International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5 No. 2,2013-Pp:19-25
©gopalax journals,singapore
ISSN:0976-268X
Paper Received :04-03-2013 Paper Published:14-04-2013

HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

P.PALANI
Assistant Professor
Department of Mathematics
Sri Vidya Mandir Arts \& Science College
Uthangarai, Krishnagiri (DT)-636902, T.N. India.
S.JAIKUMAR
Assistant Professor
Department of Mathematics
Sri Vidya Mandir Arts \& Science College
Uthangarai, Krishnagiri (DT)-636902, T.N. India.

Abstract

In this paper,we establish the general solution and the generalized Hyers-Ulam stability problem for the equation $f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+6 f(x)$,

1. Introduction

In 1940, S.M.Ulam [20] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of homomorphisms:

It is significant for us to decrease the possible estimator of the stability problem for the functional equations. This work is possible if we consider the stability problem in the of Hyers-Ulam-Rassias for a functional equations(1). As a reselt, we have much better possible upper bounds for the equations (1) than those of Czerwik [4] and Skof-Cholewa[3].
Solution of $f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+6 f(x)$,
Let \square^{+}denote the set of all nonnegative real numbers and let both E_{1} and E_{2} be the vector spaces.
We here present the general solution of (1)

Theorem 1

Let $\phi: X^{2} \rightarrow \square^{+}$be a function such that

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{\phi\left(2^{i} x, 0\right)}{4^{i}} \quad\left(\sum_{i=1}^{\infty} 4^{i} \phi\left(\frac{x}{2^{i}}, 0\right) \text {, respectively }\right) \tag{2}
\end{equation*}
$$

Converges and
$\lim _{n \rightarrow \infty} \frac{\phi\left(2^{n} x, 2^{n} y\right)}{4^{n}}=0 \quad\left(\lim _{n \rightarrow \infty} 4^{n} \phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0\right), \forall x, y \in E_{1}$.

Suppose that a function $f: X \rightarrow Y$ Satisfies

$$
\begin{equation*}
\|f(2 x+y)+f(2 x-y)-f(x+y)-f(x-y)-6 f(x)\| \leq \phi(x, y), \forall x, y \in E_{1} . \tag{4}
\end{equation*}
$$

For all $x, y \in X$. Then there exists a unique quadratic function $T: X \rightarrow Y$ Which Satisfies the equation (2.3) and the inequality
$\|f(x)-T(x)\| \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\phi\left(2^{i} x, 0\right)}{4^{i}}$
$\left(\|f(x)-T(x)\| \leq \frac{1}{8} \sum_{i=1}^{\infty} 4^{i} \phi\left(\frac{x}{2^{i}}, 0\right)\right)$,
for all $x \in X$. The function T is given by
$T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}} \quad\left(T(x)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)\right)$
for all $x \in X$.
Proof:
Putting y $=0$ in $f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+6 f(x)$, and divided by 8 , we have $\left\|\frac{f(2 x)}{4}-f(x)\right\| \leq \frac{1}{8} \phi(x, 0)$
for all $x \in X$. Replacing x by 2 x in (7) and dividing by 4 and summing the resulting inequality with (7), we get
$\left\|\frac{f\left(2^{2} x\right)}{4^{2}}-f(x)\right\| \leq \frac{1}{8}\left[\phi(x, 0)+\frac{\phi(2 x, 0)}{4}\right]$
for all $x \in X$. Using the induction on a positive integer n , we obtain that

$$
\begin{align*}
& \left\|\frac{f\left(2^{n} x\right)}{4^{n}}-f(x)\right\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{\phi\left(2^{i} x, 0\right)}{4^{i}} \tag{9}\\
& \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\phi\left(2^{i} x, 0\right)}{4^{i}}
\end{align*}
$$

for all $x \in X$. In order to prove convergence of the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$, we divide inequality (9) by 4^{m} and also replace x by $2^{m} x$ to find that for $\mathrm{n}, \mathrm{m}>0$,

$$
\begin{align*}
& \left\|\frac{f\left(2^{n} 2^{m} x\right)}{4^{n+m}}-\frac{f\left(2^{m} x\right)}{4^{m}}\right\|=\frac{1}{4^{m}}\left\|\frac{f\left(2^{n} 2^{m} x\right)}{4^{n}}-f\left(2^{m} x\right)\right\| \tag{10}\\
& \leq \frac{1}{8.4^{m}} \sum_{i=0}^{n-1} \frac{\phi\left(2^{i} 2^{m} x, 0\right)}{4^{i}} \\
& \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\phi\left(2^{i} 2^{m} x, 0\right)}{4^{m+i}} .
\end{align*}
$$

Since the right hand side of the inequality tends to 0 as m tends to infinity,the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence. Therefore, we may define $T(x)=\lim _{n \rightarrow \infty} 2^{-2 n} f\left(2^{n} x\right)$ for all $x \in X$.
By letting $n \rightarrow \infty$ in (9), we arrive at the formula (5).
To show that T satisfies the equation (2.3), replace x, y by $2^{n} x, 2^{n} y$, respectively in

$$
\begin{aligned}
& f(2 x+y)+f(2 x-y)=f(x+y)+f(x-y)+6 f(x), \text { and divided by } 4^{n} \text {, then it follows that } \\
& 4^{-n}\left\|f\left(2^{n}(2 x+y)\right)+f\left(2^{n}(2 x-y)\right)-f\left(2^{n}(x+y)\right)-f\left(2^{n}(x-y)\right)-6 f\left(2^{n} x\right)\right\| \leq 4^{-n} \phi\left(2^{n} x, 2^{n} y\right) .
\end{aligned}
$$

Taking the limits as $n \rightarrow \infty$, we find that T satisfies (2.3) for all $x, y \in X$.
To prove the uniqueness of the quadratic function T subject to (1), let us assume that there exists a quadratic function $S: X \rightarrow Y$ which satisfies (2.3) and the inequality (1).
Obviously, we have $S\left(2^{n} x\right)=4^{n} S(x)$ and $T\left(2^{n} x\right)=4^{n} T(x)$ For all $x \in X$ and $n \in \square$. Hence it follows from (1) that $\|S(x)-T(x)\|=4^{-n}\left\|S\left(2^{n} x\right)-T\left(2^{n} x\right)\right\|$

$$
\begin{aligned}
\leq & 4^{-n}\left(\left\|S\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|f\left(2^{n} x\right)-T\left(2^{n} x\right)\right\|\right) \\
& \leq \frac{1}{4} \sum_{i=0}^{\infty} \frac{\phi\left(2^{i} 2^{n} x, 0\right)}{4^{n+i}}
\end{aligned}
$$

For all $\quad x \in X$. By letting $n \rightarrow \infty$ in the preceding inequality,we immediately find the uniqueness of T . This completes the proof of the theorem.
Throughout this paper,Let B be a unital Banach algebra with norm|.|, and let ${ }_{B} B_{1}$ and ${ }_{B} B_{2}$ be the left Banach B-modules with norm $\|$.$\| and \|$.$\| ,respectively.$
A quadratic mapping $Q:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ is called B-quadratic if
$Q(a x)=a^{2} Q(x), \quad \forall a \in B, \forall x \in{ }_{B} B_{1}$.

Corollary1.1.

Let $\phi:{ }_{B} B_{1} \times{ }_{B} B_{1} \rightarrow \square^{+}$be a function satisfies (1) and (2) for all $x, y \in{ }_{B} B_{1}$. Suppose that a mapping $f:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ satisfies
$\left\|f(2 \alpha x+\alpha y)+f(2 \alpha x-\alpha y)-\alpha^{2} f(x+y)-\alpha^{2} f(x-y)-6 \alpha^{2} f(x)\right\| \leq \phi(x, y)$
For all $\alpha \in B(|\alpha|=1)$ and for all $x, y \in{ }_{B} B_{1,}$ and f is measurable or $\mathrm{f}(\mathrm{tx})$ is continuous in $t \in \square$ for each fixed $x \in{ }_{B} B_{1}$. Then there exists a unique B-quadratic mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$, defined by(5), which satisfies the equation (2.3) and the inequality (1) for all $x \in{ }_{B} B_{1}$.

Proof:

By theorem 3.1, it follows from the inequality of the statement for $\alpha=1$ that there exists a unique quadratic mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ satisfying the inequality(3.4) for all $x \in{ }_{B} B_{1}$. Under the assumption that f is measurable or $\mathrm{f}(\mathrm{tx})$ is continuous in $x \in \square$ for each fixed $x \in{ }_{B} B_{1,}$, by the same reasoning as the proof of [5], The quadratic mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$ satisfies $T(t x)=t^{2} T(x), \forall x \in{ }_{B} B_{1,} \forall t \in \square$.
That is, T is \square-quadratic. For each fixed $\alpha \in B(|\alpha|=1)$, replacing f by T and setting $\mathrm{y}=0$ in (2.3), we have $T(\alpha x)=\alpha^{2} T(x)$ for all $x \in{ }_{B} B_{1,}$ The last relation is also true for $\alpha=0$. For each element $\quad \alpha \in B(\alpha \neq 0), a=|a| \cdot \frac{a}{|a|}$.
Since T is \square-quadratic and $T(\alpha x)=\alpha^{2} T(x)$ for each element $\alpha \in B(|\alpha|=1)$,
$T(a x)=T\left(|a| \cdot \frac{a}{|a|} x\right)$
$=|a|^{2} \cdot T\left(\frac{a}{|a|} x\right)$
$=|a|^{2} \cdot \frac{a^{2}}{|a|^{2}} \cdot T(x)$
$=a^{2} T(x), \quad \forall a \in B(a \neq 0), \forall x \in{ }_{B} B_{1}$.
So the unique \square-quadratic mapping $T:{ }_{B} B_{1} \rightarrow{ }_{B} B_{2}$, is also B-quadratic, as desired.
This completes the proof of the corollary.

Corollary 1.2.

Let E_{1} and E_{2} be Banach spaces over the complex field \square, and let $\in \geq 0$ be a real number.
Suppose that a mapping $\mathrm{f}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{2}$ satisfies

$$
\left\|f(2 \alpha x+\alpha y)+f(2 \alpha x-\alpha y)-\alpha^{2} f(x+y)-\alpha^{2} f(x-y)-6 \alpha^{2} f(x)\right\| \leq \epsilon
$$

For all $\alpha \in \square(|\alpha|=1)$ andfor all $x, y \in E_{1,}$ and f is measurable or $f(t x)$ continuous in $t \in \square$ for each fixed $x \in E_{1}$. Then there exists a unique \square-quadratic mapping $T: E_{1} \rightarrow E_{2}$ which satisfies the equation (1.3) and the inequality

$$
\|f(x)-T(x)\| \leq \frac{\in}{6}, \forall x \in E_{1 .}
$$

Corollary 1.3

Let X and Y be a real normed space and Banach space,respectively, and let \in, p, q be real numbers such that $\in \geq 0, q>0$ and either $p, q<2$ or $p, q>2$. Suppose that a function $f: X \rightarrow Y$ satisfies

$$
\|f(2 x+y)+f(2 x-y)-f(x+y)-f(x-y)-6 f(x)\| \leq \in\left(\|x\|^{p}+\|y\|^{q}\right)
$$

for all $x, y \in X$. Then there exists a unique quadratic function $T: X \rightarrow Y$ which satisfies the equation (1.3) and the inequality

$$
\|f(x)-T(x)\| \leq \frac{\epsilon}{2\left|4-2^{p}\right|}\|x\|^{p}
$$

for all $x \in X$ and for all $x \in X-\{0\}$ if $\mathrm{p}<0$.
The function T is given by $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}$ if $\mathrm{p}, \mathrm{q}<2 \quad\left(T(x)=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right) i f p, q>2\right)$ for all $x \in X$. Further, if for each fixed $x \in X$ the mapping $t \rightarrow f(t x)$ from \square to Y is continuous, then $T(r x)=r^{2} T(x)$ for all $r \in \square$.
The proof of the corollary.

Corollary 1.4

Let X and Y be a real normed space and a Banach space,respectively, and let $\in \geq 0$ be real number. Suppose that a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|f(2 x+y)+f(2 x-y)-f(x+y)-f(x-y)-6 f(x)\| \leq \in \tag{11}
\end{equation*}
$$

For all $x, y \in X$. Then there exists a unique quadratic function $T: X \rightarrow Y$ defined by $T(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}$ which satisfies the equation (1.3) and the inequality

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{\in}{6} \tag{12}
\end{equation*}
$$

$x \in X$. Further, if for each fixed $x \in X$ the mapping $t \rightarrow f(t x)$ from \square to Y is continuous, then $T(r x)=r^{2} T(x)$ for all $r \in \square$.

Corollary 1.5

Let X and Y be a real normed space and Banach space, respectively, and let $\in \geq 0,0<p \neq 2$ be real number. Suppose that a function $f: X \rightarrow Y$ satisfies

$$
\|f(2 x+y)+f(2 x-y)-f(x+y)-f(x-y)-6 f(x)\| \leq \in\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Then there exists a unique quadratic function $T: X \rightarrow Y$ which satisfies the equation (1.3) and the inequality
$\|f(x)-T(x)\| \leq \frac{5 \in}{2\left|9-3^{p}\right|}\|x\|^{p}$ for all $x \in X$. The function T is given by
$T(x)=\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{9^{n}}$ if $0<\mathrm{p}<2 \quad \quad\left(T(x)=\lim _{n \rightarrow \infty} 9^{n} f\left(\frac{x}{3^{n}}\right)\right.$ ifp $\left.>2\right)$
for all $x \in X$. Further, if for each fixed $x \in X$ the mapping $t \rightarrow f(t x)$ from \square to Y is continuous, then $T(r x)=r^{2} T(x)$ for all

REFERENCES

1. J.ACZEL AND J.DHOMBRES, functional equations in several variables, Cambridge univ. press 1989.
2. J.BAKER, the stability of the cosine equation, proc, Amer. Math. Soc., 80 (1989), 411-416
3. P.W. CHOLEWA, Remarks on the stability of functional equations, Equations math., 27 (1984), 76-86
4. S.CZERWIK, on the stability if the quadratic mapping in normaled spaces, Abh.Math.sem.Univ.Hamburg, 62 (1992), 59-64.
5. S.CZERWIK, the stability of the quadratic functional equation, In stability of Maping of Hyers- Ulam Type (edited by Th. M. Rassias and J. Tabor), Hadronic press, Florida, 1994, 8191.
6. G.L. FORTI, Hyers- Ulam stability of functional equations in several variables, Aequations Math., 50 (1995), 143-190
7. P.GAVRUTA, A generalization of the Hyers -Ulam-Rassias stability of approximately additive mappings,j.Math.Anal.Appl., 184 (1994),431-436.
8. A.GRABIEC, The generalized Hyers - Ulam stability of a class of functional equations, publ. Math.Debrecen, 48 (1996), 217-235.
9. D.H.HYERS, on the stability of the linear functional equation, proc. Natl. Acad. Sci., 27 (1941), 222-224.
10. D.H. HYERS. G. ISAC AND Th.M.RASSIAS, stability of functional Equations in several variables, Birkhauser.Basel,1998.
11. D.H.HYERS, G.ISAC AND Th. M.RASSIAS, on the asymptoticity aspect of Hyers- Ulam stability of mappings, proc. Amer. Math. Soc., 126 (1998), 425-430.
12. D.H.HYERS AND Th.M. RASSIAS ,Approximate homomorphisms, Aequationes Math., 44 (1998),125-153.
13. K.W. JUN AND Y.H.LEE, on the Hyers- Ulam-Rassias stability of pexiderized quadratic inequality, Math. Ineq.Appl.,4(1)(2001),93-118.
14...S.M JUN on the Hyers-ulam stability of the functional equations that have the quadratic property, j.Math.Anal.Appl. 222 (1998), 126-137.
14. S.M. JUNG, on the Hyers-Ulam-Rassias stabilitof quadratic functional equation, J.Math. Anal.Appl., 232(1999),384-393.
15. ph.KANNAPPAN, Quadratic functional equation and inner product spaces, Results Math.,27(1995),368-372.
16. Th. M. RASSIAS, on the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
17. Th.M.RASSIAS, on the stability of functional equations in Bnach spaces, J. Math.Anal.Appl., 251(2000), 264-284.
18. F.SKOF, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
19. S.M. ULAM, problems in modern mathematics, Chap.VI, science Ed.,Wiley, NEW YORK, 1960.
