
The U.S. National Football League Scheduling Problem
Bistra N. Dilkina and William S. Havens

Intelligent Systems Lab
Simon Fraser University

Burnaby, British Columbia
Canada V5A 1S6

and
Actenum Corp.

Vancouver, British Columbia
{bnd, havens}@cs.sfu.ca

Abstract

We describe the problem of scheduling the television
broadcasts of the U.S. National Football League (NFL).
Unlike traditional round-robin tournament scheduling,
the NFL problem involves assigning games to broad-
cast slots under various complex constraints while at-
tempting to satisfy a set of user preferences. As well,
a mixed-initiative functionality was required to allow
the user to control and assist in the scheduling process.
A prototype system was developed for the NFL which
produced schedules satisfying many of these constraints
and preferences. In this paper, we provide an overview
of the constraint solving methodology employed and the
implementation of the NFL prototype system.

Introduction
Sports league scheduling is very important for both profes-
sional and amateur sports alike. Obtaining good ”playable”
schedules under a myriad of league and logistics constraints
is extremely difficult yet essential to the success of the
league. Thus developing practical techniques for this prob-
lem is a very important research area.

Sports league scheduling is particularly interesting type
of constraint satisfaction problem (CSP) which has at-
tracted significant research interest (Henz 1999; Nemhauser
& Trick 1998). The CSP, in general, and sports scheduling,
in particular, are NP-hard requiring exponential computing
time in the size of the problem. Developing algorithms capa-
ble of solving large instances of these problems has proven
to be extremely difficult.

In this paper, we report on the research and development
of a prototype system (calledNFLSched) to solve a very
large and difficult sports league scheduling problem for the
U.S. National Football League (NFL). This problem differs
from the usual round-robin league scheduling in significant
ways. The NFL problem is very large comprising 32 teams
which play 256 games in a 17 week broadcast schedule.
Indeed, the matches (games) are already known ahead of
time by agreement between the teams and television broad-
cast networks. What must be scheduled is the assignment
of games to broadcast slots while satisfying a large number
of diverse constraints and maximizing a set of preferences.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Furthermore, it was desired to intimately involve the user
in the scheduling process. The NFL wants to be able to
”tweak” schedules during the scheduling process to obtain
preferred broadcasts of particular games in particular slots in
the schedule while continuing to satisfy the hard ”playabil-
ity” constraints. Thus the NFL problem is a mixed-initiative
constraint optimization problem.

The NFL scheduling system is required by the league’s
Broadcasting Department to produce their regular season
game schedules. The Broadcasting Department works with
the four major U.S. television networks (ABC, CBS, FOX
and ESPN) to obtain a broadcast schedule acceptable to all
parties. The NFL desired that the scheduling application be
able to (sub)optimally schedule professional football games
given multiple (and often conflicting) broadcast, physical
and fairness constraints. Additionally, the system must sup-
port building flexible network game packages and be able
to modify the rules and constraints as necessary to find pre-
ferred playable schedules which are acceptable to both the
NFL teams and the broadcast networks.

Previously, the league schedules were produced by a hu-
man expert. But the complexity of the problem has in-
creased (both in size and type of constraints) necessitating
automation. Earlier attempts at exhaustive backtrack search
for completing (and verifying) partial schedules were unsuc-
cessful. Thus the NFL requested proposals for developing a
new mixed-initiative league scheduling application. Of the
approximately forty respondents, two groups were selected
to build prototype applications. Our NFLSched application
was one of these two successful solutions.1 The application
was designed and implemented in a very short 10 week time
frame using a proprietary constraint programming environ-
ment called ReSolver developed by Actenum.

Our analysis is that the underlying CSP is critically con-
strained. Many of the constraints reflect the business re-
lationships between the NFL and the television networks.
These constraints are often mutually conflicting requiring
that “playable” solutions actually break a significant num-
ber of these constraints. Our approach to this problem has
been to exploit the mixed-initiative capabilities of ReSolver.
In particular, we have designed a system which involves the

1The other system was developed by a collaboration of Sengen
of Marlton, New Jersey and ILOG S.A. of Paris, France.

814 IAAI EMERGING APPLICATIONS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357223112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

user (human scheduler) directly in the scheduling process.
Both the user and the system work together to search for
playable solutions but always under user control. The user
can explore different solution possibilities, adding and re-
moving constraints and preferences as the search proceeds.
Thus schedules can be produced which include as many
desirable properties as possible while still being feasible
(playable).

In the remainder of this short paper, we describe the
NFL problem in more detail and characterize it as a mixed-
initiative constraint satisfaction problem with preferences.
Next we describe the constraint solving methodology used
to search for solutions to the problem. Some practical de-
tails of the NFLSched application are also provided includ-
ing the essential mixed-initiative (tweaking) functionality.
Finally, we conclude with the status of the prototype, the
lessons learned and the need for mixed-initiative tools like
NFLSched to assist users in finding good solutions to very
hard complexity problems.

Problem Description

The NFL league has two divisions: NFC and AFC of 16
teams each for a total of 32 teams. Each team plays 16
games during the season both within its division and across
divisions. So each team will play 8 home games and 8 away
games against the same 8 opponents. The actual pairings of
teams into games is decided before the scheduling begins.
There are a total of 256 games played across both divisions
in the full season. The season lasts 17 weeks with each team
playing at most once per week. Each team necessarily will
have a “bye” week once during the season which must occur
between weeks 3-10 of the season.

The four broadcast networks (CBS, FOX, ESPN, and
ABC) divide the games among their respective television
shows. CBS and FOX both purchase blocks of 128 games
each. Some of these are resold to the ESPN and ABC net-
works. The broadcast slots comprise Monday Night Foot-
ball (ABC), ESPN games, FOX/CBS Sunday Double Head-
ers, CBS Sunday and FOX Sunday games. The number of
games per slot varies from week to week depending on the
match-ups, geography and other constraints. For example,
there may be between 0 and 2 games broadcast by ESPN per
week while CBS may broadcast between 4 and 7 simulcast
regional games on any particular Sunday.

Constraint Satisfaction Problem Definition

The NFL league scheduling problem involves creating a
schedule such that a set of games is assigned to television
network timeslots with limited capacities within a 17 week
season. The NFL season is a combination of two types of
problems: constraint satisfaction and optimization. It in-
volves hard constraints, those that need to be fulfilled by
any schedule that would be acceptable, and soft constraints,
those desirable properties that not need be necessarily ful-
filled. Hence the most preferred solution will satisfy all hard
constraints and break the least possible number of soft con-
straints.

Formally defined, a Constraint Satisfaction Problem
(CSP), is a triple(V,D,C), whereV = {v1, ..., vn} is a
set of variables with corresponding finite domains of pos-
sible values for each variableD = {D1, ..., Dn} andC is
a set of k-ary hard constraints. A k-ary constraint defines
the allowed combinations of values for a subset of k vari-
ables(v1, ..., vk) from V . A solution to a CSP consists of
assigning a value to each variable so that all constraints are
satisfied.

The soft constraints, which arise in any real-life problem,
account for the quality of the solution. NFL has a number of
soft rules that bring penalty points to any solution that does
not satisfy them. Finding the best fulfillment of these rules
is an optimization problem.

The constraints defined by the NFL are complex, involv-
ing many varibles and over various characterstics (games,
teams, timeslots) of the schedule. In addition, in our analy-
sis they critically constrain the solution space. Hence, mod-
eling this problem adequately was very difficult. We consid-
ered several CSP models for the NFL Scheduling problem: a
grid of variables, the 32 teamsversusthe 17 weeks, assign-
ing the opponent away teams (the usual model for Round-
Robin schedules); a grid of the home teamsversusaway
teams, assigning the timeslots,et cetera. We note that there
are exactly 92 possible broadcasting timeslot types based on
the week, network and broadcast time combinations. Each
game needs to be assigned a timeslot. However, since the
broadcast rights to each game are predetermined by the NFL
ahead of time, each game can only be played in the times-
lots of the owning network, which are usually one times-
lot time per week such as the ESPN broadcast. Only the
doubleheader games of FOX and CBS can be played in two
different timeslots in a week. Thus, almost all games vari-
ables have 17 possble timeslot type assignments. In fact,
we exploit the fact that several games, such as the Monday
Night Football games, have fixed or almost fixed timeslots.
This reduces the research space, however, our estimate of its
size is still approximately1040. Since each game has the
home team and away team attributes, it was easy to express
constraints over teams by simply selecting the games that
involved these teams. In additional timeslot capacity con-
straints (such as CBS Sunday can show between 4 and 7
games in a week) were easily expressed over only the games
that could be played in the given timeslot type. This model
was selected because it compares to the other models in
search space size, however it provides for easier incorpora-
tion of the various types of constraints and avoids composite
values for variables.

Pre-Defined Constraints and Scoring Rules
The search for candidate solutions is guided by league-
specified constraints and scoring rules. Basically, the
scheduling constraints determine the playability of a candi-
date schedule, while the scoring rules quantify the quality of
the schedule.

Stadium Blocks
Stadium blocks are used to determine when each stadium
is available for home games: unavailable (hard); available

IAAI EMERGING APPLICATIONS 815

but other events make playing there undesirable (soft); the
stadium is available but other events may require the game
to be moved (swap). The stadium blocks on the home team
of a game determines when it can be played.

Home/Away Spacing
Home/away spacing constraints can be constructed to ensure
that all teams play a reasonable home/away pattern over the
course of the season. There are a number of home/away
spacing constraints including:

• Teams cannot play 3 consecutive home/away games dur-
ing weeks 1-5

• Teams cannot play 3 consecutive home/away games dur-
ing weeks 15-17

• Teams may play 1 set of 3 consecutive home/away games
during weeks 4-16, but the schedule will receive 1 penalty
point (Soft constraint)

• Teams must play at least 2 home/away games every 6
weeks

• Teams must play at least 4 home/away games every 10
weeks

• Teams cannot play 4 consecutive home/away games

Opponent Spacing
When teams play each other twice in a season, as is the case
for divisional opponents, the preference is for the two games
to be spaced reasonably far apart. Ideally, the games should
be at least 6 weeks apart with at least one game after the 8th
week of the season:

• Any two opponents may only play 1 game every 8 weeks
(at least 1 would have to be after week 8). If this constraint
is violated, the schedule receives 1 penalty point. (Soft
constraint)

• Any two opponents may only play 1 game every 3 weeks
(cannot be violated).

Shared Hometowns
For teams that share a stadium (New York Giants / New York
Jets), the schedule imposes constraints that the two teams
may not play at home on the same day.

In addition, for the teams that share a local viewing au-
dience (New York Giants / New York Jets, San Francisco
49ers / Oakland Raiders) the schedule ensures that the two
teams:

• Do not play at the same time

• Do not play on the same network (i.e. CBS or FOX) on
the same afternoon

Scheduling Strategy
The mixed-initiative paradigm involves the user in the solv-
ing process at several levels. The user can dynamically add
and remove new constraints to the problem description. For
example he may wish to enforce one of the preferences as

a hard constraint. However, a human user can easily over-
constrain the problem by adding additional constraints. Un-
fortunately most constructive methods do not support expla-
nations (Jussein & Lhomme 2002) and nogood learning but
are based on the tree search paradigm. Thus, such a method
would simply report a failure to find a solution without any
insight for the user about what went wrong.

Further, given the domain expertise in sport scheduling
which is hard to convey to the programmers or incorporate
in the CSP model, a user interaction during the search pro-
cess itself can greatly facilitate finding the most desirable
schedules (a property that cannot be fully grasped by the
formal preferences). However, constructive search does not
readily support dynamic constraint addition and retraction
during the search process. In addition, working with the
partial schedule produced during constructive search is hard
because of the hidden hard constraints over the remaining
unassigned variables.

All of these characteristics of the NFL problem called for
a local search solution which works on a full (although)
inconsistent assignment. In this environment, the user
could work together with the search algorithm to fix the in-
consistent parts of the schedule by manually (re)assigning
variables. We developed a new hybrid constraint solving
schema, calledsystematic local search(Havens & Dilk-
ina 2004), which retains some systematicity of constructive
search. Our method backtracks through a space of complete
but possibly inconsistent solutions while supporting the free-
dom to move arbitrarily under heuristic guidance.

There has been various recent research into hybrid search
schemes which combine desirable aspects of construc-
tive and local search methods (Freuder & Wallace 1992;
Ginsberg & McAllester 1994; Jussein & Lhomme 2002;
Lynce, Baptista, & Marques-Silva 2001; Mintonet al. 1990;
Morris 1993; Prestwich 2001). In the work reported here ex-
tends these methods. The scheme operates from a nearly
complete instantiation of values to variables (Ginsberg &
McAllester 1994; Prestwich 2001). Forward checking of
both assigned and unassigned variables is performed (Prest-
wich 2001). In this process we maintain a count of the num-
ber of constraints disallowing each domain value of every
variable. Thus reassignment of a variable only involves sub-
tracting the effects of the previous assignment and adding
the effects of the new assignment to all neighbour variables.
The hill-climbing gradient is the number of constraint vio-
lation. Using the minconflict heuristic (Mintonet al. 1990),
every variable chooses the value with the least constraint vi-
olations. This notion of a maximally consistent solution re-
laxes the requirement that the constructed partial solution
remain consistent (Freuder & Wallace 1992).

The drawback of local search methods is that they suf-
fer from local maxima and cycling. Different diversification
methods have been developed to avoid these undesirabe ef-
fects such as simulated annealing, tabu lists(Glover 1990),
random restart(Selman, Levesque, & Mitchell 1992), etc.
These work extremely well especially on problems with ad-
equate solution density.

Given that the NFL problem is critically constrained, we
desire not only diversification but also some amount of sys-

816 IAAI EMERGING APPLICATIONS

tematicity that will guarantee that large portion of the search
space is explored and that revisiting of old solutions is rare.
In our schema, systematicity is enforced using a nogood
cache of known inconsistent variable assignments (Ginsberg
& McAllester 1994; Havens 1997; Jussein & Lhomme 2002;
Stallman & Sussman 1977). These inconsistent variable as-
signments represent the violating constraint tuples at each
local maximum as explicit new constraints guaranteeing that
the local maximum will not be revisted in the future.

The nogoods provide the diversification needed to break
away from local maximum and at the same time the use
of randomized (arbitrary) backtracking (Gomes, Selman, &
Kautz 1998; Jussein & Lhomme 2002; Lynce, Baptista, &
Marques-Silva 2001; Yokoo 1994) preserves the freedom to
move for every assigned variable.

Our Maximal Constraint Solving schema searches heuris-
tically through a space of maximally consistent variable as-
signments while backtracking on assignments which are not
acceptable solutions. It discards the maintenance of a to-
tally consistent partial solution. Variables use value ordering
heuristics to choose amaximal assignmentfrom their live
domain of allowed values (i.e. assignments not prevented
by a known nogood). If no allowed values remain for some
variable then that variable induces a nogood and backtracks.
When all variables have chosen a maximal assignment, these
assignments constitute amaximal solution. Such a solution
is a mutual local maxima for every variable. If the maximal
solution does not exhibit full consistency then the solution
induces nogoods and again the system backtracks.

The systematic local search algorithm is listed in Figure 1.
Given a set of variables,V , and constraints,C, solve(V,C)
returns the first solution,α, whose assignments satisfy each
constraint inC. The algorithm operates as follows. In
the initial global assignment,α, (line 2) every variable is
unassigned. The loop beginning in line 3 is repeated un-
til every variable assignment inα is assigned the best value
(MAXIMAL) and is still allowed (in line 13). Then the solu-
tion, α, is returned in line 14. While every variable is not
MAXIMAL(line 4), a variable,x, is chosen via the variable
ordering heuristic,select(V). Then the variable,x, is as-
signed the best allowed domain element. However, if an
empty nogoodis ever derived (line 7) then the algorithm re-
turns failure indicating that no solution exists.

When every variable isMAXIMAL, the current global as-
signment,α, is a maximal solution but may not be a con-
sistent solution. Beginning in line 9, for every constraint,
c ∈ C, which is not satisfied, a new nogood,λ⊥, is derived
from c and added to the nogood cache,Γ in line 11.2

The use of nearly complete instantiation of variables, of
nogood recording and explanations allowed for the mixed
initiative paradigm in which the user could stop the engine
at any time and look at the current state of the solution and
constrain additionally the schedule thus guiding the engine
towards feasible solutions. In addition, once a playable so-
lution is found the user could modify it, and hence breaking

2Without an infinite nogood store, the algorithm stills remains
incomplete since it does not systematically cover the entire search
space.

1 functionsolve(V,C) {
2 α =all variables unassigned
3 repeat{
4 while (α 6= MAXIMAL) {
5 letx = select(V);
6 assign(x);
7 if empty nogood is derived return noSolution;
8 }
9 ∀c ∈ C s.t. c is inconsistent{
10 λ⊥ = failure(c);
11 addλ⊥ to Γ, the nogood store;
12 }
13 } until (α = MAXIMAL);
14 returnα;
15}

Figure 1: Thesolve algorithm finds a consistent solution of
the variablesV for the constraintsC.

some constraints, and then the search algorithm would try to
find the closest feasible solution incorporating the user deci-
sions by iteratively fixing the broken constraints by follow-
ing again the minconflict gradient. We provided a simple
integration of soft constraint in the prototype by allowing
users to dynamically add these constraints to the problem
and try to find feasible solutions to the further constrained
problem.

Application Description
Our solution consists of three (3) separate modules:

• The Database Module - used for storing scheduling data,
constraints, scoring rules, and completed solutions

• The User Interface Module - an easy to use GUI for defin-
ing any number of global or team-specific scheduling con-
straints

• The Intelligent Interactive Search (IIS) Module - an in-
teractive scheduling grid for generating, modifying or
’tweaking, viewing, and printing candidate schedules

Database Module (Schedules, Constraints, Scoring)
The database module, which is Oracle based, maintains all
data pertinent to the scheduling application. It is connected
to both the User Interface Module and the IIS Module and
contains four independent datasets: scheduling parameters,
pre-defined scheduling constraints and scoring rules, inter-
active constraints, and completed schedules.

Each of these datasets contains two uniquely defined in-
dexes, [Season] and [Scenario], which allow users to create
and isolate data for any number of “what-if” situations com-
plete with names, date/time stamps, security levels, etc.

Handling these datasets independently allows users to:

• Apply different scoring schemes to current/past schedules

• Interactively modify or “tweak” schedules

IAAI EMERGING APPLICATIONS 817

Figure 2: Application Architecture
.

User Interface Module

The schedule definition parameters are the datasets required
to build the scheduling framework. They include:

• Season data: Schedule weeks, bye allocation, etc.

• Team data: Team logos, divisional & conference align-
ments, home/away opponents, etc.

• Network data: Network slots, package requirements, al-
lowable game/slot combinations, etc.

In addition to tying together the Database Module and the
IIS Module, the User-Interface Module or “front-end” al-
lows users to:

• Construct the schedule definition requirements and data
required for a new season or “what if” scenario

• Modify schedule-definition parameters such as season
data, team data, and network data

• Modify scheduling constraints and scoring rules

Intelligent Interactive Search Module

The Intelligent Interactive Search (IIS) Module is the inter-
face between the user and the search engine. It allows users
to:

• Initiate the search for solutions

• Add aditional constraints

• Interact with the schedule during search

• Save/Restore schedules

It provided the user with different views of the schedule
that made it easier to assess it and interact with it. The views
are:

• Games: a grid of game cells including the home and away
team, the network and asigned timeslot

• Teams vs. Weeks: 2 grids for the 2 divisions respectively
of 16 teams vs. 17 weeks. Each cell included the oppo-
nent in the game played by the team in the given week
(or ’bye’), the status (home or away), the network, and
timeslot

• Networks vs. Weeks: the list of games owed by the par-
ticular network played in the given week

Pre-Defined vs. Interactive Constraints
Our proposed solution allows users to define two different
types of constraints: pre-defined and interactive. Essen-
tially, pre-defined constraints are used for general schedule
requirements, and are constructed using the User Interface
Module, while interactive constraints are used for tuning
schedules in the IIS Module. The scheduling constraints
and scoring rules datasets will be used to guide the schedul-
ing application towards playable and fair “initial” schedules,
which may then be tweaked by the user.

The User Interface Module allows users to construct any
number of pre-defined constraints and scoring rules that af-
fect stadium blocks, home/away spacing, opponent spacing,
game spacing (rest days), shared hometowns, network ap-
pearances, game parings, and general fairness rules.

In addition, many of these constraints and scoring rules
are “dialable”, meaning that they may be adjusted or turned
off for any or all of the teams, depending on the scheduling
scenario.

Intelligent Interactive Search system offers the user the
ability to explicitly specify the date or network of any match-
up (or range of match-ups) during the interactive process.
The details of these interactive constraints are stored in a
dataset and can be can be disabled at any time as desired.

Schedule Interaction
Our proposed solution allows users to interactively
add/remove/modify constraints as a way of exploring the
solution space to ultimately to find “better” schedules (keep-
ing in mind that better schedules do not always correspond
with lower scores). The search engine uses the existing so-
lution as a starting point and searches for solutions that ob-
serve the modified constraints.

Any of the following constraint changes may be made in-
teractively to help the user improve upon a found schedule:

• Changes to stadiums blocks or the forcing of bye weeks

• ”Manual” game assignments

• Global or team-specific changes to home/away spacing,
divisional opponent spacing, game pairing or fairness
constraints

• Changes to allowable game/slot options

Application Development and Evaluation
The appication was developed usingJava 2 1.3 with
SwingTM components usingBorland JBuilderTM 7 un-
der different operating systems(Sun Microsystems, Macin-
tosh and Windows). The CSP model and search sheme were
implemented inReSolverTM , a constraint programming li-
brary owed by Actenum Corporation.

818 IAAI EMERGING APPLICATIONS

The NFLschedprototype was build with extremely lim-
ited resources: only 10 weeks of development time, 5 pro-
grammers and a sports scheduling consultant3. The model-
ing of the problem and the definition of the constraints from
the NFL specifications required domain expertise that the
development team lacked in the beginning. The longest and
hardest development stage was designing the search algo-
rithm. In addition, an important part was designing mean-
ingful graphical interface that allowed the user to visualize
the schedule from different perspectives and conviniently in-
teract with it.

The system was able to find within 1 to 2 hour playable
schedules of preference quality around 30 when run on an
COMPAQ 1.6G MHz PC with 500MB RAM. However, we
estimate that when used by a domain expert it can find
schedules faster and of better quality. It was tested on the
season scheduling data from 2002 provided by NFL at the
start of the development period. Finally, the NFLSched ap-
plication was compared in performance to the other proto-
type system on the scheduling data for 2003 provided one
day in advance of the testing date. Both systems were run as
a batch solver and both were able to find feasible solutions
in about one hour. The mixed-initiative capabilities of our
system were not used in the trial test and the final contract
was awarded to our competitor.

The prototype developed provides easy interface for en-
tering the season data such as games selected, network
rights, hard constraints, etc. The mixed-initiative function-
ality and dynamic constraint support allows for easy exper-
imentation with different rules, preference scoring, for inti-
mate particiaption in the scheduling process and use of hu-
man exprtise. In particular, satisfying additional broadcast
preferences would have substantial monetary advantage.

Conclusion
In this short paper, we provided a specification of the NFL
scheduling problem, its model as a constraint optimization
problem, and the description of a prototype scheduling ap-
plication. Our solution used the constraint programming
paradigm applying techniques both from Artificial Intelli-
gence and Operations Research such as constraint propaga-
tion, nogood learning and inference, and local search.

The development of this prototype required the innova-
tion of a new hybrid search schema, described in detail in
(Havens & Dilkina 2004). In addition, it raised important
research issues that have not been currently adequately ad-
dressed such as mixing hard satisfaction constraints with
soft constraints or preferences. There has been recent work
on solving soft CSPs, but not for what one can call’hybrid’
CSP, which have the two distinct categories of constraints,
those that necessarily must hold and those that could be un-
preferably broken. We discovered that the mixed-initiative
paradigm calls for further understanding and research in the
area of explanations (Jussein & Lhomme 2002).

Despite the complexity and the unusual nature of this
sport scheduling problem, we were successful at building

3Rick Stone, President of Optimal Planning Solutions

a functional prototype that can find playable schedules for
the NFL league.

References
Freuder, E., and Wallace, R. 1992. Partial constraint satis-
faction. Artificial Intelligence58:21–70.
Ginsberg, M., and McAllester, D. 1994. Gsat and dy-
namic backtracking. Inproc. 4th Int. Conf. on Principles
of Knowledge Representation and Reasoning.
Glover, F. 1990. Tabu search: a tutorial.Interfaces20:74–
94.
Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization. Inproc. Fif-
teenth National Conference on Artificial Intelligence, 431–
437. AAAI Press.
Havens, W., and Dilkina, B. 2004. A hybrid scheme for
systematic local search. Inproc. Seventeenth Canadian
Conference on Artificial Intelligence.
Havens, W. 1997. Nogood caching for multiagent back-
track search. Inproc. AAAI-97 Constraints and Agents
Workshop.
Henz, M. 1999. Constraint based round robin tournament
planning. Inproc. Sixteenth International Conference on
Logic Programming, 545–557. MIT Press.
Jussein, N., and Lhomme, O. 2002. Local search with con-
straint propagation and conflict-based heuristics.Artificial
Intelligence139:21–45.
Lynce, I.; Baptista, L.; and Marques-Silva, J. P. 2001.
Stochastic systematic search algorithms for satisfiability. In
proc. LICS Workshop on Theory and Applications of Satis-
fiability Testing (LICS-SAT).
Minton, S.; Johnston, M.; Phillips, A.; and Laird, P. 1990.
Minimizing conflicts: a heuristic repair method for con-
straint satisfaction and scheduling problems.Artificial In-
telligence58:161–205.
Morris, P. 1993. The breakout method for escaping from
local minima. Inproc. AAAI-93, 40–45.
Nemhauser, G., and Trick, M. 1998. Scheduling a ma-
jor college basketball conference.Operations Research
46(1):1–8.
Prestwich, S. 2001. Local search and backtracking vs non-
systematic backtracking. Inproc. AAAI 2001 Fall Sympo-
sium on Using Uncertainty within Computation.
Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new
method for solving hard satisfiability problems. Inproc.
10th National Conf. on Artificial Intelligence, 440–446.
Stallman, R., and Sussman, G. 1977. Forward rea-
soning and dependency-directed backtracking in a system
for computer-aided circuit analysis.Artificial Intelligence
9:135–196.
Yokoo, M. 1994. Weak commitment search for solving
constraint satisfaction problems. Inproc. AAAI-94, 313–
318.

IAAI EMERGING APPLICATIONS 819

