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Lift, leverage, and conviction are three of the best commonly known interest measures for crisp association rules. All of them are
based on a comparison of observed support and the support that is expected if the antecedent and consequent part of the rule were
stochastically independent. The aim of this paper is to provide a correct definition of lift, leverage, and conviction measures for
fuzzy association rules and to study some of their interesting mathematical properties.

1. Introduction

Searching for association rules is a broadly discussed, devel-
oped, and accepted data mining technique [1, 2]. An asso-
ciation rule is an expression 𝑋 ⇀ 𝑌, where antecedent 𝑋
and consequent 𝑌 are conditions, the former usually in the
form of elementary conjunction and the latter being usually
atomic. Such rules are usually interpreted as the following
implicational statement: “if 𝑋 is satisfied then 𝑌 is true very
often too.”

Naturally, analysts are interested only in such rules that
are somehow interesting, unusual, or exceptional. To assess
rule interestingness objectively, there have been developed
many measures of rule interest or intensity. Among the most
essential, support and confidence are traditionally considered.
An objective of association rules mining is to find rules with
support and confidence above some user-defined thresholds.

Searching for association rules fits particularly well on
binary or categorical data and many have been written on
that topic [1–4]. For association analysis on numeric data, a
prior discretization is proposed, for example, by Srikant and
Agrawal [5]. Another alternative is to take an advantage of
fuzzy logic [6].

Theuse of fuzzy logic in connectionwith association rules
has been motivated by many authors (see e.g., [7] for recent
overview). Fuzzy association rules are appealing also because

of the use of vague linguistic terms such as “small” and “very
big” [8–11].

In this paper, we focus on three measures of rule intensity
that are all based on comparison between the observed sup-
port and the support that is expected under the assumption
of independence of the rule’s antecedent and consequent.
These measures are lift, leverage, and conviction. All of them
were initially developed for nonfuzzy (i.e., “crisp”) association
rules.

Lift was firstly described in [12] under its original name
“interest.” It was well studied for association rules on binary
data in [13, 14]. Lift is defined as a ratio of observed support
𝑋 ∧ 𝑌 to the support that is expected under the assumption
of independence of𝑋 and 𝑌.

On the other hand, leverage [15] measures the difference
of observed and expected supports. (Hence, it is very similar
to lift.)

Conviction [12] is defined as a ratio of expected and
observed support of𝑋∧¬𝑌. Although it is very similar to lift,
its properties aremore similar to confidence. Lallich et al. [16]
provide a nice overview of many other crisp rule measures.

As quite many have been written about these measures
for crisp association rules, not so much has been done with
respect to fuzzy rules. Unfortunately, simplicity of definitions
for crisp rules sometimes led to oversimplified definitions
for fuzzy rules. Some authors believe the generalization of
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those crisp measures for fuzzy data is as trivial as substituting
crisp terms with analogous fuzzy terminology inside of crisp-
case definitions; see, for example, [17, 18]. Unfortunately,
as discussed in this paper, such oversimplification may
lead to erroneous outputs. In order to preserve some nice
mathematical properties, one must take care of the type of
the 𝑡-norms being used.

In Section 2, a brief theoretical background for both
binary and fuzzy association rules is provided. Section 2.3
discusses shortly naive definitions of lift, leverage, and
conviction and shows a simple example where the rational
interpretations of these measures become broken. Before
providing corrected definitions in Section 4, an essential
notion of expected support is analysed in Section 3. Finally,
Section 5 concludes the paper with summarization of the
achieved goals and drawings of the possible directions of
future research.

2. Theoretical Background

2.1. Binary Association Rules. Let O := {𝑜
1
, 𝑜
2
, . . . , 𝑜

𝑛
}, 𝑛 >

0, be a finite set of objects and let A := {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
},

𝑚 > 0, be a finite set of attributes (features). Each attribute
can be considered as a logical predicate: 𝑎

𝑖
(𝑜
𝑗
) is true (or

false) accordingly to whether the 𝑖th attribute applies (or does
not apply) to object 𝑜

𝑗
. For a subset 𝑋 ⊆ A of attributes,

let us define a new predicate of a logical conjunction of the
attributes contained in𝑋 as follows:

𝑋(𝑜
𝑗
) :≡ ∀𝑎

𝑖
∈ 𝑋 : 𝑎

𝑖
(𝑜
𝑗
) . (1)

Moreover, let us define a negated predicate ¬𝑋(𝑜
𝑗
) as

follows:

¬𝑋(𝑜
𝑗
) :≡ ∃𝑎

𝑖
∈ 𝑋 : ¬𝑎

𝑖
(𝑜
𝑗
) . (2)

An association rule is a formula 𝑋 ⇀ 𝑌, where 𝑋 ⊂ A
is an antecedent, 𝑌 ⊂ A is a consequent, and 𝑋 ∩ 𝑌 =

0. (Typically, |𝑋| ≥ 1 and |𝑌| = 1.) Both 𝑋 and 𝑌 are
sometimes called itemsets. Please consider the following rule
as an example:

{tequila, salt} → {lemon} . (3)

The support and confidence are defined as follows [2, 19]:

supp (𝑋) := |{𝑜 ∈ O | 𝑋 (𝑜)}|

𝑛
, (4)

supp (𝑋 ⇀ 𝑌) :=
|{𝑜 ∈ O | 𝑋 (𝑜) ∧ 𝑌 (𝑜)}|

𝑛
, (5)

conf (𝑋 ⇀ 𝑌) :=
supp (𝑋 ⇀ 𝑌)

supp (𝑋)
, (6)

where 𝑛 = |O|. Evidently, supp(¬𝑋) = 1 − supp(𝑋).
IfO is a random sample, then observing 𝑜 ∈ O is a random

event. Then also a random event X may be defined on the
basis of the truth value of the predicate 𝑋(𝑜) and support
supp(𝑋) becomes an estimate of a probability𝑃(X).Then also
supp(¬𝑋) would correspond to the probability 𝑃(X), where

X is complementary event to X. Confidence conf(𝑋 ⇀ 𝑌)

would then be an estimate of conditional probability 𝑃(Y |

X).
Lift [12], leverage [15], and conviction [12] for binary data

are defined as follows:

lift (𝑋 ⇀ 𝑌) :=
supp (𝑋 ⇀ 𝑌)

supp (𝑋) ⋅ supp (𝑌)
=
conf (𝑋 ⇀ 𝑌)

supp (𝑌)
;

(7)

lever (𝑋 ⇀ 𝑌) := supp (𝑋 ⇀ 𝑌) − supp (𝑋) ⋅ supp (𝑌) ;
(8)

conv (𝑋 ⇀ 𝑌) :=
supp (𝑋) ⋅ supp (¬𝑌)
supp (𝑋 ⇀ ¬𝑌)

=
1 − supp (𝑌)

1 − conf (𝑋 ⇀ 𝑌)
.

(9)

If X and Y are stochastically independent, 𝑃(X ∧ Y) =

𝑃(X) ⋅ 𝑃(Y); that is, the expression supp(𝑋) ⋅ supp(𝑌) is an
estimation of support supp(𝑋 ⇀ 𝑌) under the assumption of
X and Y being independent.

Hence, lift lift(𝑋 ⇀ 𝑌) is a ratio of observed support
to the support that is expected under the assumption of
independence, leverage lever(𝑋 ⇀ 𝑌) is a difference of
observed and expected support, and conviction is a ratio
of the expected support of 𝑋 appearing without 𝑌 to the
observed support supp(𝑋 ⇀ ¬𝑌).

If X and Y are independent, lift(𝑋 ⇀ 𝑌) ≃ 1, conv(𝑋 ⇀

𝑌) ≃ 1, and lever(𝑋 ⇀ 𝑌) ≃ 0.The values of lift(𝑋 ⇀ 𝑌) > 1,
conv(𝑋 ⇀ 𝑌) > 1, and lever(𝑋 ⇀ 𝑌) > 0 indicate positive
relationship, while lift(𝑋 ⇀ 𝑌) < 1, conv(𝑋 ⇀ 𝑌) < 1, and
lever(𝑋 ⇀ 𝑌) < 0 indicate negative relationship.

2.2. Fuzzy Association Rules. For fuzzy association rules,
domain of each fuzzy attribute 𝑎 ∈ A is not binary (or “crisp”)
{0, 1} but graded (or “fuzzy”), that is, interval [0, 1]. That is,
for each 𝑎 ∈ A and 𝑜 ∈ O, 𝑎(𝑜) ∈ [0, 1]. For a subset
𝑋 ⊆ A of fuzzy attributes, we define a new predicate of a
logical conjunction (similarly to binary case (1)) by using a
𝑡-norm ⊗ as

𝑋(𝑜
𝑗
) :=⨂

𝑎∈𝑋

𝑎 (𝑜
𝑗
) . (10)

T-norm ⊗ is a generalized logical conjunction, that is,
a function [0, 1] × [0, 1] → [0, 1] which is associative,
commutative, and monotone increasing (in both places) and
which satisfies the boundary conditions𝛼⊗0 = 0 and𝛼⊗1 = 𝛼

for each𝛼 ∈ [0, 1]. Somewell-known examples of 𝑡-norms are
as follows:

(i) product 𝑡-norm: ⊗prod(𝛼, 𝛽) = 𝛼𝛽;
(ii) minimum 𝑡-norm: ⊗min(𝛼, 𝛽) = min(𝛼, 𝛽);
(iii) Łukasiewicz 𝑡-norm: ⊗Łuk(𝛼, 𝛽) = max(0, 𝛼 + 𝛽 − 1).

Negation of fuzzy predicate 𝑎 is often defined for any 𝑜 ∈
O as ¬𝑎(𝑜) := 1 − 𝑎(𝑜). Then, we can define (similarly to (2))
a negated predicate ¬𝑋 as follows:

¬𝑋(𝑜
𝑗
) := 1 − 𝑋 (𝑜

𝑗
) . (11)
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Let 𝑎 ∈ A, 𝑜 ∈ O, 𝑛 = |O|, 𝑛 > 0,𝑋,𝑌 ⊂ A,𝑋 ̸= 0, 𝑌 ̸= 0,
and𝑋 ∩ 𝑌 = 0. Several intensity measures may be defined as
follows:

fsupp (𝑋) :=
∑
𝑜∈O𝑋 (𝑜)

𝑛
,

fsupp (𝑋 ⇀ 𝑌) :=
∑
𝑜∈O (𝑋 (𝑜) ⊗ 𝑌 (𝑜))

𝑛
,

fconf (𝑋 ⇀ 𝑌) :=
fsupp (𝑋 ⇀ 𝑌)

fsupp (𝑋)
.

(12)

Convention 1. Throughout this text, we assume ⊗ is an arbi-
trary (but fixed) 𝑡-norm. Where it is important to explicitly
specify a concrete 𝑡-norm, say ⊗prod, we put ⊗prod in subscript
and write, for example, fsupp

⊗prod
(𝑋 ⇀ 𝑌) instead of

fsupp(𝑋 ⇀ 𝑌) or𝑋
⊗prod

(𝑜) instead of𝑋(𝑜).

Convention 2. For the sake of simplicity, we will sometimes
express a fuzzy attribute as a vector of membership degrees.
For instance, suppose 𝑎 ∈ A is a fuzzy attribute on a set of
objects O = {𝑜

1
, 𝑜
2
, 𝑜
3
}. Then, instead of writing 𝑎(𝑜

1
) := 0.3,

𝑎(𝑜
2
) := 0.9, and 𝑎(𝑜

3
) := 1, we will use a much concise form:

𝑎 := (0.3, 0.9, 1).

Example 1. Let 𝑎 := (𝑎
1
, 𝑎
2
, 𝑎
3
), 𝑏 := (𝑏

1
, 𝑏
2
, 𝑏
3
), and 𝑐 :=

(𝑐
1
, 𝑐
2
, 𝑐
3
) be fuzzy attributes. Then,

fsupp
⊗prod

({𝑎, 𝑏} ⇀ {𝑐}) =
1

3

3

∑

𝑖=1

(𝑎
𝑖
⊗prod𝑏𝑖⊗prod𝑐𝑖) . (13)

2.3. Naive Definition of Lift, Leverage, and Conviction for
Fuzzy Association Rules. A naive approach for introducing
lift, leverage, and conviction into the fuzzy association rules
framework is to use simply their definitions (7), (8), and
(9) for binary rules and replace binary support (4) and (5)
and confidence (6) with their fuzzy alternatives (12) as, for
example, in [17, 18]. Unfortunately, that approach works well
only for ⊗ being the product 𝑡-norm. As indicated in the
following experiment, using minimum or Łukasiewicz 𝑡-
norms may lead to erroneous interpretations.

Experiment 1. Two vectors 𝑋 and 𝑌 of size 𝑛 = 2000 were
randomly generated from the uniform distribution on the
interval [0, 1] so that they are stochastically independent.
Above-described naive versions of lift, leverage, and convic-
tion of a rule 𝑋 ⇀ 𝑌 were computed with using minimum,
product, and Łukasiewicz 𝑡-norms as⊗; see Table 1 for results.

As discussed in Section 2.1, stochastically independent
data are expected to result in lift and conviction being close
to 1 while leverage is expected to be close to 0. As can be seen,
this is the case only for product 𝑡-norm.

The values of naive lift and naive leverage wrongly indi-
cate positive (resp., negative) relationship, if the minimum
(resp., Łukasiewicz) 𝑡-norm is used. Paradoxically, naive
conviction indicates opposite sign of relationship.

Table 1: Comparison of lift, leverage, and conviction computed
with different 𝑡-norms on stochastically independent data generated
randomly from uniform distribution.

Naive lift Naive leverage Naive conviction
Łukasiewicz 𝑡-norm 0.675 −0.081 1.544
Product 𝑡-norm 1.012 0.003 1.012
Minimum 𝑡-norm 1.353 0.088 0.755

3. Expected Support of a Conjunction of
Fuzzy Attributes under the Assumption
of Independence

As indicated in Experiment 1 presented in Section 2.3 above,
naive lift, leverage, and conviction no more behave like their
alternatives for crisp data: they no more represent a ratio of
what is observed to what is expected under the assumption of
independence. To recover their definitions, independency of
fuzzy attributes must be treated correctly. Only then a proper
definitions of lift, leverage, and conviction can be formulated.

Given sets 𝑋 and 𝑌 of fuzzy attributes, what support of
𝑋 ∧ 𝑌 is expected if 𝑋 and 𝑌 are independent? Moreover,
what does independency of fuzzy attributes mean?

For the sake of simplicity, let us assume 𝑋 and 𝑌 are sets
containing a single fuzzy attribute; that is, |𝑋| = |𝑌| = 1. For
more complex cases, a new attribute can be created from the
set of fuzzy attributes by using (10).

IfO is a set of randomly selected objects, one can consider
membership values𝑋(𝑜) and𝑌(𝑜) as random variablesX and
Y and treat the independence of fuzzy attributes as stochastic
independence of random variables X and Y.

Two random variables X,Y are stochastically indepen-
dent, if the combined random variable (X,Y) has a joint
probability density as

𝑓X,Y (𝑥, 𝑦) = 𝑓X (𝑥) 𝑓Y (𝑦) . (14)

If X and Y are two independent random variables from
interval [0, 1], then

𝜎 (𝑥, 𝑦) :=
𝑥 ⊗ 𝑦

𝑛
(15)

is a random variable with probability density function
𝑓
𝜎
(𝑥, 𝑦) = 𝑓X,Y(𝑥, 𝑦).
By definition, expected value 𝐸[Z] of a random variable Z

is a weighted average of all possible values. More formally,

𝐸 [Z] = ∫

∞

−∞

𝑧𝑓Z (𝑧) d𝑧, (16)

where 𝑓Z is a probability density function of random variable
Z.

Similarly, an expected value 𝐸[𝜎(𝑥, 𝑦)] is a weighted
average of all possible (𝑥, 𝑦) pairs, namely,

𝐸 [𝜎 (𝑥, 𝑦)] = ∬

1

0

𝜎 (𝑥, 𝑦) 𝑓
𝜎
(𝑥, 𝑦) d𝑥 d𝑦. (17)

In real setting, 𝑓
𝜎
(𝑥, 𝑦) is unknown but we can estimate

its values from data (i.e., from objects O and their fuzzy
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attributes A) by using the assumption of independence (14)
as follows:

𝑓
𝜎
(𝑥, 𝑦) = 𝑓X (𝑥) 𝑓Y (𝑦) ≈

count
𝑋
(𝑥)

𝑛
⋅
count

𝑌
(𝑦)

𝑛
, (18)

where count
𝐴
(𝑎) is the number of objects fromO that belong

to𝐴 ∈ A with degree 𝑎; that is, count
𝐴
(𝑎) = |{𝑜 ∈ O | 𝐴(𝑜) =

𝑎}|.
Assuming 𝑥 ∈ {𝑋(𝑜) | 𝑜 ∈ O} and 𝑦 ∈ {𝑌(𝑜) | 𝑜 ∈ O}, we

obtain, from (15), (17), and (18),

𝐸 [𝜎 (𝑥, 𝑦)] ≈ ∬

1

0

(𝑥 ⊗ 𝑦) ⋅ count
𝑋
(𝑥) ⋅ count

𝑌
(𝑦)

𝑛3
d𝑥 d𝑦

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑗
)

𝑛3
.

(19)

Since X and Y are independent, 𝐸[fsupp(𝑋 ⇀ 𝑌)] = 𝑛 ⋅

𝐸[𝜎(𝑥, 𝑦)] and hence expected value of fsupp(𝑋 ⇀ 𝑌) is

𝐸 [fsupp (𝑋 ⇀ 𝑌)] ≈

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑗
)

𝑛2
. (20)

Now, we are ready to define notions of expected support
and expected confidence.

Definition 2. Let ⊗ be a 𝑡-norm, and let 𝑋,𝑌 be sets of fuzzy
attributes such that fsupp(𝑋) > 0 and 𝑛 > 0. Then, the
expected fuzzy support fŝupp(𝑋 ⇀ 𝑌) and the expected fuzzy
confidence fĉonf(𝑋 ⇀ 𝑌) are defined as follows:

fŝupp (𝑋 ⇀ 𝑌) :=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑗
)

𝑛2
,

fĉonf (𝑋 ⇀ 𝑌) :=
fŝupp (𝑋 ⇀ 𝑌)

fsupp (𝑋)
.

(21)

Proposition 3. Let𝑋,𝑌 be sets of fuzzy attributes. Then,
(1) if 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ 𝑌) > 0, then 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ 𝑌) > 0,
(2) 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ 𝑌) ≤ min (𝑓𝑠𝑢𝑝𝑝(𝑋), 𝑓𝑠𝑢𝑝𝑝(𝑌)).

Proof. (1) If fsupp(𝑋 ⇀ 𝑌) > 0, then
𝑛

∑

𝑖=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑖
) > 0 (22)

and hence
𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑗
) > 0. (23)

Therefore also fŝupp(𝑋 ⇀ 𝑌) > 0.
(2) For any 𝑡-norm ⊗ holds that 𝑋(𝑜

𝑖
) ⊗ 𝑌(𝑜

𝑗
) ≤ 𝑌(𝑜

𝑗
).

Therefore,
𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑗
)

𝑛2
≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑌 (𝑜
𝑗
)

𝑛2
= fsupp (𝑌) (24)

and similarly for fsupp(𝑋). Hence, fŝupp(𝑋 ⇀ 𝑌) ≤

min(fsupp(𝑋), fsupp(𝑌)).

Remark 4. Note that the reverse direction of the first impli-
cation of Proposition 3 is not generally true. For example, for
𝑋 := (1, 0) and 𝑌 := (0, 1), we have fŝupp(𝑋 ⇀ 𝑌) = 1/4 but
fsupp(𝑋 ⇀ 𝑌) = 0.

Proposition 5. Let𝑋,𝑌 be sets of fuzzy attributes and let ⊗ :=

⊗
𝑝𝑟𝑜𝑑

; that is, the product 𝑡-norm is being used as a conjunction.
Then,

𝑓𝑠𝑢𝑝𝑝 (𝑋 ⇀ 𝑌) = 𝑓𝑠𝑢𝑝𝑝 (𝑋) ⋅ 𝑓𝑠𝑢𝑝𝑝 (𝑌) . (25)

Proof. If ⊗ := ⊗prod, fŝupp(𝑋 ⇀ 𝑌) equals

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⋅ 𝑌 (𝑜

𝑗
)

𝑛2

=
1

𝑛2

𝑛

∑

𝑖=1

𝑋(𝑜
𝑖
)

𝑛

∑

𝑖=1

𝑌 (𝑜
𝑖
) = fsupp (𝑋) ⋅ fsupp (𝑌) .

(26)

Proposition 6. Let 𝑋,𝑌 be sets of fuzzy attributes and let
⊗ := ⊗min; that is, the minimum 𝑡-norm is being used as a
conjunction. Then,

𝑓𝑠𝑢𝑝𝑝 (𝑋) ⋅ 𝑓𝑠𝑢𝑝𝑝 (𝑋) ≤ 𝑓𝑠𝑢𝑝𝑝 (𝑋 ⇀ 𝑌)

≤ 𝑓𝑠𝑢𝑝𝑝 (𝑋) ⊗min𝑓𝑠𝑢𝑝𝑝 (𝑌) .
(27)

Proof. Let ⊗ := ⊗min.The first inequality follows from the fact
that ⊗min(𝑥, 𝑦) ≥ 𝑥 ⋅ 𝑦 as

fŝupp (𝑋 ⇀ 𝑌) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗min𝑌 (𝑜𝑗)

𝑛2

≥

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⋅ 𝑌 (𝑜

𝑗
)

𝑛2

= fsupp (𝑋) ⋅ fsupp (𝑌) .

(28)

The second inequality follows directly from Proposition 3.

Proposition 7. Let 𝑋,𝑌 be sets of fuzzy attributes and let
⊗ := ⊗Łuk; that is, the Łukasiewicz 𝑡-norm is being used as a
conjunction. Then,

𝑓𝑠𝑢𝑝𝑝 (𝑋) ⊗Łuk𝑓𝑠𝑢𝑝𝑝 (𝑌) ≤ 𝑓𝑠𝑢𝑝𝑝 (𝑋 ⇀ 𝑌)

≤ 𝑓𝑠𝑢𝑝𝑝 (𝑋) ⋅ 𝑓𝑠𝑢𝑝𝑝 (𝑌) .

(29)

Proof. Let ⊗ := ⊗Łuk, 𝑠𝑋 := fsupp(𝑋), and 𝑠
𝑌
:= fsupp(𝑌). To

prove the first inequality, it suffices to prove

fŝupp (𝑋 ⇀ 𝑌) ≥ max (0, 𝑠
𝑋
+ 𝑠
𝑌
− 1) (30)

which is obvious for 𝑠
𝑋
+ 𝑠
𝑌
≤ 1. Let us therefore assume

𝑠
𝑋
+ 𝑠
𝑌
> 1; then, (30) can be rewritten as

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗Łuk𝑌 (𝑜𝑗)

𝑛2
≥ 𝑠
𝑋
+ 𝑠
𝑌
− 1. (31)
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Then,
𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗Łuk𝑌 (𝑜𝑗)

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(𝑋 (𝑜
𝑖
) + 𝑌 (𝑜

𝑗
)) −∑

∀𝑘

(𝑡
𝑘
) − |𝑟| ,

(32)

where 𝑡 is a sequence of numbers (𝑋(𝑜
𝑖
) + 𝑌(𝑜

𝑗
) | 𝑋(𝑜

𝑖
) +

𝑌(𝑜
𝑗
) < 1) and 𝑟 = {(𝑖, 𝑗) | 𝑋(𝑜

𝑖
) + 𝑌(𝑜

𝑗
) ≥ 1}, for

𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. Since |𝑡| + |𝑟| = 𝑛
2 and each 𝑡

𝑘
< 1, we

can immediately see that

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗Łuk𝑌 (𝑜𝑗)

≥

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(𝑋 (𝑜
𝑖
) + 𝑌 (𝑜

𝑗
)) − 𝑛

2

= 𝑛
2
𝑠
𝑋
+ 𝑛
2
𝑠
𝑌
− 𝑛
2
= 𝑛
2
(𝑠
𝑋
+ 𝑠
𝑌
− 1) ;

(33)

hence, (30) holds.
The second inequality follows from ⊗Łuk(𝑥, 𝑦) ≤ 𝑥 ⋅ 𝑦

because then we have

fŝupp (𝑋 ⇀ 𝑌) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗Łuk𝑌 (𝑜𝑗)

𝑛2

≤

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⋅ 𝑌 (𝑜

𝑗
)

𝑛2
= 𝑠
𝑋
⋅ 𝑠
𝑌
.

(34)

4. Correct Definition of Lift, Leverage, and
Conviction for Fuzzy Association Rules

Now, we are ready to provide a correct definition of lift, lever-
age, and conviction in the framework of fuzzy association
rules.

Definition 8. Let 𝑋,𝑌 be sets of fuzzy attributes with 𝑛 :=

|O| > 0. Then, lift, leverage, and conviction of a fuzzy
association rule𝑋 ⇀ 𝑌 are defined as follows:

flift (𝑋 ⇀ 𝑌) :=
fsupp (𝑋 ⇀ 𝑌)

fŝupp (𝑋 ⇀ 𝑌)
;

flever (𝑋 ⇀ 𝑌) := fsupp (𝑋 ⇀ 𝑌) − fŝupp (𝑋 ⇀ 𝑌) ;

fconv (𝑋 ⇀ 𝑌) :=
fŝupp (𝑋 ⇀ ¬𝑌)

fsupp (𝑋 ⇀ ¬𝑌)
.

(35)

Let us now study some interesting properties of the newly
defined notions.

Proposition 9. Let 𝑋,𝑌 be sets of fuzzy attributes. Then,

(1) 𝑓𝑙𝑖𝑓𝑡(𝑋 ⇀ 𝑌) = 𝑓𝑙𝑖𝑓𝑡(𝑌 ⇀ 𝑋);

(2) 𝑓𝑙𝑖𝑓𝑡(𝑋 ⇀ 𝑌) = 𝑓𝑐𝑜𝑛𝑓(𝑋 ⇀ 𝑌)/𝑓𝑐𝑜𝑛𝑓(𝑋 ⇀ 𝑌);
(3) 0 ≤ 𝑓𝑙𝑖𝑓𝑡(𝑋 ⇀ 𝑌) ≤ 𝑛;
(4) if 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ 𝑌) > 0, then 𝑓𝑙𝑖𝑓𝑡(𝑋 ⇀ 𝑌) > 0.

Proof. (1) and (2) directly follow from the definitions and
from the fact that 𝑡-norms are commutative.

(3) Since the membership degrees are defined on interval
[0, 1], their sums cannot be negative either. Hence, flift(𝑋 ⇀

𝑌) ≥ 0. Next, assume to the contrary that flift(𝑋 ⇀ 𝑌) > 𝑛 as
follows:

flift (𝑋 ⇀ 𝑌) = 𝑛
∑
𝑛

𝑖=1
𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑖
)

∑
𝑛

𝑖=1
∑
𝑛

𝑗=1
𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑗
)

> 𝑛; (36)

therefore,
𝑛

∑

𝑖=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑖
) >

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑋(𝑜
𝑖
) ⊗ 𝑌 (𝑜

𝑗
) , (37)

which is a contradiction.
(4) If fsupp(𝑋 ⇀ 𝑌) > 0, then, from Proposition 3, we

know that also fŝupp(𝑋 ⇀ 𝑌) > 0. Therefore, flift(𝑋 ⇀ 𝑌)

exists and is greater than 0.

Proposition 10. Let𝑋,𝑌 be sets of fuzzy attributes. Then,

(1) 𝑓𝑙𝑒V𝑒𝑟(𝑋 ⇀ 𝑌) = 𝑓𝑙𝑒V𝑒𝑟(𝑌 ⇀ 𝑋),
(2) 𝑓𝑙𝑒V𝑒𝑟(𝑋 ⇀ 𝑌) = 𝑓𝑠𝑢𝑝𝑝(𝑋)(𝑓𝑐𝑜𝑛𝑓(𝑋 ⇀ 𝑌) −

𝑓𝑐𝑜𝑛𝑓(𝑋 ⇀ 𝑌)),
(3) 1/𝑛− 1 ≤ 𝑓𝑙𝑒V𝑒𝑟(𝑋 ⇀ 𝑌) ≤ 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ 𝑌)(1− 1/𝑛).

Proof. (1) and (2) directly follow from the definitions and
from the fact that 𝑡-norms are commutative.

(3) Let 𝑢 := ∑
∀𝑖
𝑋(𝑜
𝑖
) ⊗ 𝑌(𝑜

𝑖
) and 𝑟 := ∑

∀𝑖
∑
∀𝑗 ̸=𝑖

𝑋(𝑜
𝑖
) ⊗

𝑌(𝑜
𝑗
). Evidently, fsupp(𝑋 ⇀ 𝑌) = 𝑢/𝑛 and fŝupp(𝑋 ⇀ 𝑌) =

(𝑢+𝑟)/𝑛
2.Then, flever(𝑋 ⇀ 𝑌) = 𝑢/𝑛−(𝑢+𝑟)/𝑛

2. Obviously,
0 ≤ 𝑢 ≤ 𝑛 and 0 ≤ 𝑟 ≤ 𝑛

2
− 𝑛. Therefore,

−
𝑛
2
− 𝑛

𝑛2
=
1

𝑛
− 1

≤ flever (𝑋 ⇀ 𝑌) ≤
𝑢

𝑛
−
𝑢

𝑛2

= fsupp (𝑋 ⇀ 𝑌) (1 −
1

𝑛
) .

(38)

Proposition 11. Let 𝑋,𝑌 be sets of fuzzy attributes. Then,

(1) 𝑓𝑐𝑜𝑛V(𝑋 ⇀ 𝑌) = 1/𝑓𝑙𝑖𝑓𝑡(𝑋 ⇀ ¬𝑌);
(2) 𝑓𝑐𝑜𝑛V(𝑋 ⇀ 𝑌) = 𝑓𝑐𝑜𝑛V(¬𝑌 ⇀ ¬𝑋);

(3) 𝑓𝑐𝑜𝑛V(𝑋 ⇀ 𝑌) = 𝑓𝑐𝑜𝑛𝑓(𝑋 ⇀ ¬𝑌)/𝑓𝑐𝑜𝑛𝑓(𝑋 ⇀

¬𝑌);
(4) 1/𝑛 ≤ 𝑓𝑐𝑜𝑛V(𝑋 ⇀ 𝑌).

Proof. Everything directly follows from Definition 8 and
Proposition 9.
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Corollary 12. Let 𝑋,𝑌 be sets of fuzzy attributes and let ⊗ :=

⊗
𝑝𝑟𝑜𝑑

; that is, the product 𝑡-norm is being used as a conjunction.
Then,

𝑓𝑙𝑖𝑓𝑡(𝑋⇀𝑌)=
𝑓𝑠𝑢𝑝𝑝 (𝑋 ⇀ 𝑌)

𝑓𝑠𝑢𝑝𝑝 (𝑋) ⋅ 𝑓𝑠𝑢𝑝𝑝 (𝑌)
=
𝑓𝑐𝑜𝑛𝑓 (𝑋 ⇀ 𝑌)

𝑓𝑠𝑢𝑝𝑝 (𝑌)
;

𝑓𝑙𝑒V𝑒𝑟 (𝑋⇀𝑌)=𝑓𝑠𝑢𝑝𝑝 (𝑋 ⇀ 𝑌)−𝑓𝑠𝑢𝑝𝑝 (𝑋) ⋅ 𝑓𝑠𝑢𝑝𝑝 (𝑌) ;

𝑓𝑐𝑜𝑛V (𝑋 ⇀ 𝑌) =
𝑓𝑠𝑢𝑝𝑝 (𝑋) ⋅ 𝑓𝑠𝑢𝑝𝑝 (¬𝑌)

𝑓𝑠𝑢𝑝𝑝 (𝑋 ⇀ ¬𝑌)

=
1 − 𝑓𝑠𝑢𝑝𝑝 (𝑌)

1 − 𝑓𝑐𝑜𝑛𝑓 (𝑋 ⇀ 𝑌)
.

(39)

Proof. Everything directly follows from Definitions 2 and 8,
from Proposition 5, and from the fact that fsupp(¬𝑌) = 1 −

fsupp(𝑌).

Corollary 12 copies properties that are well known for
crisp variants of lift, leverage, and conviction. In practice,
the use of these equations is much more convenient than
the original ones from Definition 8. However, note that
Corollary 12 holds only if product 𝑡-norm ⊗prod is used. For
other 𝑡-norms such as minimum ⊗min or Łukasiewicz ⊗Łuk,
Definition 8 must not be oversimplified that way. See the
subsequent corollaries for more details.

Corollary 13. Let 𝑋,𝑌 be sets of fuzzy attributes and let
⊗ := ⊗min; that is, the minimum 𝑡-norm is being used as a
conjunction. Then,

𝑠
𝑋𝑌

𝑠
𝑋
⊗min𝑠𝑌

≤ 𝑓𝑙𝑖𝑓𝑡 (𝑋 ⇀ 𝑌) ≤
𝑠
𝑋𝑌

𝑠
𝑋
⋅ 𝑠
𝑌

,

𝑠
𝑋𝑌

− 𝑠
𝑋
⊗min𝑠𝑌 ≤ 𝑓𝑙𝑒V𝑒𝑟 (𝑋 ⇀ 𝑌) ≤ 𝑠

𝑋𝑌
− 𝑠
𝑋
⋅ 𝑠
𝑌
,

𝑠
𝑋
⋅ 𝑠
𝑌

𝑠
𝑋𝑌

≤ 𝑓𝑐𝑜𝑛V (𝑋 ⇀ 𝑌) ≤
𝑠
𝑋
⊗min𝑠𝑌
𝑠
𝑋𝑌

,

(40)

where 𝑠
𝑋
:= 𝑓𝑠𝑢𝑝𝑝(𝑋), 𝑠

𝑌
:= 𝑓𝑠𝑢𝑝𝑝(𝑌), 𝑠

𝑌
:= 𝑓𝑠𝑢𝑝𝑝(¬𝑌),

𝑠
𝑋𝑌

:= 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ 𝑌), and 𝑠
𝑋𝑌

:= 𝑓𝑠𝑢𝑝𝑝(𝑋¬𝑌).

Proof. Everything directly follows from Definitions 2 and 8
and from Propositions 6 and 11.

Corollary 14. Let 𝑋,𝑌 be sets of fuzzy attributes and let
⊗ := ⊗Łuk; that is, the Łukasiewicz 𝑡-norm is being used as a
conjunction. Then,

𝑠
𝑋𝑌

𝑠
𝑋
⋅ 𝑠
𝑌

≤ 𝑓𝑙𝑖𝑓𝑡 (𝑋 ⇀ 𝑌) ≤
𝑠
𝑋𝑌

𝑠
𝑋
⊗Łuk𝑠𝑌

;

𝑠
𝑋𝑌

− 𝑠
𝑋
⋅ 𝑠
𝑌
≤ 𝑓𝑙𝑒V𝑒𝑟 (𝑋 ⇀ 𝑌) ≤ 𝑠

𝑋𝑌
− 𝑠
𝑋
⊗Łuk𝑠𝑌;

𝑠
𝑋
⊗Łuk𝑠𝑌
𝑠
𝑋𝑌

≤ 𝑓𝑐𝑜𝑛V (𝑋 ⇀ 𝑌) ≤
𝑠
𝑋
⋅ 𝑠
𝑌

𝑠
𝑋𝑌

,

(41)

where 𝑠
𝑋
:= 𝑓𝑠𝑢𝑝𝑝(𝑋), 𝑠

𝑌
:= 𝑓𝑠𝑢𝑝𝑝(𝑌), 𝑠

𝑌
:= 𝑓𝑠𝑢𝑝𝑝(¬𝑌),

𝑠
𝑋𝑌

:= 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ 𝑌), and 𝑠
𝑋𝑌

:= 𝑓𝑠𝑢𝑝𝑝(𝑋 ⇀ ¬𝑌).

Table 2: Comparison of lift, leverage, and conviction computed
with different 𝑡-norms on stochastically independent data generated
randomly from uniform distribution.

Naive lift Naive leverage Naive conviction
Łukasiewicz 𝑡-norm 1.022 0.004 1.021
Product 𝑡-norm 1.012 0.003 1.012
Minimum 𝑡-norm 1.010 0.003 1.011

Proof. Everything directly follows from Definitions 2 and 8
and from Propositions 7 and 11.

Experiment 2. The same data as in Experiment 1 were pro-
cessed accordingly to correct definitions of lift, leverage, and
conviction (see Definition 8). The results can be found in
Table 2. Since the data are randomly generated from uniform
distribution, they are stochastically independent; hence, lift
and conviction should be close to 1 and lift should be close to
0 regardless of 𝑡-norm being used. As one can see, the results
in Table 2 are perfectly in compliance with our expectations.

5. Conclusion

Lift is a ratio of observed support (resp., confidence) to
the support (resp., confidence) that is expected under the
assumption of independence. Leverage is similar to lift, since
it is a difference between observed and expected support.
Conviction is often treated as an alternative to confidence;
nevertheless, it is defined on the basis of observed and
expected support too.

In this paper, a correct definition of lift, leverage, and
conviction for fuzzy data was provided. It should be stressed
here that there already exist some research papers that use
incorrect (a.k.a. “naive”) definition of fuzzy lift (e.g., [18]) that
is also discussed here.

The naive definition does not preserve interpretation of
positive/negative relationship. For crisp lift and conviction
(resp., leverage), the stochastically independent attributes 𝑋
and 𝑌 yield lift(𝑋 ⇀ 𝑌) ≈ 1, conv(𝑋 ⇀ 𝑌) ≈ 1, and
lever(𝑋 ⇀ 𝑌) ≈ 0. As shown in Experiment 1, this is no
more the case for naive definitions of these measures. On
the other hand, Experiment 2 shows that correct definitions
of lift, leverage, and conviction again recover that feature for
fuzzy data.

All the lift, leverage, and conviction definitions are similar
to their “crisp” alternatives (i.e., definitions for binary data) if
the 𝑡-norm being used is the product ⊗prod. For Łukasiewicz
⊗Łuk and minimum ⊗min 𝑡-norms, a more complicated com-
putation takes place.

In [20], an algorithm was developed in for fast evaluation
of fuzzy lift. A future research will therefore address improve-
ments of association rules search algorithms by introducing
fast computations of other measures, adding pruning heuris-
tics based on boundary conditions provided by Corollaries 13
and 14. Also, other interestmeasuresmay be studied and their
applicability to fuzzy rules may be considered.
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