
High Performance Non-uniform FFT on Modern x86-based Multi-core Systems

Dhiraj D. Kalamkar∗, Joshua D. Trzasko‡, Srinivas Sridharan∗, Mikhail Smelyanskiy†, Daehyun Kim†,
Armando Manduca‡, Yunhong Shu§, Matt A. Bernstein§, Bharat Kaul∗ and Pradeep Dubey†

∗Parallel Computing Lab, Intel Labs, Bangalore, KA, India
†Parallel Computing Lab, Intel Labs, Santa Clara, CA, USA

‡Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
§ Department of Radiology, Mayo Clinic, Rochester, MN, USA

Abstract—The Non-Uniform Fast Fourier Transform
(NUFFT) is a generalization of FFT to non-equidistant samples.
It has many applications which vary from medical imaging to
radio astronomy to the numerical solution of partial differential
equations. Despite recent advances in speeding up NUFFT on
various platforms, its practical applications are still limited,
due to its high computational cost, which is significantly
dominated by the convolution of a signal between a non-
uniform and uniform grids. The computational cost of the
NUFFT is particularly detrimental in cases which require fast
reconstruction times, such as iterative 3D non-Cartesian MRI
reconstruction.

We propose novel and highly scalable parallel algorithm
for performing NUFFT on x86-based multi-core CPUs. The
high performance of our algorithm relies on good SIMD
utilization and high parallel efficiency. On convolution, we
demonstrate on average 90% SIMD efficiency using SSE, as
well up to linear scalability using a quad-socket 40-core Intel R©

Xeon R© E7-4870 Processors based system. As a result, on
dual socket Intel R© Xeon R© X5670 based server, our NUFFT
implementation is more than 4x faster compared to the best
available NUFFT3D implementation, when run on the same
hardware. On Intel R© Xeon R© E5-2670 processor based server,
our NUFFT implementation is 1.5X faster than any published
NUFFT implementation today. Such speed improvement opens
new usages for NUFFT. For example, iterative multichannel
reconstruction of a 240x240x240 image could execute in just
over 3 minutes, which is on the same order as contemporary
non-iterative (and thus less-accurate) 3D NUFFT-based MRI
reconstructions.

Keywords-Non-uniform FFT; Parallelization; Scalability;
Vectorization

I. INTRODUCTION

NUFFT challenge: The Fast Fourier Transform (FFT) [1]

is one of the most widely used tools in all of signal

processing and numerical analysis. Whereas directly eval-

uating the discrete Fourier transform (DFT) of a length-N
signal requires O(N2) operations, the FFT uses a divide-

and-conquer strategy to indirectly perform this transform

with only O(N logN) operations. Certain applications, how-

ever, such as magnetic resonance imaging (MRI) [2], [3],

[4], synthetic aperture radar (SAR) [5], multidimensional

wavelet analysis [6], quality control in lumber production

[7], digital filter design [8], and computing numerical solu-

tions to elliptical partial differential equations (PDE) [9] may

instead require discrete-time Fourier transformation (DTFT)

of a uniformly-spaced length-N signal to a length-K signal

corresponding to a set of non-uniformly spaced spectral

indices. Although the DTFT cannot be exactly evaluated

using only O(N logN) operations, it fortunately can be very

accurately approximated with this complexity by means of

the so-called non-uniform FFT (NUFFT) [10], [11], [12],

[13], [3], [14].

Typical NUFFT based iterative solvers use two NUFFT

operators: Forward NUFFT (FWD) and Adjoint NUFFT

(ADJ). The forward NUFFT operates by applying a scaling

function to the signal of interest, transforming the signal onto

a uniformly-spaced (i.e., Cartesian) spectral grid by means

of an (oversampled) FFT, and then judiciously interpolating

that signal onto the desired set of non-uniformly spaced

(i.e., non-Cartesian) indices. Conversely, the backward (i.e.,

adjoint) NUFFT first interpolates a signal associated with a

set of non-uniformly spaced spectral indices onto a uniform

spectral grid, then transforms that signal via (oversampled)

inverse FFT, and finally applies the same scaling function

used in the forward operation to the resulting signal. When a

fixed width interpolation kernel is employed, the complexity

of both the forward and adjoint transform is again only

O(N logN) albeit with a larger “hidden constant” than its

DFT-based analogue. The effective computational cost of

the NUFFT is thus largely determined by how quickly this

convolution interpolation operation can be performed, and

correspondingly by the size and definition of the interpola-

tion kernel [3].

Although advances in speeding up the NUFFT have

been made, such as optimized minimum width interpolation

kernels and use of lookup tables (LUT) (e.g., [15], [16]), it

remains the computational bottleneck for many applications,

and particularly those associated with “inverse problems”

that employ iterative solvers requiring evaluation of one or

more forward and adjoint DTFT/NUFFT’s at each iteration.

In many areas, such as 3D non-Cartesian MRI reconstruc-

tion, less accurate non-iterative reconstructions are often

employed in lieu of more accurate iterative methods simply

because the latter cannot provide results in a feasible amount

of time. Loop-level parallelism can be readily exploited

in the forward NUFFT, but parallelization of the adjoint

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.49

449

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.49

449

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357222875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

operator is non-trivial due to prevalent race conditions

arising from multiple samples being “scattered” onto the

same uniform grid location [17]. Privatization [18] can be

used to circumvent this problem but the associated memory

expense of this approach limits its scalability. Advanced

hardware implementations, such as on graphics processing

units (GPU) [17] or field programmable gate arrays (FPGA)

[19], may be restricted to specific spectral sampling patterns

[20], require significant code adaptation [17], or be memory

limited [21].

Trends in parallel CPUs and algorithms: At the same

time, modern central processing units (CPUs) have contin-

ued to evolve, as the number of on chip transistors continues

to grow. Their compute capacity has increased through pro-

gressively higher core counts and, more recently, wider Sin-

gle Instruction Multiple Data (SIMD) vector units. Current

CPUs commonly feature more than 6-8 cores on the same

die. SIMD units have increased from 128-bit SSE to 256-bit

AVX [22]. Hence it is important to utilize available hardware

resources efficiently. To improve this utilization, modern

CPUs feature large caches with capacities of tens of Mega

Bytes. Furthermore, they support cache coherence, memory

consistency as well faster on-die synchronization and inter-

core communication, compared to previous generations of

CPUs. While these hardware features can simplify the

design and improve the performance of parallel algorithms

in general, the best performance is obtained in algorithms

which avoid global communication. Such ”locality-aware”

algorithms, which include convolution, take advantage of

local communication patterns inherent to many physical

problems. This limits synchronization and communication to

a small subset of cores on the chip. It also reduces problem’s

working set, which increases hit rate in smaller but faster

first-level caches. Overall, this reduces or eliminates global

communication. Correspondingly, the advantage of such

algorithms will grow as number of cores, and therefore the

cost of global communication will increase in future many-

core architectures.

Our contributions: In this paper, we propose a new parallel

algorithm for adjoint operator, which is one of the key

NUFFT compute kernels. The key features of our algorithm

are its ability to maintain even load-balance, local syn-

chronization, locality-aware scheduling, as well as selective

privatization and reduction. The last optimization restricts

parallel reduction to small dataset regions, which are iden-

tified in the preprocessing stage, thus significantly reducing

overhead of reduction. Furthermore, we decouple reduction

operations from the rest of the computation within parallel

task. This exposes larger amount of parallelism in datasets

with highly irregular sample distributions. As a result, our

algorithm achieves close to linear scalability on up to 40

cores across datasets with widely variable characteristics.

Moreover, we demonstrate high SIMD efficiency of our

implementation. Specifically, it scales up to 3.8X on SSE

and is expected to scale to wider SIMD on future many-

core architectures.

The rest of this paper is organized as follows. In Section II

we present background and math behind NUFFT. Section III

provides details of our implementation. Section IV and V

provides details about our experimental setup, results and

performance analysis. We discuss previous and related work

in Section VI. Finally, we conclude in Section VII.

II. BACKGROUND

We describe here the mathematics of the 1D NUFFT

problem. The generalization to higher dimensions is straight-

forward, requiring only higher-dimensional FFTs and, for

any spectral point, use of an interpolation kernel defined as

the Kronecker product of the 1D kernels corresponding to

each spectral dimension.

A. Non-Uniform Fourier Transforms

Recall that the DTFT of a length-N discrete signal, f ,

evaluated at spectral index ω ∈ [0, 2π) is

F (ω) =
N−1∑
n=0

f [n]e−jωn. (1)

For the special case when ω = 2πm/N , m ∈ [0, N) ⊆
Z
∗, (1) corresponds to the DFT which can be quickly and

exactly evaluated in only O(N logN) operations via the FFT

algorithm. However, when ω is not confined to a uniform

grid, direct evaluation of (1) requires O(N) operations for

each computed spectral index.

B. Non-Uniform Fast Fourier Transforms

Consider the M -point (M ≥ N) oversampled DFT of f ,

with real-valued and spatially symmetric scaling function,

s > 0,

G[m] =
N−1∑
n=0

s[n]f [n]e−j2π nm
M , (2)

whose adjoint and inverse are readily defined, and all of

whom can be rapidly computed via the FFT. Using these

constructions, note that, for s[n] = 1, (1) can be redefined

as

F (ω) =
M−1∑
m=0

G[m]I

(
ω − 2πm

M

)
, (3)

where I is a Dirichlet-like kernel (phase shifted) [3]. Thus,

for any ω, F (ω) could be determined by interpolating from

the Cartesian signal albeit with O(MK) operations. For

an FFT-based approximator of the DTFT to be practical,

interpolating from the uniform onto the non-uniform grid

should be O(K). At the same time, this reduced interpolator

should still permit a highly accurate approximation of the

DTFT. Correspondingly, the FFT needs to be oversampled

(i.e., M ≥ N) so as to reduce the distance between a non-

Cartesian spectral index and its nearest Cartesian neighbor.

450450

Consider a compact, radius W << M , interpolator, Î .

Replacing the “ideal” interpolator by Î resorts (3) to

F (ω) ≈
∑

m∈η(ω)

G[m mod M]Î

(
ω − 2πm

M

)
, (4)

where η(ω) =
{
m m ∈ Z

∗ ∧ |M2πw −m| ≤W
}

. Al-

though there exist a wide variety of potential models for

Î (e.g., Gaussian [14], min-max estimated [3]), in practice

and in this work the Kaiser-Bessel kernel is often employed

since it is easily formed and can be parameterized to yield

high performance even when M is only slightly larger than

N (e.g., M/N = 1.25) [16], [3]. As spectral convolution

by a compact kernel manifests signal domain apodization,

the scaling function, s, is typically defined as the point-

wise inverse of the inverse DFT of a delta function located

at the spectral origin interpolated onto the uniform grid

via Î . The scaling function thus precompensates for signal-

domain apodization that results from spectral convolution,

and is correspondingly often called “rolloff” correction.

In summary, computing the forward NUFFT of a signal

consists of:

1) point-wise scaling of f by s
2) execution of a M -point FFT

3) convolution interpolation onto the set of ω’s

Step 3, which corresponds to (4), is typically realized as a

gather operation and thus one that is readily parallelizable

via standard loop partitioning.
Computing the adjoint NUFFT of a signal essentially

constitutes a “reverse” of the operations of the forward

NUFFT, namely:

1) convolution interpolation from the set of ω’s

2) execution of an inverse M -point FFT

3) point-wise scaling of f by s and M
Step 1, the functional adjoint of (4), is typically realized in
ensemble as

H ≈
∑
ω∈Ω

F (ω)
∑

m∈η(ω)

Î

(
ω − 2πm

M

)
δm mod M , (5)

where δ∗ is the Kronecker delta function. Note that (5)

comprises a scatter operation that is highly susceptible to

race conditions arising from multiple ω’s simultaneously

scattering onto the same uniform grid location, n. Although

thread privatization can circumvent this problem [18], when

applied generically an increase in memory usage propor-

tional to the number of threads is required, and is thus

impractical for massive parallelization of large numerical

problems.
In certain applications such as MRI, it may be necessary

to shift the origin of the image and/or spectrum (akin to

the fftshift command in Matlab c©) before and/or after

any FFT calls. This linear-time operation can be achieved in

the conjugate transform domain simply by modulating the

transformed signal by a series of ±1’s, a process commonly

referred to as “chopping”.

Figure 1. Three Types of Datasets: Radial, Random and Spiral

C. Example Spectral Sampling Strategies

One challenge faced by advanced parallel implementa-

tions of the NUFFT is that their performance may vary

markedly for different spectral sampling distributions. At

one extreme, an NUFFT implementation may be applicable

to only a single sampling strategy. In this work, our goal is

to provide improved performance for any potential sampling

distribution. While we certainly cannot test every possible

distribution (as there are an infinite number of possibilities),

we have attempted to identify three most common distribu-

tions, as shown in Figure 1, that are representative of both

those that can arise in the different specialty areas discussed

in Section I, and contain different properties that may pose

challenges to an advanced NUFFT implementation.

The first identified distribution is “radial”, which con-

sists of equispaced sampling along straight-line projec-

tions through the spectral origin. Typically, these projec-

tions are distributed equiangularly throughout the spectrum.

This sampling distribution is regularly encountered in real-

world applications, including in parallel-beam tomographic

applications (implicit to the Radon transform), magnetic

resonance imaging (e.g., the VIPR trajectory [23]), and

multidimensional wavelet analysis [6].

The second identified distribution is “random”, and partic-

ularly according to a variable density Gaussian distribution

concentrated at the spectral origin. Random sampling is of

growing interest in Compressive Sensing [24], [25], [26],

[27] applications, which aim to accurately recover signals

sampled at well below the Nyquist rate by exploiting certain

information theoretic properties about them.

The third identified distribution is “stack-of-spirals”,

which is a hybrid sampling strategy that samples uni-

formly along one dimension (although not necessarily on

the Cartesian grid) and along one or more Archimedian

spirals in the transverse plane. This sampling model has

been previously employed for rapid cardiac MRI [28]. For

the sake of exposition, we employed a single, long spiral

in each transverse plane, noting that in practice a series of

interleaved spirals would likely be used to minimize off-

resonance effects.

In many applications, batched or interleaved sampling is

performed, where during each of S interleaves, K samples

are acquired. For example, in MRI, each interleave may cor-

respond to a single readout (i.e., TR) of the pulse sequence.

Correspondingly, the total number of samples are simply

SK. As sequential samples within a single interleave often

451451

1: // Part 1: Common to FWD and ADJ
2: // N2: width of Cartesian Grid
3: // wx[p]: x co-ordinate of sample
4: // Form x interpolation kernel
5: kx = wx[p]
6: x1 = ceil(kx−W)
7: x2 = floor(kx+W)
8: lx = x2− x1 + 1
9: for i = 0 to lx− 1 do

10: nx = x1 + i
11: kx[i] = mod(nx,N2)
12: winX[i] = LUT (abs(nx− kx))
13: end for
14: // Form y and z interpolation kernels
15: ...

1: // Part 2a: Only in FWD Convolution
2: // Perform separable convolution
3: // raw[p]: Sample value
4: // f [x, y, z]: Cartesian Grid point
5: raw[p] = 0
6: for x = 0 to lx− 1 do
7: for y = 0 to ly − 1 do
8: for z = 0 to lz − 1 do
9: raw[p] += f [kx[x], ky[y], kz[z]]

∗ winX[x]∗winY [y]∗winZ[z]
10: end for
11: end for
12: end for

1: // Part 2b: Only in ADJ Convolution
2: // Perform separable convolution
3: // raw[p]: Sample value
4: // f [x, y, z]: Cartesian Grid point
5:

6: for x = 0 to lx− 1 do
7: for y = 0 to ly − 1 do
8: for z = 0 to lz − 1 do
9: f [kx[x], ky[y], kz[z]] += raw[p]

∗ winX[x] ∗ winY [y] ∗ winZ[z]
10: end for
11: end for
12: end for

Figure 2. Convolution Code

exhibit some degree of spectral locality, data is often retained

in its original S×K format to facilitate later preprocessing

for NUFFT acceleration. Also, for a d dimensional space, if

Nd is the size of reconstructed image, typically there is a

relationship K × S = Nd × SR where SR is the sampling

rate.

III. IMPLEMENTATION

A. Base Algorithm Description

��

���

���

��
��������	
���

���	�
���
	�
� �
��
��	�
� ������ �
���
����
����	�
�

��

���

��

��
��
�����	
���

Figure 3. Typical Execution Time Breakdown for Scalar Sequential Code
(N = 256,K = 512, S = 24649, SR = 0.75,W = 4) running on
Intel R© Xeon R© E7-4870 Processor

For the two NUFFT operators, Figure 3 shows the four

sub-kernels and their execution time breakdown for a scalar

sequential code. Most of the time is spent inside the two

convolution routines, which are the main focus of our

optimizations. For 3D FFT, the second most time-consuming

kernel, we use highly optimized Intel R© MKL FFTW [29]

library implementation.

As shown in Fig. 2, each convolution kernel consists

of two parts. For a given sample point p, with coordi-

nates (wx[p], wy[p], wz[p]), first part computes interpolation

kernel coefficients, winX , winY , and winZ, using table

LUT look-up. It also computes x, y and z coordinates

of the neighbors in convolution window, kx, ky and kz.

The second part performs actual convolution where forward

convolution accumulates weighted values from Cartesian

grid into sample value and adjoint convolution spreads

sample value onto Cartesian grid, as shown in Fig. 2.

B. Parallelization of Adjoint Convolution

A parallelization strategy for convolution step is to divide

total number of samples between all available threads. Note

however that in adjoint convolution two or more samples

may update the same grid point. If those two points belong

to different threads, some form of mutual exclusion must be

provided to guarantee that only a single update is performed

at a time. There are several potential solutions to this

problem. For example, one can use atomic update instruc-

tions and hence to rely on hardware support to guarantee

mutual exclusion. Alternatively one can use privatization,

wherein each thread maintains and updates private copy

of Cartesian grid; a global reduction is performed at the

end of convolution which aggregates all private copies into

one grid. Both approaches have high overhead, and will not

scale to a large number of threads. This overhead may be

reduced if we spatially decompose the Cartesian grid into

equal size sub-grids and divide them evenly among threads.

This will limit simultaneous updates to the boundary of each

partition. However, this can result in load imbalance for

some datasets due to the fact that each sub-grid may contain

different number of samples. This can happen for example

in radial or spiral datasets, which are dense at the center and

very sparse towards the edges. To address these challenges,

we developed a novel parallelization scheme which greatly

reduces overhead of reduction while maintaining good load

balance. The scheme consists of three main components,

which are described next.

1) Data Partitioning: First, we use geometric data par-

titioning scheme similar to one proposed in [30]. While

[30] divides the grid recursively to improve load balance,

we partition the grid into variable size sub-grids, as shown

in Figure 4 and create a task for each partition. Each

task processes samples contained in its partition. This has

an advantage over recursive partitioning in that cost of

452452

Figure 4. Variable Vs. Fixed Width Partitions

1: // M :number of samples
2: // P : desired number of partitions in each dimension
3: // W : convolution Radius
4: // N : width of Cartesian grid
5: // histd(i): returns number of samples with coordinate value

less than i in dimension d
6: Compute the cumulative histogram

of samples in each dimension
7: avg = M/P
8: minWidth = 2W + 1
9: for each dimension d do

10: i = 0
11: start = 0
12: partition[d][0] = 0
13: while (start < N) do
14: end = start+minWidth
15: while ((histd(end)− histd(start)) < avg) do
16: end = end+ 1
17: if (end >= N) then
18: end = N
19: break
20: end if
21: end while
22: i = i+ 1
23: partition[d][i] = end
24: start = end
25: end while
26: numPartitions[d] = i
27: end for

Figure 5. Algorithm for computing width of partitions in each dimension

partitioning is only O(M) compared to O(MlogM) for

recursive partitioning where M is the total number of sample

points. Also, it enables Task scheduling without need for a

barrier as described in Section III-B2. First we calculate

cumulative histogram of samples in each dimension, e.g.

for x dimension, histx(i) would return number of samples

having x coordinate less than i. Figure 5 shows an algorithm

that can be used to calculate variable width of partitions in

each dimension. If P is the desired number of partitions

in each dimension, first we calculate average number of

samples for each of these P partitions. P can be derived

from number of parallel threads running in the system. Then

we start with a minimum allowed width of a partition (which

is one more than twice the radius of convolution kernel)

and grow it until it contains number of samples more than

the average. Then we move on to calculate width of next

partition and so on until we reach to the end of the grid.

Similar to width of partitions, number of partitions in each

dimension need not be the same. For a datasets like radial,

the variable size partitions enable us to use minimum size

partitions at the center and larger partitions towards edges,

thus helping with load balancing.

2) Task Queue Scheduling: To avoid simultaneous up-

dates from multiple threads, one can perform a simple

coloring of partitions, such that no two adjacent partitions

will have the same color. This will require 8 colors in

3D and partitions of the same color can be computed in

parallel. However, the coloring scheme might require a

barrier between partitions of different colors, as shown in

the previously proposed algorithms [30]. We propose a new

algorithm that does not require a global barrier using a task

dependency graph (TDG). Tasks get scheduled as soon as

they become ready for execution. Our TDG is built as a part

of preprocessing step and reused every time NUFFT operator

is called. We use a novel scheduling algorithm which keeps

TDG simple, as described next.

�� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

�� �� ��

�� �� �� �� �� ��

��

�� �� �� �� �� ��

�� �� �� �� �� ��

��

�� �� �� �� �� ��

�� �� ��
�� �� �� �� ��

� � � � ��

��

��
� � � � �

��
�

�� �� �� ��

�� �� �� �� �� ��

Figure 6. Task Scheduling Algorithm

We define turn of a task T as a number obtained by

joining least significant bit of the partition number in

each dimensions. Thus, for a d dimensional space, there

would be total of 2d turns. We use Gray Code [31] order

for scheduling tasks with different turns e.g. ordering for

2-bit Gray Codes is 00, 01, 11, 10. And for 3-bits it is

000, 001, 011, 010, 110, 111, 101, 100. Initially, all the tasks

with turn 00 are scheduled. For any task T with non-zero

turn, task T can be scheduled only if the adjacent tasks of

T with previous Gray Code value, as defined by the Gray

Code ordering, have finished. This imposes implicit order

on tasks and only requires 2 edges in each of forward and

backward directions to be stored for each task to build TDG,

thus making space requirements of TDG small. For example,

as shown in Figure 6, the task 7 with turn value 11 depends

453453

on its two adjacent tasks 1 & 13 with turn 01. Thus, a task

with turn value 11 cannot be scheduled until the two adjacent

tasks with turn 01 have finished. However, tasks 7 and 9 are

independent. Thus, if the two adjacent tasks of task 9 have

finished, task 9 is ready to be scheduled, even if the adjacent

tasks of 7 are still running. It is this property of TDG that

gives the maximum concurrency and eliminates the need for

global barrier. Once task 9 finishes, it only needs to check

the successor tasks 8 & 10 with turn value 10 if they are

ready to be scheduled, i.e. if there other adjacent task has

finished or not e.g. for task 8, if task 7 is already finished

then task 8 is ready for scheduling and will be enqueued,

otherwise when task 7 would finish its execution, it would

enqueue task 8.

3) Use of Priority Queue: We use a queue to hold all

the tasks that are ready for execution. As soon as a thread

becomes free, it dequeues a new task from the queue. This

avoids parallel updates, as two ready tasks can never update

the same grid point. In addition, it helps to maintain load

balance. However, occasionally a task with large number of

samples gets enqueued much later in the execution due to

its dependence chain. Meanwhile, many smaller tasks get

enqueued in front of large task. Hence, by the time large

task moves to the front of the queue and starts executing,

most of the smaller tasks have finished execution and soon

queue becomes empty. Thus, except the thread executing

larger task, all other threads become idle waiting for the

large task to finish. This results in high load imbalance. We

address this situation by using a priority queue instead of

normal queue. Priority queues ensures that ready task with

the largest number of samples is always at the front of the

queue ahead of tasks with smaller number of samples. As a

result, larger tasks get scheduled for execution before smaller

tasks. This significantly improves load balance, especially

with large number of threads.

4) Selective Privatization with Reduction: While the pri-

ority queue provides good load balancing, to maintain mu-

tual exclusion it needs to execute adjacent tasks sequentially.

If input samples have a very high density in small region

compared to rest of the grid (similar to center region shown

in Fig. 4), the overall speedup is limited by the sequential

execution of tasks in the dense region. One way to avoid

this situation is by having smaller width of partitions in

the dense region. However, since minimum width of a

partition is limited by size of W, beyond a certain limit,

we can not shrink a partition and therefore, can not reduce

number of samples in such tasks. The problem is more likely

to happen for smaller sizes of N and for a system with

large number of cores. To address this problem, we use

selective privatization of tasks. A task which is too dense

and can significantly increase the length of the critical path is

privatized. Such task store all sample updates into a Private

temporary buffer, which is latter merged into the global grid.

This is significantly faster than privatizing the entire grid.

We use a simple criteria to determine which tasks need

privatization. If number of samples in a task exceeds certain

threshold we privatize it. For M samples, P processors and

d dimensions, threshold is calculated using Eq. 6.

Threshold =
M

P × 2d+1
(6)

The reason behind this is as follows. We calculate average

number of samples to be processed per thread. If a group

of tasks that execute serially, have more samples than the

average number of samples per thread, we expect that group

to execute longer than others. In any group of adjacent tasks,

there are minimum of 2d tasks that need to execute serially

(it is the number of turns in our task queue scheduling

algorithm). Thus, the threshold is the ration between the

average number of samples per thread to the minimum

number of tasks that execute serially. We further divide it by

2 to add additional tolerance for handling delayed queuing.

As a part of preprocessing we identify which tasks need

to be privatized. Once a task is marked for privatization, it

allocates a private copy of that portion of the grid that this

task needs to update. As a result, such task gets immediately

executed, bypassing the queue, as soon as a free thread

becomes available. When task finishes execution it gets

enqueued, similar to other (non-private) tasks, to perform the

reduction operation. Decoupling reduction from convolution

operation allows more expensive convolution operation to

proceed early. This reduces the length of the critical path

and improves overall scalability. This effectively eliminates

this task from the critical path.

C. Using SIMD for Convolution

Modern parallel architectures enjoy high fraction of their

peak performance due to SIMD support. As SIMD width

continues to increase, parallel algorithms should exploit

SIMD effectively, or large fraction of the system will be

underutilized.

A straightforward way to exploit SIMD in convolution

is assign one sample to a SIMD lane. This however, has

several drawbacks. First, this requires addressing the prob-

lem of simultaneous updates, described earlier, when two

samples which modify the same grid point are processed

in the same SIMD packet. Second, and most important, is

the problem of irregular data accesses, where two sample

points require accessing data in different cache line, called

gather operation. Modern CPU offer no hardware support

for gather. Even if such support is available, as in GPU

architectures [32], the performance will still be low due to

large amount of coalescing required.

To address this problem, we propose hybrid SIMD-

friendly implementation. Fig. 7 shows the break down of

execution time between Part 1 and Part 2 of convolution (see

Figure 2). We see that Part 1, constitutes a small fraction

of execution time, compared to Part 2, especially for larger

454454

���

���

���

����
�
�	�� �
�	��

��

���

 !� !� !� !�

Figure 7. Relative Execution Time for Kernel values and Coordinates
Computation (Part 1) and Interpolation (Part 2) of Convolution

W. In the Part 1 where grid coordinates and interpolation

kernel values are computed for a given sample point, there

is very little or no scope for using SIMD within a single

sample processing. So we process one sample per SIMD

lane/channel. In the second part, except for samples near

eages, the inner most loop performs updates to consecutive

grid cells, and hence maps well to SIMD. As a result, our

hybrid implementation, uses SIMD across points for low

overhead Part 1 and SIMD within a point for high overhead

Part 2. Note for small W, amount of parallelism within inner

loop over z is limited. In this case, we exploit SIMD across

several y iterations to keep SIMD utilization high. While

this require additional loads to access non-contiguous data

across several y iterations, and thus reduces SIMD benefits,

the number of such accesses and hence the loss in SIMD

efficiency is much less, compared to across point approach.

D. Samples Re-ordering for Better Cache Re-use

In order to improve temporal and spatial locality of

accesses to both samples as well as grid points, we re-order

sample points. To do that, we use simple scan-line order

with one level of tiling. While there exist more complicated

reordering algorithms, such as space-filling curve [33], our

simple reordering was able to reduce cache miss latency to

25% in the worst case of radial dataset, where samples are

sparsely distributed further away from the center and amount

of reuse is therefore limited.

IV. EXPERIMENTAL SETUP

A. Dataset types and sizes

To evaluate performance of our NUFFT implementation,

we used three different types of datasets, Radial, Random,

and Spiral. These datasets, which correspond to three spec-

tral sampling strategies, described in Section II-C, were

identified both for their practical utility and breadth of

characteristics. Transform absolute and relative dimensions

were analogously selected to be representative of the domain

that is currently considered challenging in practice. Table I

shows values of dimension size of a 3D image (N), number

of interleaves (S), samples per interleave (K) and sampling

rate (SR) used to generate different sample datasets. Since

Table I
DATASET PARAMETERS USED TO GENERATE 3 TYPES OF DATASESTS

Dataset N K S SR
1 128 256 4096 0.5
2 256 512 24576 0.75
3 256 512 32768 1
4 256 512 40960 1.25
5 320 640 12800 0.25

combination of different types of datasets with different

dataset parameter is too large, we use subset of datasets for

each of our evaluations. We evaluated our implementation

for four different convolution radii: W = 2,W = 4,W = 6
and W = 8. Unless otherwise stated, we use datasets with

N = 256, SR = 0.75 and W = 4 for most of our

experiments. The kernel used is the Kaiser-Bessel function

and oversampling (α) is 2.

B. Machine Configuration

Our experimental testbed consists of a quad-socket Intel R©

Xeon R© E7-4870 processor based server (henceforth called

WSM40C). This is an x86-based multi-core architecture,

which provides four sockets of ten cores each. Each core is

running at 2.4 GHz. The architecture features a super-scalar

out-of-order micro-architecture supporting 2-way hyper-

threading. In addition to scalar units, it has 4-wide integer

and single precision floating point SIMD units that support

a wide range of SIMD instructions called SSE4 [34]. In

a single cycle, it can issue a 4-wide floating-point multiply

and add to two different pipelines. Compared to architectures

which only have fused multiply-add unit, such as [32], it

can achieve full hardware utilization, even in case when

multiply and add can not be fused. Each core is backed

by a 64 KiB L1 and a 256 KiB L2 cache, and all 10 cores

share a 30 MiB last level L3 cache. Together, the forty cores

can deliver a peak performance of 768 Gflop/s of single-

precision arithmetic. The system has 256 GiB 1067 MHz

DDR3 memory.

V. RESULTS & ANALYSIS

In this section we evaluate the performance of our imple-

mentation. We report performance of the entire NUFFT, as

well as its main components, in particular convolution algo-

rithms. Furthermore, we adopted a highly optimized FFT

implementation from Intel’s Math Kernel Library (MKL)

10.3.

First we show overall performance of our implementation

on WSM40C. Then we show multi-core scaling of our

algorithm with respect to optimized single core performance

across different datasets, while varying image and convolu-

tion kernel sizes. Finally, we quantify the effect of each

individual optimization.

A. Overall Performance

Table II shows execution time, averaged across all

datasets, for our most optimized version (row 2) running on

455455

"�

"��

���

��

��������	
���

���	�
���
	�
� �
��
��	�
� ������ �
���
����
����	�
�

��

"#�

���

��

��
�����	
���

Figure 8. Typical Execution Time Breakdown for Optimized Parallel Code
(N = 256,K = 512, S = 24649, SR = 0.75,W = 4) running on
Intel R© Xeon R© E7-4870 Processor

all 40 cores, compared with sequential baseline code running

on a single core. Note that FFT code is always optimized

on any number of cores, since it is a library routine. As

row three shows, our optimizations improved convolution

performance by almost 150X. 3D FFT scales 28X on 40

cores. The entire NUFFT improved 93X.

Table II
OPTIMIZED PERFORMANCE COMPARED TO SCALAR SEQUENTIAL

BASELINE FOR W = 4, N = 256 AND SR = 0.75

Convolution 3D FFT NUFFT
Baseline (sec) 71.2 5.9 78.0
Most Optimized (sec) 0.5 0.2 0.9
Speedup 147.5x 28.3x 92.8x

Figure 8 shows execution time breakdown after applying

all of optimizations. Compared to Figure 3, we see that

performance gap between FFT and Convolution has signif-

icantly reduced.

Next in Table III, we show performance of Adjoint

and Forward convolution in Million samples processed per

second (SPS) for different sizes of W . Since Adjoint con-

volution involves update to Cartesian grid its performance

is always slightly less than performance of Forward con-

volution. We found that SPS are similar (within 10%) for

various image sizes (N) and different sampling rates (SR).

SPSs are also similar for different datasets when W is large.

This makes sense, as convolution does O(W 3) amount of

work per pixel, which dominates, when W is large. On

the other hand for smaller W, convolution performance is

dataset dependent. For example, for W = 2, Radial achieves

145 SPS, while Spiral achieves 222 SPS: 1.5X faster. This

is due to the fact that irregular datasets, such as Radial,

suffer from more cache misses, compared to more regular

datasets, such as Spiral, which lowers the performance. As-

suming 3̃× (2W)3 Flops per sample (and ignoring address

computation overhead), our implementation achieves 0.7 to

3 GFlops/s/core with an average of 2 GFlops/s/core
across all datasets and different values of W.

Table III
PERFORMANCE OF ADJOINT AND FORWARD CONVOLUTION IN

MILLION SAMPLES CONVOLVED PER SECOND

W=2 W=4 W=6 W=8

ADJ FWD ADJ FWD ADJ FWD ADJ FWD

Radial 145.1 190.7 48.2 60.5 14.1 18.3 6.6 10.2

Random 169.3 194.0 54.2 60.9 14.7 19.3 6.8 10.3

Spiral 222.6 236.7 58.1 64.8 14.7 19.6 7.2 9.4

B. Scalability versus Problem Parameters

In this section we evaluate robustness of our algorithm

by varying problem parameters. We report scalability with

respect to the performance of optimized single core imple-

mentation that uses SMT. To save space, we only show

scalability for 10, 20 and 40 Cores. Figure 10 shows

performance scaling with select values of N and W . For

most of other combinations of N and W as well as for

different SR, we get speedup between 30x and 35x for

Adjoint convolution and between 35x and 40x for forward

convolution with average of more than 35x on 40 Cores.

We also observe that for large number of threads and smaller

W and N both convolutions scales worse than for larger W
and N . For example, for W = 2 and N = 256, ADJ scales

28X on Spiral dataset, while for W = 8 and N = 256,

ADJ scales 32X on the same dataset. This is mainly due to

decreased amount of work done per thread, and therefore

higher overhead of task management.

C. Incremental Performance Results

Figure 9 shows performance improvement due to each in-

dividual optimization for convolution and the entire NUFFT

over corresponding baseline implementation (‘Base’). The

results are averaged over all three datasets. Since we use

library implementation of 3D FFT, its performance does

not change with our individual optimizations. However, we

show how performance of 3D FFT, over increasing number

of cores, affects performance of entire NUFFT. Our first

optimization, called ‘Reorder’, divides samples into tasks

and reorders them withing each task, as described in Section

III-D. On average this optimization results 7% improvement

over Base.

Our next optimization, ‘SIMD’, vectorizes convolution

code, as explained in Section III-C. On average SIMD

#�$�

���$� ��#$"

"�$�
��$# ��$�

��$#
��$� ��$�

�$�

�$�

��$�

��$�

��$�

���$�

�"�$�

��
�

��
��

��
 �

��
��

!�
��

��
�

�
"�

��
�#$

�%
�&

�
��
��	�
�

%����

������

�$�#

�$�

�$�

��
��

��
�

Figure 9. Speedup with successive optimizations

456456

�
"
��
�"
��
�"
��
�"
��
�"

&�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � ���
��

�
��

�'
��

�(
�)

��
��

��
*

��
"�

��
�+

��
,�

�(
��

��
����
��(����
��(����
��(

&�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � � &�' � �

�
)�
� �
�)
* +,��
� �
)�
� �
�)
* +,��
� �
)�
� �
�)
* +,��
� �
)�
� �
�)
* +,��
�

 !�-�%!�"� !�-�%!�"� !�-�%!��� !�-�%!���

��
��

�

Figure 10. Performance Scaling Across Different W and N

improves performance by 3.4x. Next we parallelize the code

using techniques discussed in Section III-B. The graph

shows scalability from one to 40 cores. Finally, we get

another 7% speedup for convolution by using SMT. The

SMT speedup corresponds to overall scalability reported in

Table II.

D. Optimizations Analysis

In this section we quantify the performance benefits of

various optimizations in our parallel algorithm. Recall that

main goal of these optimizations is to improve scalability

for large number of cores. We present scalability data for

10, 20 and 40 cores, respectively.

1) Fixed versus Variable Width Partitions: Figure 11

shows scalability of our algorithm with respect to optimized

single core performance when we use fixed width partition-

ing versus a variable width partitioning. For this evaluation,

we use radial datasets with three different sizes: N = 128,

N = 256, and N = 320. We picked radial datasets because

they have very irregular distribution of samples: very high

sample density at the center and very sparse density towards

the edges. As a result, this dataset is the most challenging

to scale to a large number of cores. As figure shows, fixed

width partitioning does not scale well beyond 10 cores

and for larger N scalability is poor even with 10 cores.

This is due to the fact that in order to accommodate non-

uniform density, fixed size partitioning creates large number

of tasks with a few samples per task. As number of cores

increases, this causes higher overhead of task enqueuing and

de-queuing and results in poor scalability.

However, with variable width partitioning performance

scales very well in all the cases. This is due to the fact

that we have fewer tasks, and as a result larger number of

samples per task, which reduces task queue overhead.

2) Selective Privatization: In Figure 12, Group A and

B shows scalability of our algorithm without and with

selective privatization. Again, we use radial datasets for

evaluation. As discussed in Section III-B4, we expect smaller

datasets to see higher benefits from privatization, Indeed

�
"
��
�"
��
�"
��
�"
��
�"

��
�

��
�'

��
�(

�)
��

��
��

*
��

��
��

+�
�,

��
(

��
��

����
��(����
��(����
��(

�
&�' � � &�' � � &�' � � &�' � � &�' � � &�' � �

%!��� %!�"� %!��� %!��� %!�"� %!���

./�
�� �)	0��
�	�	�
�(1
��
2��� �)	0��
�	�	�
�(

��
��

��
�

"�

Figure 11. Fixed Vs. Variable Width Partitions

for N = 128, even at 10 cores we get 73% additional

performance by privatizing selective tasks. With 40 cores,

performance advantage of privatization further increases to

3.5x. The advantage of privatization continues to show for

larger values of N = 256 and N = 320, although it is

reduced to 2.7x and 1.8x, respectively. Note however that

privatization comes with an additional overhead of reducing

privatized part into a global Cartesian grid. The high perfor-

mance advantage of selective privatization stems from the

fact that it breaks sequential dependencies among tasks in a

few small but computationally expensive dense regions. By

selectively breaking these dependencies only within such,

we avoid high overhead of full reduction, if entire 3D grid

was privatized. However, even small amount of reduction

has its overhead. This is the reasons for lower scalability of

adjoint convolution compared to forward convolution when

using 40 cores (Figure 10). However, it is very obvious from

Figure 12, that reduction overhead is much smaller compared

to the loss in scalability without selective privatization.

3) Normal versus Priority Queue (PQ): We also evaluate

scalability with and without PQ, again using radial dataset.

In Figure 12, bars in group B & C show scalability without

and with PQ. We see that benefits of PQ increase with the

number of cores. For example, while PQ does not offer

any significant benefit for 10 cores, on average it improves

457457

�
"
��
�"
��
�"
��
�"
��
�"

��
�

��
�'

��
�(

�)
��

��
��

*
��

��
��

+�
�,

��
(

��
��

����
��(����
��(����
��(

�
& 3 � & 3 � & 3 �

%!��� %!�"� %!�����
��

��
�

"�

� 4 %
�������������$ 4 5��6�����
	��
	�
�
"�4 ����
	��
	�
��7�	0����
��	6�8����

Figure 12. Scalability of algorithm for Adjoint Convolution with and
without use of Priority Queue and Selective Privatization

�$�
�$"
�$�
�$"
�$�
�$"
�$�

��
��

��
���

��
-.

/

&�' � �

�$�
�$"

�
)�
� �
�)
* �
)�
� �
�)
* �
)�
� �
�)
*

 !� !� !�

��
��

��

Figure 13. Speedup due to SIMD

scalability by about 10% for 20 cores and 30% for 40

cores. N = 128 enjoys as much as 45% improvement when

running on 40 cores. In general, when there are large number

of parallel threads running, PQ helps improves performance

by scheduling longer running tasks at the earliest, thus

reducing chances for a longer running task to keep running

while all other tasks have finished execution and thus causing

a load imbalance.

4) SIMD Performance: Figure 13 shows speedup due

to SSE achieved over scalar code on a single core. The

results are shown for Radial and Random datasets, W = 2,

W = 4 and W = 8. Results for Spiral dataset are similar

to Radial. We see that speedup increases with W . For

example, in case of forward convolution, speedup increases

from 3.2x for W = 4 to over 3.8x for W = 8. Speedup

for W = 2 is more modest. Specifically, we achieve 3.2x

for adjoint and 2.8x for forward convolution, respectively.

As discussed in Section III-C, for smaller W amount of

parallelism within inner loop is limited. As a result, we

explore SSE across several iterations of the next outer-

loop (over y), which introduces extra load instructions. This

lowers SSE efficiency due to limited number of vector load

ports. Finally, note that forward convolution scales worse

with SSE than adjoint. This is due to the fact that, as shown

in Figure 2 (middle), forward convolution requires additional

reduction into raw[p], which incurs extra overhead.

E. Pre-processing Overhead

As mentioned earlier, in order to get best speedup over

multiple iterations, we perform preprocessing of input sam-

ples. We divide them into tasks and perform sample re-

ordering for better cache utilization. All of this add-up

to a one time pre-processing overhead. A comparison of

execution time required for both the pre-processing and one

iteration of NUFFT (which includes one call to Forward

and Adjoint operators) is shown in Figure 14. Due to the

fact that pre-processing involves a significant amount of

serial code, it does not scale well with cores. As a result

ratio of pre-processing execution time to one iteration of

NUFFT increases from 0.16 on a single core to 1.67x

on 40 cores. However, for an iterative solver, the cost of

preprocessing is amortized over 10s to 100s iterations, each

of which calls NUFFT. Additionally, due to the fact that the

same spectral sampling patterns are often reused in practical

applications (e.g., tomography), the preprocessing can be

performed offline and reused, in the same manner that the

FFTW library [35] reuses “wisdom”.

�

�

�

�
��

(
��

��
��

��
��

�% 5����	��
	�
��
��
%������9� �:&�';

���4,�
��((��<�
5���0�
)

�

�

���
�� ���
��("��
��(����
��(����
��(����
��(

01
��

�

Figure 14. Pre-processing Overhead

VI. PREVIOUS WORK

Due to the fact that the NUFFT is the computational

bottleneck for many numerical problems, there have been a

number of previous attempts to accelerate its performance.

Early works by Dale et al. [15] and Beatty et al. [16]

investigated the use of lookup tables and optimal mini-

mum width interpolation kernels to reduce the number of

operations required by an NUFFT evaluation, respectively.

Schiwietz et al. [20] were the first to utilize specialized

hardware to accelerated NUFFT computation. By taking

advantage of the native image rotation capabilities of their

ATI RadeonTM X1800 XT card, they were able to acceler-

ate adjoint NUFFT computations for radially-sampled 2D

spectral data by up to 3.5x compared to the implementation

running on a single 3.0GHz Pentium 4 processor system.

Sorensen et al. [17] later considered acceleration of both the

forward and backward NUFFT for generic spectral sampling

distributions, and explicitly noted the challenge associated

with parallelizing the adjoint transform while avoiding race

conditions. In that work, the authors propose to divide 2D

Cartesian grid into rectangular regions and process each

458458

region on a distinct processor. They also preprocess the raw

samples to identify set of samples that convolve into specific

region of Cartesian grid. Their approach has an overhead

where single sample may need to be processed by multiple

processors and overhead increases significantly for larger

size of convolution window(W). Also, unlike our approach,

their approach can significantly suffer from load balancing

issues if samples have highly irregular distribution. On ATI

FireStreamTM 2U platform, using radial and spiral datasets

with W = 2, their 2D NUFFT implementation achieved up

to 20x speedup for both the forward and adjoint operators,

compared to 2.13 GHz dual-core CPU. Similarly, in [30],

Zhang et al. described two approaches for parallelizing

NUFFT. Both approaches use recursive partitioning for

better cache utilization. Their “source driven” parallelization

is similar to our approach but the task scheduling requires

multiple barriers across phases. Their second approach is

similar to the one proposed by Sorensen et al. and suffers

from similar overheads.

Several groups have also focused on accelerating the 3D

NUFFT, with particular focus on non-Cartesian MRI. In

[36], Shu et al. described a C-based multithreaded imple-

mentation of the 3D NUFFT that ran natively on the MRI

scanner console, and was able to perform a N = 240,K =
512, S = 8047,W = 2.5, OF ∼ 1.25 adjoint NUFFT in

about 15s. A more recent implementation of this group’s

work on a dual socket 12-core Intel R© Xeon R© X5670 based

server machine (WSM12C) running at 2.93GHz with 12MB

cache and 24GB DDR3 1333MHz memory that employed

thread privatization for parallelization of the adjoint operator

was able to execute in only about 1.4s for the adjoint and

0.9s for the forward NUFFT. We ran our implementation us-

ing the same parameters except that we set W = 4. Table IV

shows a comparison of performance on the same hardware

(WSM12C) as well on the latest dual socket 16-core Intel R©

Xeon R© E5-2670 processor based server (SNB16C). Even

with larger W, our implementation runs about 4.26x faster

on the same hardware and about 6.69x faster on SNB16C.

In [21], Nam et al. described 3D NUFFT implementation

on the recent NVIDIA R© GeForce R© GTX 480 hardware.

For N = 344, S = 9000,K = 344 their implementation

finished forward and adjoint NUFFT in only 0.66s and

0.94s, respectively. Table V compares their performance with

WSM12C and SNB16C. We see that while the performance

of our WSM12C implementation is within 10% of theirs, our

SNB16C is 1.44x faster. Finally, Obeid et al. [37] described

an NVIDIA R© C2050 implementation of the adjoint convo-

lution of 3D NUFFT for K × S = 2655910 and N = 256,

that finishes in 1s by utilizing a gather rather than scatter

approach for updating Cartesian grid, and using a set of

preprocessed proximal bins for the neighbor search. Even

this approach requires multiple visits to same sample point

and does not scale with large convolution window sizes.

Table IV
COMPARISON OF PERFORMANCE BETWEEN MULTI-CORE CPU BASED

IMPLEMENTATIONS

Our Implementation Shu et al.
WSM12C SNB16C WSM12C

ADJ NUFFT (sec) 0.28 0.18 1.40
FWD NUFFT (sec) 0.26 0.17 0.90
Total (sec) 0.54 0.34 2.30
Speedup 4.26x 6.69x 1.00x

Table V
COMPARISON OF PERFORMANCE BETWEEN MULTI-CORE CPU BASED

IMPLEMENTATIONS AND GPU BASED IMPLEMENTATION

Multi-core CPUs GPU
WSM12C SNB16C GTX480

ADJ NUFFT (sec) 0.93 0.58 0.94
FWD NUFFT (sec) 0.87 0.54 0.66
Total (sec) 1.79 1.11 1.60
Speedup 0.89x 1.44x 1.00x

VII. CONCLUSIONS

In this paper, we have proposed a novel and highly

scalable algorithm for performing NUFFT on x86-based

multi-core CPUs. Our algorithm achieves high parallel ef-

ficiency and makes good use of SIMD. We demonstrate

on average 90% SIMD efficiency using SSE as well up to

linear scalability on a quad-socket 40-core Intel R© Xeon R©

E7-4870 processor based server. On dual socket Intel R©

Xeon R© X5670 based server, our NUFFT implementation

is more than 4x faster when compared to the best available

NUFFT3D implementation, when run on the same hardware.

On Intel R© Xeon R© E5-2670 , our NUFFT implementation is

almost 1.5X faster than the best available NUFFT implemen-

tation today. Such speed improvement opens new usages for

NUFFT, as well as enables practical application of iterative

algorithms which require many successive NUFFT calls,

such as 3D MRI reconstruction.

REFERENCES

[1] J. Cooley and J. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Math. Comp., vol. 19,
no. 1, pp. 297–301, 1965.

[2] H. Schomberg and J. Timmer, “The gridding method for
image reconstruction by Fourier transformation,” IEEE Trans.
Med. Imag., vol. 14, no. 3, pp. 596–607, 1995.

[3] J. Fessler and B. Sutton, “Nonuniform fast Fourier transforms
using min-max interpolation,” IEEE Trans. Sig. Proc., vol. 51,
no. 2, pp. 560–564, 2003.

[4] B. Sutton, D. Noll, and J. Fessler, “Fast, iterative image recon-
struction for MRI in the presence of field inhomogeneities,”
IEEE Trans. Med. Imag., vol. 22, no. 2, pp. 178–1888, 2003.

[5] H. Choi and D. Munson, “Direct-Fourier reconstruction in
tomography and synthetic aperture radar,” Int. J. Imag. Syst.
Tech, vol. 9, no. 1, pp. 1–13, 1998.

[6] E. Candés and D. Donoho, “Ridgelets: a key to higher-
dimensional intermittency?” Phil. Trans. R. Soc. Lond. A.,
vol. 357, no. 1760, pp. 2495–2509, 1999.

459459

[7] S. Bhandarkar, X. Luo, R. Daniels, and E. Tollner, “Auto-
mated planning and optimization of lumber production using
machine vision and computed tomography,” IEEE Trans.
Auto. Sci. Eng, vol. 5, no. 4, pp. 677–695, 2008.

[8] E. Angelidis and J. Diamessis, “A novel method for designing
FIR digital filters with nonuniform frequency samples,” IEEE
Trans. Sig. Proc., vol. 42, no. 2, pp. 259–267, 1994.

[9] J. Strain, “Fast potential theory II: Layer potentials and
discrete sums,” J. Comp. Physics, vol. 99, no. 2, pp. 251–
270, 1992.

[10] A. Dutt and V. Rokhlin, “Fast Fourier transforms for noneq-
uispaced data,” SIAM J. Sci. Comp., vol. 14, no. 6, pp. 1368–
1393, 1993.

[11] V. Rokhlin and A. Dutt, “Fast Fourier transforms for noneq-
uispaced data, II,” Appl. Comp. Harm. Anal., vol. 2, no. 1,
pp. 85–100, 1993.

[12] A. Ware, “Fast approximate fourier transforms for irregularly
spaced data,” SIAM Rev., vol. 40, pp. 838–856, 1998.

[13] Q. Liu and N. Nguyen, “An accurate algorithm for non-
uniform fast fourier transforms (NUFFTs),” IEEE Micro.
Guided Wave Let., vol. 8, no. 1, pp. 18–20, 1998.

[14] L. Greengard and J. Lee, “Accelerating the nonuniform fast
Fourier transform,” SIAM Rev., vol. 46, no. 3, pp. 443–454,
2004.

[15] B. Dale, M.Wendt, and J. Duerk, “A rapid look-up table
method for reconstructing MR images from arbitrary k-space
trajectories,” IEEE Trans. Med. Imag., vol. 20, no. 3, pp. 207–
217, 2001.

[16] P. Beatty, D. Nishimura, and J. Pauly, “Rapid gridding re-
construction with minimal oversampling ratio,” IEEE Trans.
Med. Imag., vol. 24, no. 6, pp. 799–808, 2005.

[17] T. Sorensen, T. Schaeffter, K. Noe, and M. Hansen, “Acceler-
ating the nonequispaced fast Fourier transform on commodity
graphics hardware,” IEEE Trans. Med. Imag., vol. 27, no. 4,
pp. 538–547, 2008.

[18] Y. Shu, J. Trzasko, J. Huston, A. Manduca, and M. Bernstein,
“Single phase 3D contrast-enhanced intracranial magnetic res-
onance angiography with undersampled SWIRLS trajectory at
3T,” in Proc. of the ISMRM, May 2011, p. 2656.

[19] S. Kestur, P. Sungho, and K. I. V. Narayanan, “Accelerating
the nonuniform fast Fourier transform using FPGAs,” in
Proceedings of FCCM, May 2010, pp. 19–26.

[20] T. Schiwietz, T. Chang, P. Speier, and R. Westermann, “MR
image reconstruction on the GPU,” in Proc. of the SPIE:
Medical Imaging, February 2006, p. 61423T.

[21] S. Nam, T. Basha, M. A. C. Stehning, W. Manning, V. Tarokh,
and R. Nezafat, “A GPU implementation of compressed
sensing reconstruction of 3D radial (kooshball) acquisition
for high-resolution cardiac MRI,” in Proc. of the ISMRM,
May 2011, p. 2548.

[22] “Intel Advanced Vector Exten-
sions Programming Reference,” 2008,
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-
AVX-Programming-Reference-31943302.pdf.

[23] A. Barger, W. Block, Y. Toropov, T. Grist, and C. Mistretta,
“Time-resolved contrast-enhanced imaging with isotropic res-
olution and broad coverage using an undersampled 3D projec-
tion trajectory,” Magn. Res. Med., vol. 48, no. 2, pp. 297–305,
2002.

[24] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information,” IEEE Trans. Info. Theory, vol. 52,
no. 2, pp. 489–509, 2006.

[25] D. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[26] M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: The
application of compressed sensing for rapid MR imaging,”
Magn. Res. Med., vol. 58, no. 6, pp. 1182–1195, 2007.

[27] J. Trzasko and A. Manduca, “Highly undersampled mag-
netic resonance image reconstruction via homotopic �0-
minimization,” IEEE Trans. Med. Imag., vol. 28, no. 1, pp.
106–121, 2009.

[28] P. Irarrazabel and D. Nishimura, “Fast three dimensional
magnetic resonance imaging,” Magn. Res. Med., vol. 33,
no. 5, pp. 656–662, 1995.

[29] FFTW3 Interface to Intel Math Kernel Library,
“http://software.intel.com/sites/products/documentation/hpc
/compilerpro/en-us/cpp/win/mkl/refman/appendices/
mkl appg fftw3 intro.html.”

[30] Y. Zhang, J. Liu, E. Kultursay, M. Kandemir, N. Pitsianis, and
X. Sun, “Scalable parallelization strategies to accelerate nufft
data translation on multicores,” in Proceedings of the 16th
international Euro-Par conference on Parallel processing:
Part II, ser. Euro-Par’10, 2010, pp. 125–136.

[31] C. Savage, “A survey of combinatorial gray codes,” SIAM
Rev., vol. 39, pp. 605–629, December 1997.

[32] N. Leischner, V. Osipov, and P. Sanders, “Fermi Architecture
White Paper,” 2009.

[33] J. Mellor-Crummey, D. Whalley, and K. Kennedy, “Improv-
ing memory hierarchy performance for irregular applications
using data and computation reorderings,” Int. J. Parallel
Program., vol. 29, pp. 217–247, June 2001.

[34] “Intel SSE4 programming reference,” 2007,
http://www.intel.com/design/processor/manuals/253667.pdf.

[35] FFTW3 Library, “http://www.fftw.org.”

[36] Y. Shu, M. Bernstein, J. Huston, and D. Rettmann, “Contrast-
enhanced intracranial magnetic resonance angiography with a
spherical shells trajectory and online gridding reconstruction,”
J. Magn. Res. Imag., vol. 30, no. 5, pp. 1101–1109, 2009.

[37] N. Obeid, I. Atkinson, K. Thulborn, and W. Hwu, “GPU
accelerated gridding for rapid reconstruction of non-cartesian
MRI,” in Proc. of the ISMRM, May 2011, p. 2547.

460460

