

International Journal of Power Control Signal and Computation (IJPCSC) Vol.5 No. 2,2013-Pp:19-25 ©gopalax journals,singapore ISSN:0976-268X Paper Received :04-03-2013 Paper Published:14-04-2013 Paper Reviewed by: 1. Dr.A.Jayashree 2. G.Loganathan Editor : Prof. P.Muthukumar available at : http://ijcns.com

HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

P.PALANI

Assistant Professor Department of Mathematics Sri Vidya Mandir Arts & Science College Uthangarai, Krishnagiri (DT)-636902, T.N. India.

S.JAIKUMAR

Assistant Professor Department of Mathematics Sri Vidya Mandir Arts & Science College Uthangarai, Krishnagiri (DT)-636902, T.N. India.

Abstract

In this paper, we establish the general solution and the generalized Hyers-Ulam stability problem for the equation f(2x+y) + f(2x-y) = f(x+y) + f(x-y) + 6f(x), (1)

1. Introduction

In 1940, S.M.Ulam [20] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of homomorphisms:

It is significant for us to decrease the possible estimator of the stability problem for the functional equations. This work is possible if we consider the stability problem in the of Hyers-Ulam-Rassias for a functional equations(1). As a reselt, we have much better possible upper bounds for the equations (1) than those of Czerwik [4] and Skof-Cholewa[3].

Solution of f(2x+y) + f(2x-y) = f(x+y) + f(x-y) + 6f(x),

Let \square ⁺ denote the set of all nonnegative real numbers and let both E_1 and E_2 be the vector spaces.

We here present the general solution of (1)

Theorem 1

Let $\phi: X^2 \to \Box^+$ be a function such that

$$\sum_{i=0}^{\infty} \frac{\phi(2^{i} x, 0)}{4^{i}} \qquad \left(\sum_{i=1}^{\infty} 4^{i} \phi\left(\frac{x}{2^{i}}, 0\right), respectively\right)$$
(2)

Converges and

$$\lim_{n \to \infty} \frac{\phi(2^n x, 2^n y)}{4^n} = 0 \qquad \left(\lim_{n \to \infty} 4^n \phi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = 0\right), \forall x, y \in E_1.$$
(3)

Suppose that a function $f: X \to Y$ Satisfies

$$\|f(2x+y) + f(2x-y) - f(x+y) - f(x-y) - 6f(x)\| \le \phi(x,y), \forall x, y \in E_1.$$
(4)

For all $x, y \in X$. Then there exists a unique quadratic function $T: X \to Y$ Which Satisfies the equation (2.3) and the inequality

$$\| f(x) - T(x) \| \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\phi(2^{i} x, 0)}{4^{i}}$$

$$\left(\| f(x) - T(x) \| \leq \frac{1}{8} \sum_{i=1}^{\infty} 4^{i} \phi\left(\frac{x}{2^{i}}, 0\right) \right),$$
(5)

for all $x \in X$. The function T is given by

$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n} \qquad \left(T(x) = \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right) \right)$$
(6)

for all $x \in X$.

Proof:

Putting y = 0 in f(2x+y) + f(2x-y) = f(x+y) + f(x-y) + 6f(x), and divided by 8, we have $\left\|\frac{f(2x)}{4} - f(x)\right\| \le \frac{1}{8}\phi(x,0)$ (7)

for all $x \in X$. Replacing x by 2x in (7) and dividing by 4 and summing the resulting inequality with (7), we get

$$\left\|\frac{f(2^{2}x)}{4^{2}} - f(x)\right\| \le \frac{1}{8} \left[\phi(x,0) + \frac{\phi(2x,0)}{4}\right]$$
(8)

for all $x \in X$. Using the induction on a positive integer n, we obtain that

$$\left\|\frac{f(2^{n}x)}{4^{n}} - f(x)\right\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{\phi(2^{i}x,0)}{4^{i}}$$

$$\leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\phi(2^{i}x,0)}{4^{i}}$$
(9)

for all $x \in X$. In order to prove convergence of the sequence $\left\{\frac{f(2^n x)}{4^n}\right\}$, we divide inequality(9) by 4^m and also replace x by $2^m x$ to find that for n,m>0,

$$\left\| \frac{f(2^{n}2^{m}x)}{4^{n+m}} - \frac{f(2^{m}x)}{4^{m}} \right\| = \frac{1}{4^{m}} \left\| \frac{f(2^{n}2^{m}x)}{4^{n}} - f(2^{m}x) \right\|$$

$$\leq \frac{1}{8.4^{m}} \sum_{i=0}^{n-1} \frac{\phi(2^{i}2^{m}x,0)}{4^{i}}$$

$$\leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\phi(2^{i}2^{m}x,0)}{4^{m+i}}.$$
(10)

Since the right hand side of the inequality tends to 0 as m tends to infinity, the sequence

$$\left\{\frac{f(2^n x)}{4^n}\right\}$$
 is a Cauchy sequence. Therefore, we may define $T(x) = \lim_{n \to \infty} 2^{-2n} f(2^n x)$

for all $x \in X$.

By letting $n \to \infty$ in (9), we arrive at the formula (5).

To show that T satisfies the equation (2.3), replace x,y by $2^n x, 2^n y$, respectively in

$$f(2x+y) + f(2x-y) = f(x+y) + f(x-y) + 6f(x), \text{ and divided by } 4^n, \text{ then it follows that}$$
$$4^{-n} \left\| f(2^n(2x+y)) + f(2^n(2x-y)) - f(2^n(x+y)) - f(2^n(x-y)) - 6f(2^nx) \right\| \le 4^{-n} \phi(2^nx, 2^ny).$$

Taking the limits as $n \to \infty$, we find that T satisfies (2.3) for all $x, y \in X$.

To prove the uniqueness of the quadratic function T subject to (1), let us assume that there exists a quadratic function $S: X \to Y$ which satisfies (2.3) and the inequality (1).

Obviously, we have $S(2^n x) = 4^n S(x)$ and $T(2^n x) = 4^n T(x)$ For all $x \in X$ and $n \in \Box$. Hence it

follows from (1) that $||S(x) - T(x)|| = 4^{-n} ||S(2^n x) - T(2^n x)||$

$$\leq 4^{-n} \left(\left\| S(2^{n} x) - f(2^{n} x) \right\| + \left\| f(2^{n} x) - T(2^{n} x) \right\| \right)$$

$$\leq \frac{1}{4} \sum_{i=0}^{\infty} \frac{\phi(2^{i} 2^{n} x, 0)}{4^{n+i}}$$

For all $x \in X$. By letting $n \to \infty$ in the preceding inequality, we immediately find the uniqueness of T. This completes the proof of the theorem.

Throughout this paper, Let B be a unital Banach algebra with norm |.|, and $||_B B_1$ and $||_B B_2$ be the left Banach B-modules with norm ||.|| and ||.||, respectively.

A quadratic mapping $Q: {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ is called B-quadratic if

 $Q(ax) = a^2 Q(x), \quad \forall a \in B, \forall x \in {}_B B_{1.}$

Corollary1.1.

Let $\phi: {}_{B}B_{1} \times {}_{B}B_{1} \rightarrow \Box^{+}$ be a function satisfies (1) and (2) for all $x, y \in {}_{B}B_{1}$. Suppose that a mapping $f: {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ satisfies

$$\left\|f(2\alpha x + \alpha y) + f(2\alpha x - \alpha y) - \alpha^2 f(x + y) - \alpha^2 f(x - y) - 6\alpha^2 f(x)\right\| \le \phi(x, y)$$

For all $\alpha \in B(|\alpha|=1)$ and for all $x, y \in {}_{B}B_{1}$ and f is measurable or f(tx) is continuous in $t \in \Box$ for each fixed $x \in {}_{B}B_{1}$. Then there exists a unique B-quadratic mapping $T : {}_{B}B_{1} \rightarrow {}_{B}B_{2}$, defined by(5), which satisfies the equation (2.3) and the inequality (1) for all $x \in {}_{B}B_{1}$.

Proof:

By theorem 3.1, it follows from the inequality of the statement for $\alpha = 1$ that there exists a unique quadratic mapping $T: {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ satisfying the inequality(3.4) for all $x \in {}_{B}B_{1}$. Under the assumption that f is measurable or f(tx) is continuous in $x \in \Box$ for each fixed $x \in {}_{B}B_{1}$, by the same reasoning as the proof of [5], The quadratic mapping $T: {}_{B}B_{1} \rightarrow {}_{B}B_{2}$ satisfies

$$T(tx) = t^2 T(x), \ \forall x \in {}_B B_{I}, \forall t \in \Box.$$

That is, T is \Box -quadratic. For each fixed $\alpha \in B(|\alpha|=1)$, replacing f by T and setting y = 0 in (2.3), we have $T(\alpha x) = \alpha^2 T(x)$ for all $x \in {}_B B_1$. The last relation is also true for $\alpha = 0$. For each

element $\alpha \in B(\alpha \neq 0), a = |a| \cdot \frac{a}{|a|}$.

Since T is \Box -quadratic and $T(\alpha x) = \alpha^2 T(x)$ for each element $\alpha \in B(|\alpha|=1)$,

$$T(ax) = T\left(|a| \cdot \frac{a}{|a|}x\right)$$
$$= |a|^2 \cdot T\left(\frac{a}{|a|}x\right)$$
$$= |a|^2 \cdot \frac{a^2}{|a|^2} \cdot T(x)$$

 $=a^{2}T(x), \quad \forall a \in B(a \neq 0), \forall x \in {}_{B}B_{1}.$

So the unique \Box -quadratic mapping $T: {}_{B}B_{1} \rightarrow {}_{B}B_{2}$, is also B-quadratic, as desired. This completes the proof of the corollary.

Corollary 1.2.

Let E_1 and E_2 be Banach spaces over the complex field \Box , and let $\in \ge 0$ be a real number. Suppose that a mapping f: $E_1 \rightarrow E_2$ satisfies

 $\left\|f(2\alpha x + \alpha y) + f(2\alpha x - \alpha y) - \alpha^2 f(x + y) - \alpha^2 f(x - y) - 6\alpha^2 f(x)\right\| \le \epsilon$

For all $\alpha \in \square$ ($|\alpha|=1$) and for all $x, y \in E_{I}$, and f is measurable or f(tx) continuous in $t \in \square$ for

each fixed $x \in E_1$. Then there exists a unique \Box -quadratic mapping $T: E_1 \to E_2$ which satisfies the equation (1.3) and the inequality

$$\left\|f(x) - T(x)\right\| \le \frac{\epsilon}{6}, \forall x \in E_{1.}$$

Corollary 1.3

Let X and Y be a real normed space and Banach space, respectively, and let \in , p,q be real numbers such that $\in \ge 0, q > 0$ and either p,q < 2 or p,q > 2. Suppose that a function $f: X \rightarrow Y$ satisfies

$$\|f(2x+y) + f(2x-y) - f(x+y) - f(x-y) - 6f(x)\| \le \epsilon \left(\|x\|^p + \|y\|^q\right)$$

for all $x, y \in X$. Then there exists a unique quadratic function $T: X \to Y$ which satisfies the equation (1.3) and the inequality

 $||f(x) - T(x)|| \le \frac{\epsilon}{2|4 - 2^{p}|} ||x||^{p}$

for all $x \in X$ and for all $x \in X - \{0\}$ if p<0.

The function T is given by
$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n}$$
 if p,q<2 $\left(T(x) = \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right) ifp, q > 2\right)$ for

all $x \in X$. Further, if for each fixed $x \in X$ the mapping $t \to f(tx)$ from \Box to Y is

continuous, then $T(rx) = r^2 T(x)$ for all $r \in \Box$.

The proof of the corollary.

Corollary 1.4

Let X and Y be a real normed space and a Banach space, respectively, and let $\in \ge 0$ be real number. Suppose that a function $f: X \to Y$ satisfies

$$\left\| f(2x+y) + f(2x-y) - f(x+y) - f(x-y) - 6f(x) \right\| \le \epsilon$$
(11)

For all $x, y \in X$. Then there exists a unique quadratic function $T: X \to Y$ defined by

$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n} \text{ which satisfies the equation (1.3) and the inequality}$$
$$\|f(x) - T(x)\| \le \frac{\epsilon}{\epsilon}$$
(12)

 $x \in X$. Further, if for each fixed $x \in X$ the mapping $t \to f(tx)$ from \Box to Y is continuous, then $T(rx) = r^2 T(x)$ for all $r \in \Box$.

Corollary 1.5

Let X and Y be a real normed space and Banach space, respectively, and let $\in \ge 0, 0 be real number. Suppose that a function <math>f: X \rightarrow Y$ satisfies

$$\|f(2x+y) + f(2x-y) - f(x+y) - f(x-y) - 6f(x)\| \le \epsilon \left(\|x\|^p + \|y\|^p\right)$$

for all $x, y \in X$. Then there exists a unique quadratic function $T: X \to Y$ which satisfies the equation (1.3) and the inequality

$$\|f(x) - T(x)\| \le \frac{5 \in}{2|9 - 3^{p}|} \|x\|^{p} \text{ for all } x \in X \text{ . The function T is given by}$$
$$T(x) = \lim_{n \to \infty} \frac{f(3^{n} x)}{9^{n}} \text{ if } 0 2\right)$$

for all $x \in X$. Further, if for each fixed $x \in X$ the mapping $t \to f(tx)$ from \Box to Y is continuous, then $T(rx) = r^2 T(x)$ for all

REFERENCES

- 1. J.ACZEL AND J.DHOMBRES, functional equations in several variables, Cambridge univ. press 1989.
- 2. J.BAKER, the stability of the cosine equation, proc, Amer. Math. Soc., 80 (1989), 411-416

- 3. **P.W. CHOLEWA**, Remarks on the stability of functional equations, Equations math., **27** (1984), 76-86
- 4. **S.CZERWIK**, on the stability if the quadratic mapping in normaled spaces, Abh.Math.sem.Univ.Hamburg, **62** (1992), 59-64.
- S.CZERWIK, the stability of the quadratic functional equation, In stability of Maping of Hyers- Ulam Type (edited by Th. M. Rassias and J. Tabor), Hadronic press, Florida, 1994, 81-91.
- 6. **G.L. FORTI,** Hyers- Ulam stability of functional equations in several variables, Aequations Math., **50** (1995), 143-190
- 7. **P.GAVRUTA**, A generalization of the Hyers –Ulam-Rassias stability of approximately additive mappings,j.Math.Anal.Appl., **184** (1994),431-436.
- 8. **A.GRABIEC**, The generalized Hyers Ulam stability of a class of functional equations, publ. Math.Debrecen, **48** (1996), 217-235.
- 9. **D.H.HYERS**,on the stability of the linear functional equation, proc. Natl. Acad. Sci., **27** (1941), 222-224.
- 10. **D.H. HYERS**. **G. ISAC** AND **Th.M.RASSIAS**, stability of functional Equations in several variables, Birkhauser.Basel,1998.
- 11. **D.H.HYERS, G.ISAC AND Th. M.RASSIAS**, on the asymptoticity aspect of Hyers- Ulam stability of mappings, proc. Amer. Math. Soc., **126** (1998), 425-430.
- 12. **D.H.HYERS AND Th.M. RASSIAS**, Approximate homomorphisms, Aequationes Math., **44** (1998), 125-153.
- 13. **K.W. JUN AND Y.H.LEE**, on the Hyers- Ulam-Rassias stability of pexiderized quadratic inequality, Math. Ineq.Appl.,**4**(1)(2001),93-118.
- 14...S.M JUN on the Hyers-ulam stability of the functional equations that have the quadratic property, j.Math.Anal.Appl.222 (1998), 126-137.
- 15. **S.M. JUNG**, on the Hyers-Ulam-Rassias stabilitof quadratic functional equation, J.Math. Anal.Appl., **232**(1999),384-393.
- 16. ph.**KANNAPPAN**, Quadratic functional equation and inner product spaces, Results Math.,27(1995),368-372.
- 17. **Th. M. RASSIAS**, on the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., **72** (1978), 297-300.
- 18. **Th.M.RASSIAS**, on the stability of functional equations in Bnach spaces, J. Math.Anal.Appl., **251**(2000), 264-284.
- 19. **F.SKOF**, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, **53** (1983), 113-129.
- 20. **S.M. ULAM**, problems in modern mathematics, Chap.VI, science Ed., Wiley, NEW YORK, 1960.