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1. Introduction 

Osteoarthritis (OA) is characterised by progressive degenerative damage to articular 
cartilage, but ultimately the disease affects the whole joint, with important implications for 
the affected limb and the entire body (Martel-Pelletier and Pelletier, 2010; Edmonds, 2009).  
There has been an ongoing debate regarding the origins of OA, and specifically whether it 
initiates in the bone or the cartilage. The debate is somewhat artificial because it assumes 
that the answer must be one or the other of these possibilities. More likely, OA has multiple 
etiologies, which converge to produce the recognized manifestations of joint pain and 
stiffness and degeneration of articular cartilage. Genetic and environmental risk factors for 
OA, such as increased weight, female sex, joint dysplasias and malalignment, and injury, 
clearly contribute to the establishment and progression of this condition (Felson, 1988). 
However, it is most important to consider all possibilities for the underlying cause(s) for OA 
because our current level of understanding has failed to produce treatments for this 
condition that offer much more than palliation, with many sufferers proceeding to joint 
replacement in end stage disease.  
There are well described changes that are observed in both articular cartilage and 

subchondral bone in OA (Martel-Pelletier and Pelletier, 2010; Edmonds, 2009; Goldring and 

Goldring, 2010; Kwan et al., 2010). Changes in the bone include sclerotic changes, typified 

by increased subchondral plate thickness and osteophyte formation, and the development of 

bone marrow lesions that can be visualized by MR imaging, and which seem to precede, 

temporally and spatially, bone cysts in the subchondral compartment (Tanamas et al., 2010). 

The subchondral bone does much more than provide a substrate on which the articular 

cartilage sits. While it does give support to the cartilage, it also offers complementarity of 

shape to the opposite side of the articulation, with important consequences for the joint 

when  this congruency is lost. In addition, the predominantly trabecular structure of the 

subchondral bone gives compliance and shock absorption to the joint (Madry et al., 2010). It 

was thought that the sclerotic changes in the subchondral bone in OA made it stiffer and 

less compliant, resulting in increased loading of the cartilage (Radin et al., 1982) but later 

work showed that the bone in OA may actually be less mineralised and therefore less stiff 

(Day et al., 2001). The price paid for the shock absorption role of subchondral bone is the 

production of damage within the bone matrix by repeated loading. This bone matrix 

damage is repaired by bone turnover and remodeling, which are highly developed 

functionalities of bone cells: osteocytes to detect the damage, osteoclasts to remove the 

damage and osteoblasts to replace sites of damage with healthy new bone (Eriksen, 2010). A 
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characteristic of OA is that the process of subchondral remodeling is increased (Tat et al., 

2010), as visualized, for example, with bone scintigraphy (Dieppe et al., 1993). The 

subchondral compartment also carries essential infrastructure for the joint: it has a rich 

nervous supply, consistent with it being a major source of pain in joint pathology such as 

OA, and abundant vasculature, suggesting a significant negative impact on joint health if 

blood supply to this site is reduced. 

2. Bone structure as a cause of OA 

2.1 Bone micro-architecture in OA 
Changes in the microstructure of bone in OA, particularly the subchondral plate and the 

trabecular bone, have been well described (Madry et al., 2010; Fazzalari and Parkinson, 1998, 

Shen et al, 2009, Blain et al., 2008). In human OA subjects, changes consistently include 

thicker trabeculae and a higher trabecular BV/TV than for normal or osteoporotic 

subchondral bone. In severe OA, a reduced hardness of trabecular bone from the femoral 

head, compared with normal subjects, was found (Dall’Ara et al., 2011). All these changes 

have been measured in bone taken at late stage disease, at which time they may relate to the 

skeleton broadly because they have been found in bone from the inter-trochanteric region of 

the proximal femur, which is separated by several centimeters from the affected joint 

(Kumarasinge et al., 2010), and in bone from the iliac crest. Nevertheless, it is not known 

when in human disease these changes appear and whether they are in some way causative 

of the disease process or simply describe it. Animal models for the most part show that 

changes in the subchondral bone parallel cartilage degradation (for example, Moodie et al., 

2011). A recent comprehensive study by Stok et al. used longitudinal high resolution 

imaging to compare over time the joints of two mouse strains, one which spontaneously 

develops OA of the knee, and one which does not (Stok et al., 2009). The susceptible mice 

developed more trabecular bone, in a region specific manner, and particularly in the tibial 

compartment, in parallel with arthritic changes in the articular cartilage. Even in this very 

comprehensive study, the authors were unable to assign initiation of disease to either bone 

or cartilage.  

2.2 Bone shape changes leading to OA 
It is clear that shape deformities in bone can lead to OA in some joints, most obviously and 
commonly the hip and knee. There are a large number of ways in which bone shape can 
become sub-optimal for joint articulation and load bearing. These can be either congenital, 
developmental, or due to disease or fracture. Examples include malalignment of the knee 
(Hunter et al., 2009a) and the dysplastic hip, whether this occurs as a result of perinatal 
dislocation or congenitally incorrect morphology of the acetabulum or femoral head. 
Untreated hip dysplasia can manifest as joint laxity or impingement and decreased joint 
range of motion, and can result in degenerative changes, often accompanied with pain, and 
in OA at an early age (Mechlenburg, 2008). Genetics are likely to play a major role in OA 
that has bone deformity as its underlying cause. Waarsing et al. (2011a) have reported in 
abstract on the changes in femoral shape that occur across the lifetime of rats. The 
implications of their data are that deformity can develop over time, driven by genes or 
environment of interaction between these. Indeed, in recently published work from the 
same group, a range of shape ‘modes’ are described for the proximal femur, several of 
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which predispose to OA, but only in carriers of susceptibility alleles of genes that associate 
with OA (Waarsing et al., 2011b). In human subjects, it was shown that the shape of the 
proximal femur, in particular the relative size of the femoral head and neck, was associated 
with the risk of OA (Lynch et al., 2009). Diseases such as Paget’s disease of bone, or 
deficiency of factors essential for skeletal development and health, such as in vitamin D-
dependent Rickets, can also cause bone deformities and malalignment of bones that alter the 
biomechanics of joints and lead to OA (Ralston, 2008). Finally, fractures that involve 
articular cartilage can destroy the congruency of the joint, leading to the development of 
OA. This is typically seen in pelvic fractures that involve the acetabulum and in tibial 
plateau fractures when good reduction of the fracture has not been achieved (Honkonen, 
1995). All of these shape changes alter the biomechanics of joints, which is then transduced 
in ways that are still poorly understood into cellular and biochemical changes that lead to 
inflammation and eventually cartilage loss.  

3. Differential gene expression in OA bone 

In addition to structural changes in bone in OA, gene expression in bone from OA 
individuals is quite different from that in age and sex-matched controls or osteoporotic 
individuals. Taking RNA from trabecular bone at the intertrochanteric region of the femur, a 
site distal from the articular surface of the femur, Kuliwaba et al. (2000) showed that IL-6 
and IL-11 mRNA were significantly less abundant in an OA group than in an age-matched 
control group. Osteocalcin mRNA expression was significantly greater in OA and increased 
significantly with age in the OA group but not in controls. Hopwood et al. (2005, 2007) 
performed gene microarray analysis on bone from the same region of the femur and 
identified a large number of differentially expressed genes in OA compared with control or 
osteoporotic bone. In some cases, variance of gene expression was greater in the OA bone 
than control or osteoporotic bone and for other genes the variance was less. For some genes, 
there was a clear gender-related difference. A substantial number of the top-ranking 
differentially expressed genes are known to play roles in osteoblasts, osteocytes and 
osteoclasts. Many of these genes are targets of either the WNT or the TGF-beta/BMP 
signalling pathways and a subset is involved in osteoclast function. The authors suggested 
that altered expression of these sets of genes may in part explain the altered bone 
remodelling observed in OA. Increased insulin-like growth factor types I and II and TGF-
beta protein was reported in OA cortical bone from the iliac crest, consistent with an 
increased anabolic stimulus in OA bone (Dequeker et al., 1993). Also consistent with this are 
the observations of Truong et al. (2006), of differential expression in OA of genes encoding 
bone anabolic factors in trabecular bone from the proximal femur. Those data revealed 
elevated mRNA for alkaline phosphatase, osteocalcin, osteopontin, COL1A1, and COL1A2 
in OA bone compared to control, which the authors suggested reflect possible increases in 
osteoblastic biosynthetic activity and/or bone turnover at the intertrochanteric region of the 
femur in OA. Interestingly, in the controls but not in the OA samples, positive associations 
were observed between a number of the molecular and histomorphometric parameters, 
suggesting, firstly, that the measured expression of genes in bone relates to remodeling 
mechanisms and, secondly, that these bone regulatory processes may be altered in OA. 
These data were supported by more recent work, again showing strong associations 
between the expression of genes, such as CTNNB1 and TWIST1 and structural and 
remodeling indices in control bone but not in OA and the converse with genes such as 
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 MMP25 (Kumarasinghe et al., 2010).  Gene expression has also been explored in osteoblasts 
taken from OA subchondral bone. Interestingly, these cells appear to retain in culture 
differences, compared with control cells, in the expression of important regulatory genes, 
with a very recent example showing increased TGF-beta in OA cells inducing increased 
DKK-2 (Chan et al., 2011). Silencing of either TGF-beta or DKK2 in these cells was reported 
to normalize the OA phenotype, including the decreased mineralization, in untreated OA 
osteoblasts. Strong associations were found between the ratio of RANKL/OPG mRNA and 
the indices of bone turnover, ES/BS and OS/BS, but only in trabecular bone from control 
individuals and not in OA bone (Fazzalari et al., 2001), again suggesting that bone turnover 
may be regulated differently in this disease. Truong et al. (2006) further speculated that the 
finding of differential gene expression, as well as architectural changes and differences 
between OA and controls at a skeletal site distal to the active site of joint degeneration, 
supports the concept of generalised involvement of bone in the pathogenesis of OA. The 
above data invite the speculation that altered expression of the genes that direct bone 
turnover leads to differences in bone, subchondrally or generally, which increases the risk of 
OA or initiates or progresses the disease. However, the limitation of the work to date is that 
it has all been performed in bone from end-stage disease. What is urgently required in order 
to better understand OA, and the role of bone in it, is longitudinal data describing gene 
expression and its relationship to bone turnover, across the OA disease process. It should be 
acknowledged that a great deal of effort has been made to identify genetic risk factors for 
OA through gene association studies (Spector and McGregor, 2004). Genes implicated in 
these association studies include VDR, AGC1, IGF-1, ER alpha, TGF-beta, cartilage matrix 
protein, cartilage link protein, and collagen II, IX, and XI. While some of these genes might 
appear to relate more to cartilage than bone, genes such as VDR, IGF-1 and TGF-beta could 
well be involved in the regulation of bone growth and remodeling. In discussion, these 
authors describe OA as a complex disease, in which genes may operate differently at 
different body sites and on different disease features within body sites. In addition, it is not 
known at what stage of development OA-related genes might influence the skeleton. 

4. Vascular pathology 

There is now a great deal of evidence to support the concept that vascular pathology might 

be directly involved in skeletal pathology (reviewed in Findlay, 2007). In particular, venous 

stasis, hypertension, and altered coagulability have all been reported in both animal models 

of OA, and in the human disease (Arnoldi et al., 1994). Since bone is highly vascular, 

particularly at the ends of long bones, and cartilage is avascular, vascular pathology can 

directly affect bone (and other tissues in the joint) but cannot directly affect articular 

cartilage. Some of the evidence for changes in vascularity and/or blood flow in the 

subchondral bone having a causal role in OA is presented below.  

4.1 Impaired venous blood flow and increased intraosseous pressure in OA 
Impaired venous blood flow (venous stasis) and consequent decreased outflow of blood 

from the articular ends of long bones, resulting in increased intraosseous pressure, has long 

been proposed as one causal factor in osteoarthritis. Long bones have multiple feeding and 

draining vessels, but the ability of the system to drain the blood is compromised once the 

larger draining vessels, for example the femoral vein, are blocked.  Patients with severe 
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degenerative osteoarthritis of the hip are reported to have impaired venous drainage from 

the juxtachondral cancellous bone across the cortex (Lucht et al., 1981). Brookes and Helal 

(1968) further investigated the concept that defective venous drainage is generally present in 

OA. Their work was based on the assumptions that there is a disturbance of osteogenesis in 

OA and that vascular factors are involved in normal bone turnover. They used 

phlebography to examine the subchondral vasculature in a large group of knee 

osteoarthritic patients compared with individuals with no OA symptoms. They found that 

the subchondral medullary sinusoids were distended only in the patients with primary OA 

and the contrast agent was cleared more slowly from affected knees, suggesting a more 

sluggish cancellous circulation. The patients with sinusoidal engorgement all had a history 

of diffuse aching pain in the affected bone and, for those patients treated by osteotomy, 

relief of pain was concomittent with resolution of the vascular engorgement. Anecdotally, 

the affected bone was softer than normal, as judged by ease of insertion of a needle, 

suggesting decreased mineral in the bone. The patient data are interesting but, since they 

relate to established OA, they give little clue to cause and effect. However, in the same 

publication, the authors described an experiment in rats, in which they ligated the draining 

veins from the knee and produced venous engorgement in the hind limb bones. An 

increased amount of trabecular bone was noted in the tibial and femoral epiphyses of these 

animals and both the subchondral bone plate and the calcified zone of the articular cartilage 

were also thickened.  These very interesting observations led Brookes and Helal (1968) to 

propose that osteoarthritis can be promoted by venous congestion resulting in impeded 

microcirculation. Arnoldi wrote extensively on the role of vascular pathology in 

osteoarthritis and suggested a continuum of vascular changes and joint disease from OA to 

osteonecrosis (Arnoldi, 1994). He concluded that intact arterial inflow combined with 

increased resistance to venous outflow is responsible for the intraosseous venous 

hypertension frequently observed in established osteoarthritis, as well as in nontraumatic 

ischemic necrosis of bone. He further showed that increasing the intraarticular pressure in 

rabbits increased intraosseous pressure. This is because the drainage veins from the ends of 

the long bones in general lie within the joint capsule. For example, the drainage veins from 

the femoral neck emerge at the edge of the cartilage and are initially within the joint capsule. 

Thus, even small increases in articular pressure are sufficient to collapse these thin walled 

vessels and decrease the flow of blood.  These findings suggest that increased intra-articular 

pressure, produced by obesity or intra-articular inflammation, could be one of the 

mechanisms for producing intraosseous hypertension in OA, either as a primary event in 

the disease or as an exacerbating factor. Kiaer et al. (1990) showed increased intraosseous 

pressure and hypoxia in the femoral head of hips with early osteoarthritis and in ischemic 

necrosis of bone. They concluded that necrosis of bone trabeculae and marrow are early 

manifestations of both osteoarthritis and ischemic necrosis of bone. Lee et al. (2009) used 

modern imaging techniques to explore the relationship between fluid dynamics in 

subchondral bone and OA progression. Using dynamic contrast-enhanced (DCE) MRI, they 

described the temporal and spatial perfusion patterns in subchondral bone in relation to the 

development of bone and cartilage lesions, in the Dunkin-Hartley guinea pig model of OA. 

They obtained evidence for decreased perfusion of the subchondral bone and fluid stasis in 

that model, likely due to outflow obstruction, and that these changes temporally precede, 

and spatially localise at, the same site as eventual bone and cartilage lesions. These data 
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support, in a spontaneous animal model that mirrors many of the changes seen in human 

disease, a role for vascular changes in the subchondral bone as drivers for OA disease. 

4.2 Consequences of decreased bone blood perfusion in the subchondral bone 
Arnoldi (1994) discussed the concept that decreased bone blood perfusion, and the 
consequent decreased interstitial fluid flow in the subchondral bone, lead to ischaemia and 
bone death. This idea related primarily to vascular necrosis of bone, but there is some 
evidence that episodes of ischaemia in the subchondral bone compartment might occur also 
in OA. Thus, there are two potential outcomes of venous stasis in subchondral bone. The 
first is that poor perfusion in the subchondral bone may also result in a decrease in 
nourishment to the overlying cartilage, as proposed by Imhof et al. (1997). More recently, 
Pan et al. (2009) were one of several groups to show that small molecules can penetrate into 
the calcified cartilage from the subchondral bone. In elegant experiments, they used 
fluorescence and photobleaching methods to demonstrate that fluorescein can diffuse 
between subchondral bone and articular cartilage, and that these compartments form a 
functional unit with biochemical as well as mechanical interactions. Secondly, the 
mechanical strength of the subchondral bone may be adversely affected by episodes of 
ischaemia. What is commonly observed in both established OA and in early OA, in 
individuals with painful joints (Mandalia et al., 2005), are areas of subchondral bone that 
appear bright with magnetic resonance (MR) imaging, which are often termed bone marrow 
lesions (BML) (reviewed in Bassiouni, 2010 and Daheshia and Yao, 2011). Longitudinal 
studies have shown that the presence of BML is a potent risk factor for structural 
deterioration in knee OA (Felson et al., 2003; Hunter et al., 2006; Garnero et al, 2005; Zhai et 
al., 2006; Carrino et al., 2006; Dore et al., 2010) and future joint replacement (Tanamas et al., 
2010). Enlargement of these bone marrow lesions has been strongly associated with 
increased cartilage loss (Mandalia et al., 2005). Conversely, a reduction in the extent of bone 
marrow abnormalities on MRI is associated with a decrease in cartilage degradation (Hunter 
et al., 2006). It has recently been shown that subchondral cysts, which are characteristic of 
established and severe OA, arise at the same sites as BML (Crema et al, 2010). A number of 
studies point to possible causal factors for BML, including mechanical loading (Bennell et 
al., 2010), dietary fatty acid intake (Wang et al., 2009) and total serum cholesterol and 
triglycerides (Davies-Tuck et al., 2009), disturbances in the latter having well established 
vascular implications. BML have been described as containing bone that is sclerotic, but 
which has reduced mineral density, perhaps rendering the area mechanically compromised 
(Hunter et al., 2009). Consistent with this, is the finding that BMLs are strongly associated 
with subchondral bone attrition (Roemer et al., 2010). Thus, episodes of venous stasis in OA 
may lead to loss of osteocyte viability in the corresponding regions of subchondral bone.  
It has been shown that loss of osteocyte viability causes increased bone turnover in order to 
repair damaged and necrotic bone tissue, due to activation of osteoclastic resorption (Noble 
et al., 2003; Cardoso et al., 2009). There may be a stage in this process, during which bone 
attrition leads to compromised structural support for the overlying articular cartilage. 
There is good histological and biochemical evidence of increased bone remodelling in 
subchondral bone containing BML (Plenk et al., 1997). In addition, increased subchondral 
bone remodeling, detected by bone scans, has been well described in established OA, where 
it has been reported to predict joint space narrowing (Berger et al., 2003; MacFarlane et al., 
1993). Whether the increased bone turnover is cause or effect cannot be determined in 

www.intechopen.com



 
Subchondral Bone in Osteoarthritis 

 

145 

human OA, however several animal models of OA are interesting in this regard. Muraoka et 
al. (2007) reported that in Hartley guinea pigs, the subchondral cancellous bone was fragile 
before the onset of cartilage degeneration. In the rat anterior cruciate ligament transection 
model of OA, increased subchondral bone resorption is associated with early development 
of cartilage lesions, which precedes significant cartilage thinning and subchondral bone 
sclerosis (Hayami et al., 2006). Significantly, treatment with the anti-resorptive 
bisphosphonate, alendronate, in that model suppressed both subchondral bone resorption 
and the later development of OA symptoms in the knee joint (Hayami et al., 2004), 
suggesting that subchondral bone remodeling plays an important role in the pathogenesis of 
OA. Similarly, calcitonin reduced the levels of circulating bone turnover markers and the 
severity of OA lesions in the dog model of ACLT (Manicourt et al., 1999). Thus, it is likely 
that events in the subchondral bone have a direct effect on the overlying cartilage. Amin et 
al. (2009) reported on very interesting experiments in which chondrocyte survival was 
assessed in bovine cartilage explants in the presence or absence of subchondral bone in the 
explant culture. Although the authors noted several limitations of their experiments and 
cautioned against over-interpretation, they made several observations. They found that 
excision of subchondral bone from articular cartilage resulted in an increase in chondrocyte 
death at seven days, mainly in the superficial zone. However, the presence of the excised 
subchondral bone in the culture medium abrogated this increase in chondrocyte death, most 
likely due to soluble mediator(s) released from the subchondral bone. Amin et al. (2009a) 
also reported in abstract on an experiment, using the same model, but comparing normal 
and OA human osteochondral explants. In that experiment, chondrocyte death increased in 
cartilage after excision of the subchondral bone but inclusion of healthy excised bone in 
culture protected the cartilage. In contrast, chondrocytes were not protected by the inclusion 
of sclerotic OA subchondral bone. Neither the cells nor the molecules responsible for 
chondrocyte survival or death were identified in these experiments, and this information is 
required. Nevertheless, it is known that active osteoclasts produce cytokine products that 
are catabolic for chondrocytes, such as IL-1 beta (O’Keefe et al., 1997), and osteocytes have 
been shown capable of assuming a catabolic phenotype (Atkins et al., 2009). Therefore, 
active remodeling in the juxta-articular bone could promote a catabolic phenotype in 
chondrocytes in the overlying articular cartilage. 

4.3 Prevalence of hypertension in OA 
Patients with end-stage hip OA exhibit a high prevalence of vascular-related comorbidities 

(Kiefer et al., 2003) and a causal link between the progression of OA and atheromatous 

vascular disease and hypertension has recently been proposed (Huang et al., 1995). 

Uncontrolled hypertension is a strong risk factor, not only for cardiovascular disease, but 

also numerous end-organ morbidities. There is evidence that the consequences of 

hypertension are due to endothelial cell damage or dysfunction (Tektonidou et al., 2004; 

Korompilias et al., 2007; Zhang et al., 2007). Because both coagulation and fibrinolysis are 

regulated by vascular endothelial cells, hypertension is associated with increased risk of 

thrombotic disorders. The potential importance of altered coagulability is discussed below. 

There appears to be a higher incidence of hypertension in individuals with OA, although it 

is difficult to dissect a direct contribution of one to the other. It has been reported that 

generalized osteoarthrosis is significantly more common in older males with high than with 

low diastolic blood pressure (Lawrence et al., 1975). In the cohort described in that 
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publication, the relationship between hypertension and osteoarthrosis was independent of 

obesity. Osteoarthrosis of the knee in females was reported as more frequent in hypertensive 

individuals, again independent of obesity. However, many of those patients were 

overweight or obese, as commonly observed in OA cohorts. Weinberger et al. (1989) 

reported that 75% of a cohort of patients with OA had symptoms associated with 

hypertension and heart disease, which is probably higher than an age-matched population. 

These data do not provide a strong link between hypertension and the initiation or 

progression of OA and it would be of interest to explore this relationship more in similar 

populations treated or untreated for their hypertension. In attempting to elucidate whether 

hypertension is a causal factor in OA, it is important to determine whether it is truly 

involved in the disease or is simply a component of the disease cluster of the ‘metabolic 

syndrome’, which includes increased BMI and obesity, hypertension, and a compilation of 

factors characterized by insulin resistance and the identification of 3 of the 5 criteria of 

abdominal obesity, elevated triglycerides, decreased high-density lipoprotein level, elevated 

blood pressure, and elevated fasting plasma glucose (Steinbaum, 2004). 

4.4 Coagulation abnormalities in OA 
Coagulation abnormalities have been described in patients with hip osteonecrosis (ON), 
resulting in investigation in OA as well. Intravascular coagulation, activated by a variety of 
underlying diseases, has been postulated as the common link leading to ischaemic insult, 
intraosseous thrombosis and bone necrosis. Patients with hip ON were investigated for the 
presence of a spectrum of thrombophilic disorders to assess whether their presence is 
associated with an increased risk of ON (Korompilias et al., 2004). More than 80% of these 
patients had a thrombotic abnormality and the authors speculated that ON may result from 
repetitive thrombotic or embolic phenomena that occur in the vulnerable vasculature of the 
femoral head. In a rabbit model of steroid-associated femoral ON, micro-angiography of the 
subchondral bone showed clear evidence of thrombus-blocked and leaking blood vessels 
(Zhang et al., 2007). Understanding of the relationship between hypercoagulable states and 
ON may allow pharmacologic intervention to prevent this process. The work of Cheras and 
Ghosh showed that changes in coagulability of the blood might also predispose to OA 
(Cheras et al., 1997; Ghosh and Cheras, 2001). Cheras et al. (1993) observed intraosseous 
intravascular lipid and thrombosis, particularly in the venous microvasculature, in femoral 
heads from patients with degenerative osteoarthritis, but not in non-osteoarthritic femoral 
heads. A study of femoral heads from OA patients showed frequent widespread loss of 
osteocyte viability, and led to the suggestion that episodic osteocyte death and elevated 
bone remodeling, as discussed above, could be a cause rather than a result of at least some 
forms of OA (Cheras et al., 1993). Intriguingly, Ghosh and Cheras (1997) found significant 
differences in serum fibrinogenic and fibrinolytic parameters, and lipid profiles, between an 
osteoarthritis group and a control group. Their data are consistent with hypercoagulability 
and hypofibrinolysis in OA. They described increased pro-coagulant factors in individuals 
with a comparatively recent diagnosis of OA and proposed that the findings of coagulation 
and lipid abnormalities support a possible relationship between the etiology of osteoarthritis 
and ischemic necrosis of bone. Interestingly, the coagulability changes were associated with 
evidence of increased bone turnover, possibly due to increased bone repair in OA. A 
potential consequence of ischemia in the subchondral bone is the loss of interstitial fluid 
flow that leads to cell death of osteocytes (Bakker et al., 2004). If an increased propensity for 
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intravascular coagulation has a role in OA, treatments that normalize clotting would be 

expected to reduce the symptoms of OA. Although this possibility has not been well 

researched, Ghosh and Cheras (1997) described a study, which utilized large breed dogs 

with or without radiologically confirmed hip OA. The dogs were given subcutaneous 

Calcium Pentosan Polysulphate (CaPPS) for 4 weeks. Prior to treatment, platelet 

aggregability was increased in the OA group, which, like the human OA group described 

above, also displayed hypofibrinolysis. Interestingly, CaPPS treatment normalized these 

parameters and the dogs showed clinical improvement with respect to their OA symptoms. 

Qualitatively similar results were seen in a 24-week study in human OA subjects treated 

with CaPPS, although interpretation of this study was complicated by a strong placebo 

response. In a more recent study, sodium pentosan polysulphate was given to patients with 

OA of grade Kellgren-Lawrence 1 to 3 (Kumagia et al., 2010). At a dose of drug that 

increased INR significantly, OA symptoms improved rapidly and for the period of the 

study. Despite such studies, the role of this class of compound in human OA is 

controversial, with the possible reasons for different findings being that they are perhaps 

not, in fact, efficacious, or that they have been given to inappropriate cohorts, with 

advanced OA, or that there is variability of drug quality and potency, or the already 

mentioned placebo response that is common in OA. However, the basic science continues to 

be supportive of a therapeutic role for these compounds in OA. A recent study in a mouse 

model of collagenase-induced OA showed that glucosamine hydrochloride treatment 

inhibited destructive changes in cartilage and bone erosion and prevented osteophyte 

formation (Ivanovska and Dimitrova, 2011). These observations occurred in parallel with 

decreased expression of the bone anabolic molecule, BMP-2, in the subchondral bone and 

increased expression of the anti-anabolic Wnt inhibitor, DKK-1. In attempting to account for 

these effects, there is a large literature describing the anti-inflammatory effects of the 

glucosamine class of compounds, in particular with anti-inflammatory and anti- 

atherosclerotic effects on vascular endothelial cells (Ju et al., 2008; Largo et al., 2009). The 

concept that protection of vascular endothelial cells can have a beneficial effect in 

subchondral bone and joints is supported by the study mentioned above using a rabbit 

model of steroid-associated femoral ON (Zhang et al., 2007). Micro-angiography of the 

subchondral bone showed clear evidence of thrombus-blocked and leaking blood vessels in 

this disorder, which was prevented in this model by coadministration of flavinoid vascular 

protective agents. It has not been determined whether hypercoagulability and 

hypofibrinolysis precede or cause OA, or whether they are a consequence of the disease. 

However, familial studies by Glueck et al. (1994), in patients with ischemic necrosis of bone, 

indicated that genetically linked hypofibrinolysis associated with raised PAI-1 may be a 

major cause of osteonecrosis. Similar familial studies in osteoarthritis are indicated, in 

addition to prospective studies of individuals with hypercoagulability or hypofibrinolysis.  

5. Summary 

OA is clearly a disease that intimately involves bone, in ways that include altered gene 
expression in bone, altered bone structure, altered blood flow and altered biomechanics. The 
extent of involvement of various joint components is likely to be different in different joints 
and in different disease causations. In some joints, notably hips and knees, there are bone 
shapes, either congenital or acquired, that predispose to OA. To that extent, OA can be said 
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to initiate in the bone. Longitudinal studies are required to investigate the causes of bone 
shape abnormalities and whether there might be an opportunity to intervene to maintain, 
particularly in hip joints, their optimal shape. What role the bone plays in the initiation and 
progression of ‘idiopathic’ or ‘general’ OA is still not clear, although changes can be 
observed in subchondral bone from its earliest manifestations. There is also evidence that 
agents that are known to act on bone and not directly on cartilage, such as bisphosphonate 
anti-resorptives, can inhibit the course of OA, at least experimentally. The data reviewed 
here suggest the value of investigating other agents that address bone turnover, and 
promote the health of the subchondral vasculature, in OA. These approaches could 
accompany other current management, such as weight loss, exercise programs and intra-
articular lubricants, starting as early in the disease as possible. In evaluation of approaches 
that target the bone in OA, endpoints will benefit from new imaging modalities that are 
much more informative of all the compartments of the joint, cartilage, synovium, tendon 
and muscle, and bone.  
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