow p-subgroup of a group G, where p =minπ(G).
If every maximal subgroup of P not having a supersoluble supplement in G, or
every cyclic subgroup H of P with prime order or order 4 (if P is a non-abelian
2-group and H * Z∞(G)) without a supersoluble supplement in G is weakly SS-
quasinormal in G, then G is p-nilpotent.

Next, by using the weakly SS-quasinormal properties of some subgroups, we
give out some new criteria for the supersolubility of a group G.

Theorem 3.3 Let F be a saturated formation containing the class of all super-
soluble groups U . Then a group G ∈ F if and only if G has a normal subgroup
E such that G/E ∈ F and for every non-cyclic Sylow subgroup P of E, every
maximal subgroup of P having no supersoluble supplement in G or every cyclic
subgroup H of P with prime order or order 4 (if P is a non-abelian 2-group and
H * Z∞(G)) without a supersoluble supplement in G is weakly SS-quasinormal
in G.

Proof. We need to prove only the sufficiency. Suppose that the result is false
and consider a counterexample (G,E) for which |G||E| is minimal. Let p be the
smallest prime divisor of |E| and P a Sylow p-subgroup of E. Then

(1) E is p-nilpotent.
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We may assume that P is not cyclic. Since Z∞(G) ∩ E ≤ Z∞(E) and every
subgroup of E having no supersoluble supplement in E also has no supersoluble
supplement in G. By hypothesis and Lemma 2.5(1), we know that every maximal
subgroup of P having no supersoluble supplement in E or every cyclic subgroup H
of P with prime order or order 4 (if P is a non-abelian 2-group and H * Z∞(E))
without a supersoluble supplement in E is weakly SS-quasinormal in E. Thus
Corollary 3.2 implies that E is p-nilpotent.

(2) E = P is not cyclic.

By (1), E is p-nilpotent. Suppose that P < E and let T be a non-trivial normal
p-complement of E. Then T E G and from Lemma 2.5(3), we can easily deduce
that the hypothesis holds for G/T (with respect to E/T ). Hence G/T ∈ F by the
choice of G. This implies that the hypothesis is still true for (G, T ). Thus T = E
by the choice of (G,E), a contradiction. Hence P = E. Since G/E ∈ F , by [17,
Lemma 2.16] we may suppose that E is not cyclic.

(3) Every cyclic subgroup H of P with prime order or order 4 (if P is a non-
abelian 2-group and H * Z∞(G)) having no supersoluble supplement in G
is weakly SS-quasinormal in G.

Suppose that every maximal subgroup of P having no supersoluble supplement in
G is weakly SS-quasinormal in G. We first prove that P = GF is a minimal normal
subgroup of G. Indeed, let N be a minimal normal subgroup of G contained in P .
By Lemma 2.5, the hypothesis holds for G/N and so G/N ∈ F by the minimal
choice of G. This implies that N is the only minimal normal subgroup of G
contained in P and N * Φ(G). Let M be a maximal subgroup of G such that
G = [N ]M . Then P = P ∩NM = N(P ∩M). Since P ≤ F (G) ≤ CG(N), P ∩M
is normal in G and hence P ∩M = 1. It follows that P = N = GF is a minimal
normal subgroup of G and |P | > p. Let P1 be a maximal subgroup of P = N . If
P1 has a supersoluble supplement K in G, then PK = G and 1 6= P ∩ K E G.
Thus P ∩K = P and so G = K is supersoluble, which is a contradiction. Next,
we assume that every maximal subgroup P1 of P is weakly SS-quasinormal in G.
Then by hypothesis and Lemma 2.5(4), G has a normal subgroup T contained in
P such that P1T is s-permutable and P1 ∩ T is SS-quasinormal in G. Since P
is a minimal normal subgroup of G, T = 1 or T = P . If T = 1, then P1 = P1T
is s-permutable in G. If T = P , then P1 = P1 ∩ T is SS-quasinormal in G. By
Lemma 2.3, we can also conclude that P1 is s-permutable in G. By Lemma 2.1(4),
we have Op(G) ≤ NG(P1). This means that for any maximal subgroup P1 of P ,
we have |G : NG(P1)| = pa for some integer a. Let M1,M2, · · · ,Mt be the set
of all maximal subgroups of P . Then p divides t, which contradicts with [8, III,
8.5(d)].

(4) The final contradiction.
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By (3), we know that every cyclic subgroup H of P with prime order or
order 4 (if P is a non-abelian 2-group and H * Z∞(G)) having no supersoluble
supplement in G is weakly SS-quasinormal in G. By the choice of (G,E), we
know P = GF . Let M be any maximal subgroup of G not containing P , then
M/M ∩ P ∼= G/P ∈ F . Hence by Lemma 2.5, the hypothesis holds for M . Then
the minimal choice of G implies that M ∈ F . This shows that every maximal
subgroup of G not containing P belongs to F . Thus by [6, Theorem 3.4.2], the
following statements hold:

(i) P/Φ(P ) is a G-chief factor of P ;

(ii) P is a group of exponent p or exponent 4 (if p = 2 and P is non-abelian);

(iii) if P is abelian, then Φ(P ) = 1.

If every minimal subgroup of P/Φ(P ) is s-permutable in G/Φ(P ), then every
maximal subgroup of P/Φ(P ) is s-permutable in G/Φ(P ). With a similar argu-
ment as in the proof of Theorem 3.1 case 1, we can get a contradiction. Now we
choose X/Φ(P ) to be a minimal subgroup of P/Φ(P ) which is not s-permutable
in G/Φ(P ). Pick an x ∈ X\Φ(P ) and let L = 〈x〉, then |L| = p or 4. If L
has a supersoluble supplement K in G, then P = P ∩ LK = L(P ∩ K) and
(P ∩ K)Φ(P )/Φ(P ) E G/Φ(P ). If P ∩ K ≤ Φ(P ), then P = L is cyclic, which
contradicts (2). If P ∩K = P , then G = K is supersoluble, which is a contradic-
tion too. Thus by hypothesis either L ⊆ Z∞(G) or L is weakly SS-quasinormal
in G. If L ⊆ Z∞(G), then P ∩ Z∞(G) * Φ(P ) and so (P ∩ Z∞(G))Φ(P ) = P ,
i.e., P ≤ Z∞(G). Therefore, from (ii) we obtain that |P/Φ(P )| = p and so P
is a cyclic group, which contradicts with (2). Now suppose that L is weakly
SS-quasinormal in G. Since X/Φ(P ) is not s-permutable in G/Φ(P ), L is not
s-permutable in G. Thus by Lemma 2.5(4), there exists a non-identity normal
subgroup T of G contained in P such that LT is s-permutable and L ∩ T is
SS-quasinormal in G. Since L is not s-permutable in G, by Lemma 2.3 it is
clear that T 6= P . Hence TΦ(P ) 6= P , which implies that T ≤ Φ(P ). But then
X/Φ(P ) = LΦ(P )/Φ(P ) = LTΦ(P )/Φ(P ) is s-permutable in G/Φ(P ). This final
contradiction completes the proof of the theorem.

From Theorem 3.3, we know that:

Corollary 3.4 A finite group G is supersoluble if and only if G has a normal
subgroup E such that G/E is supersoluble and for every non-cyclic Sylow subgroup
P of E, at least one of the following holds:

(1) Every maximal subgroup of P either has a supersoluble supplement in G or
is weakly SS-quasinormal in G.

(2) Every cyclic subgroup H of P with prime order or order 4 (if P is a non-
abelian 2-group and H * Z∞(G)) either has a supersoluble supplement in G
or is weakly SS-quasinormal in G.
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Theorem 3.5 Let F be a saturated formation containing U . Then a group G ∈ F
if and only if G has a normal subgroup E such that G/E ∈ F and for every non-
cyclic Sylow subgroup P of the generalized Fitting subgroup F ∗(E) of E, every
maximal subgroup of P not having a supersoluble supplement in G or every cyclic
subgroup H of P with prime order or order 4 (if P is a non-abelian 2-group and
H * Z∞(G)) without a supersoluble supplement in G is weakly SS-quasinormal
in G.

Proof. The necessity is evident and we need to prove only the sufficiency. Assume
that the theorem is false and let (G,E) be a counterexample with |G||E| minimal.
Let F = F (E), p = minπ(F (E)) and P ∈ Sylp(F (E)). Then

(1) Each subgroup of F ∗(E) has no supersoluble supplement in G.

If some subgroup H of F ∗(E) has a supersoluble supplement in G, then F ∗(E) also
has a supersoluble supplement in G and so G/F ∗(E) is supersoluble. Thereby,
G/F ∗(E) belongs to F . Then Theorem 3.3 implies that G ∈ F . Thus, we may
assume that none of the subgroup of F ∗(E) has a supersoluble supplement in G.

(2) E is soluble, F ∗(E) = F and CE(F ) = CE(F ∗) ≤ F .

By (1) and Lemma 2.5(2), we know that for every non-cyclic Sylow subgroup P
of F ∗(E), every maximal subgroup of P or every cyclic subgroup H of P with
prime order or order 4 (if P is a non-abelian 2-group and H * Z∞(E)) is S-
embedded in E. Thus, we can deduce that E is soluble by [7, Theorem B]. Hence
F ∗(E) = F (E) = F . By [9, X, Theorem 13.11], we have CE(F ) = CE(F ∗) ≤ F .

(3) Let V/P = F (E/P ) and Q ∈ Sylq(V ), where q||V/P |. Then q 6= p and
either Q ≤ F or p > q and CQ(P ) = 1.

Since V/P is nilpotent and QP/P ∈ Sylq(V/P ), QP/P is a characteristic sub-
group of V/P and so QP E E. Thus q 6= p. By Theorem 3.3, we know QP is
supersoluble. Assume that q > p, then Q is normal in QP and so Q ≤ F = F (E).
If p > q, then p > 2 and F is a q

′
-group since p is the smallest prime divisor

of |F |. Now let U be a Sylow r-subgroup of F , where r 6= p. Then r 6= q and
so [U,Q] ≤ P . Assume that for some x ∈ Q we have x ∈ CE(P ). Since V/P
is nilpotent, by [5, V, Theorem 3.6] we know [U, 〈x〉] = [U, 〈x〉, 〈x〉] = 1 and so
x ∈ CE(F ). Since CE(F ) ≤ F by (2), CQ(P ) = 1.

(4) p > 2.

Assume that p = 2, then by (3) we have F ∗(E/P ) = F (E/P ) = F/P . Since
(G/P )/(E/P ) ∼= G/E ∈ F , by Lemma 2.5(3) we know that the hypothesis is
still true for (G/P, E/P ). Therefore, G/P ∈ F by induction. Hence G ∈ F by
Theorem 3.3, a contradiction.

(5) The final contradiction.



72 t. zhao, g. lu, c. lv

Let V/P = F (E/P ) and Q ∈ Sylq(V ), where q||V/P |. Then by (3), either Q ≤ F
or p > q and CQ(P ) = 1. In the second case, Q is cyclic by (4) and Lemma
2.8. Hence every Sylow subgroup of F ∗(E/P ) = F (E/P ) either is cyclic or has
the form QP/P , where Q is a Sylow subgroup of F ∗(E) = F . Thus by Lemma
2.5(3), we know for each non-cyclic Sylow subgroup RP/P of F ∗(E/P ), every
maximal subgroup of RP/P or every cyclic subgroup HP/P of RP/P with prime
order or order 4 (if R is a non-abelian 2-group and H * Z∞(G)) is weakly SS-
quasinormal in G/P . Therefore, G/P ∈ F by induction. It is clear that G/P
satisfies the hypothesis of the theorem. Since F ∗(P ) = P , by Theorem 3.3 we
have G ∈ F , as required.

From our Theorem 3.5, we can conclude that:

Corollary 3.6 A finite group G is supersoluble if and only if G has a normal
subgroup E such that G/E is supersoluble and for every non-cyclic Sylow subgroup
P of F ∗(E), at least one of the following holds:

(1) Every maximal subgroup of P either has a supersoluble supplement in G or
is weakly SS-quasinormal in G.

(2) Every cyclic subgroup H of P with prime order or order 4 (if P is a non-
abelian 2-group and H * Z∞(G)) either has a supersoluble supplement in G
or is weakly SS-quasinormal in G.

Remarks. Since all normal, quasinormal, s-permutable, c-normal, SS-quasinormal,
nearly s-normal [19] and S-embedded subgroups of G are all weakly SS-quasinormal
in G, our theorems 3.3 and 3.5 generalized many meaningful results.
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