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Abstract

Model checking WOOL parallel library using SPIN
model checker

Majid Khorsandi Aghai

Verification and validation is the process of checking a product, service, or system to
make sure it meets its specifications.
Model checking is an automatic technique for verifying finite-state systems, such as
sequential circuit designs and communication protocols. The technique was originally
developed in 1981 by Clarke and Emerson[8]. This technique has several advantages
over theorem provers or proof checkers. The most important is that the procedure
is highly automatic. 

Wool is a C-library which is designed to be a really low overhead user-level task
scheduler in concurrent programming environments.  In order to achieve low
overhead, Wool uses a novel algorithm for scheduling tasks between threads which is
based on the work-stealing algorithms. This algorithm is called “Direct Task Stack”. In
this project we have first studied the source code of library and created a high level
model of it with our focus mainly on the “Direct Task Stack” algorithm. Then we
tried to verify three important correctness properties of this algorithm in Spin model
checker. 

Spin was able to verify the three properties exhaustively when the test harnesses are
small enough. For bigger test harnesses Spin was only able to verify the properties
when the compression options were activated. 
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Chapter 1

Introduction

Verification and validation is the process of checking a product, service, or system to

make sure it meets its specifications and fulfills its intended purpose. Model-based tech-

niques for verification and validation of reactive systems, such as model checking, have

witnessed drastic advances in the last decades. These techniques require a formal model

which describes the system or component, and a property for the intended behavior that

can be generated during the design phase in the software life cycle.

Model checking is an automatic technique for verifying finite-state reactive systems,

such as sequential circuit designs and communication protocols. The technique was

originally developed in 1981 by Clarke and Emerson [8]. Quielle and Sifakis [18] inde-

pendently discovered a similar verification technique shortly thereafter. This technique

has several advantages over theorem provers or proof checkers for the verification of

circuits and protocols. The most important is that the procedure is highly automatic.

Typically, the user provides a high level representation of the model and of the speci-

fication to be checked. The model checker will either terminate with the answer true

indicating that the model satisfies the specification, or give a counter example execution

that shows why the formula is not satisfied [7].

Model checking is particularly well suited to verify requirements and correctness

poroperties of parallel systems and also has the advantage of modeling parallel systems

and algorithms. It automatically checks whether the system satisfies the properties. A

large number of model checking tools have been proposed such as CHESS [15], UPPAAL

[5] and SLAM [3].

1



Chapter 1. Introduction 2

One of the most successful tools for the automatic verification is Spin. This model

checker [4, 13] is a general tool for verifying the correctness of distributed software models

in a rigorous and mostly automated fashion. Unlike many model-checkers, Spin actually

does model checking by generating C code. This technique saves memory and improves

performance, while also allowing the direct insertion of chunks of C code into the model.

Spin also offers a large number of options to further speed up the model-checking process

and save memory, such as partial order reduction, state compression, bitstate hashing

and weak fairness enforcement.

In this project we have focused on modeling the Wool parallel library in Spin model

checker to verify it against some correctness properties. Wool is a C-library supporting

fine grained independent task parallelism [9].

1.1 Background

Software may have bugs and it is the common term used to describe an error, flaw,

mistake, failure or fault in a computer program or system that produces an incorrect

or unexpected result or causes it to behave in unintended ways. Most bugs arise from

mistakes and errors made by people in either a program’s source code or its design, and

a few are caused by compilers producing incorrect code. Better development process, en-

hancing people knowledge, effective collaboration and verification techniques may reduce

the amount of mistakes and increase the reliability of software.

Verification techniques aim to find bugs in software systems and to check if they are

built right or not. They are very helpful to find if a system conforms to its correctness

properties. One of the most known verification techniques is model checking which in

this project we apply in order to verify the Wool library. Wool is a library written in

C programming language supporting fine grained independent task parallelism. In the

term “fine grained independent task parallelism“, a task is a unit of parallel executions

which is able to create other tasks. In task parallelism each task has its own control

flow in contrast to, for instance, data parallelism where the same operation is always

applied to each data item in a collection [1]. Wool takes advantage of the independence

of tasks in order to run them in parallel. Two tasks are independent if none of them

writes a location that the other task reads or writes. Independent tasks can be executed
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in arbitrary order or in parallel with no difference in observable behaviour. Fine grained

tasks are tasks that are relatively small in terms of code size and execution time. The

Wool library takes care of the scheduling of the execution of these fine grained tasks.

The verification technique which we will use in this project is model checking. When

the software itself cannot be verified exhaustively, we can build a simplified model of

the underlying design that preserves its essential characteristics but that avoids known

sources of complexity [13]. In the approach adopted here, the first step is to understand

the program or algorithm we want to model and after that, to derive a high level model

of it. The model should be as simple as possible yet it should preserve most of the

behaviors of the original program or algorithm. Then the next step is to decide what

properties of the model should be verified, how important they are in practice and to

what extent can these properties be verified automatically with the model checker at

hand.

1.2 Goal

The main goal of this project is to first derive a high level model from the source code

of the Wool parallel library using the Promela modeling language for the Spin model

checker; then to verify this model against some correctness properties.

1.3 Motivation

Like in other work stealing schedulers, in the Wool scheduler a number of threads(typically

one) is assigned to each processor and each thread or worker executes tasks. A worker

steals and executes tasks from other workers if it does not have any task itself. In most

work stealing algorithms, each worker has a task stack with two pointers namely bot

and top and synchronization between thief and victim workers is based on the values of

those pointers. Unlike these algorithms, the “Direct Task Stack” algorithm introduced

in Wool only uses a “state” field in each task for the purpose of synchronization which

confers several benefits, like eliminating the overhead of task creation for tasks that are

never stolen. Please refer to [9, 10] for further information about Wool’s synchroniza-

tion mehotd and its benefits. Having these interesting properties, Wool and specially its
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underlying “Direct Task Stack” algorithm becomes a very interesting subject for model

checking. There are different model checking tools one can use in this respect. Spin is

a model checker developed by Gerard J. Holzmann [4, 13] for verifying communication

protocols. It has since become widely used in verifying parallel algorithms and concur-

rent programs. It can verify and find bugs in models which are written in the Promela

language. In this project we will generate Promela models from the Wool code and then

analyze them using Spin.

1.4 Structure of the project

This section outlines the general structure of this report and gives a brief summary of

its chapters.

Chapter 2 gives some background about this work, verification and modeling. The

background is needed for understanding the rest of the report. Readers who have general

knowledge about these areas can skip this chapter. Chapter 3 will introduce the Wool

library and its underlying concepts. In Chapter 4 we will explain which parts of the

Wool we modeled and how we did it. Chapter 5 discusses simulation of the model and

its verification against a number of correctness properties. And finally, in chapter 6 we

present conclusions and future work.



Chapter 2

Background

In this chapter we give a short background of our work and the tools and techniques we

have used. Our work is verification of the Wool parallel library. Among the different

availabe verification techniques like code and design review, static program analysis,

testing and model checking, we used the model checking technique because it is an

automated technique and it can check different kinds of properties. The tool we used

for model checking is the Spin [13] model checker which performs verification of models

written in the Promela modeling language [13].

The “Direct Task Stack” algorithm of Wool [9] which is responsible for fine-grained

independent task parallelism is the interesting part of the Wool library for verification.

We modeled and verified this part of the library using Spin model checker. In comming

chapters we will completely describe how we modeled and verified the library but before

that in this chapter we will give short introductions about the concepts the reader will

see from here on.

2.1 Verification and Verification Techniques

The correctness of a software system is being checked by two processes. One of the

processes is to check if the software is what the customer wants which is called validation.

The other process is to check if the software is bug free and it matches the specification

of the software which is called verification. One approach to verification is to manually

inspect the code of the software. But this approach is becoming more difficult and

5
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time consuming as more and more complex systems are being developed. Testing and

formal verification are two alternative methods for verifying a system. Both methods

assume access to a so called specification of the software, i.e., a description of the correct

behavior of the system. The methods compare the specification to the actual behavior of

the system [19]. There are several verification methods, but some have more advantages.

Simulation is one of these techniques that can be used on design level but it is difficult

to make exhaustive. In addition, manual selection of test cases and input needs lots of

work. Code and design reviews is another one. It is good at finding (some classes of)

problems but needs organization and people. Static program analysis is one approach

to analyze the source code by tools. It is completely automatic but can verify a limited

set of properties (type-correctness, absence of some run-time errors) and unfortunately

tools are available only for some languages and properties. Testing and model checking

are among the most used and famous methods for verification.

2.1.1 Testing

Testing is the process of sampling the executions of a system according to some given

criterion. Each execution is compared with the specification, and any mismatch is

reported as an error [17]. Software testing is the process of evaluating an attribute of a

program to see whether it satisfies its required results. An input is fed to the software

and if the output is as it is expected we say the system has passed the test, otherwise

it has failed. Feeding a set of these test cases to a software, different properties of the

specification can be tested. Testing is the most “practical” technique that can verify a

wide range of properties but can only be used on implementation. It is difficult to make

it exhaustive and hard to make it reproducible for concurrent/distributed programs.

Also manual selection of test cases and input needs work.

2.1.2 Model Checking

In model checking, a model of a system which describes the system behavior is algorith-

mically checked against the specification of system. The model is usually expressed as

a directed graph consisting of nodes and edges(Kripke structure). The nodes represent

the state of the program and the edges are representing the possible execution which

changes the program state. Usually, a set of properties is associated with each node.
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The properties represent the condition that should hold in a particular state of the pro-

gram. Model checking is important for both validation and verification of a software

system. The model of system can be compared to costumers needs for validating the

system. It is also one of the techniques for model-based verification. By checking the

formal model of system against its specification of the system, the correctness of system

would be specified. Model checking can be done early in the design cycle, e.g., on design

level. It is automated and can check different kinds of properties. Further more counter

examples are another important feature of model checking which show a trace of model’s

execution that leads to a possible bug or error. In negative aspect model checking does

not scale to very large models. A model must be constructed (at a suitable level of

abstraction), and it must be maintained as system evolves.

2.1.2.1 The Model Checker Spin

Spin is a generic verification system that supports the design and verification of asyn-

chronous process systems. It focuses on proving the correctness of process interactions

[4, 13] and we use it as model checking tool for verification of concurrent algorithms in

this project. Spin translates each process template into a finite automaton. Global be-

havior of the concurrent system is obtained by computing an asynchronous interleaving

product of automata, one automaton per asynchronous process behavior.

The Spin verification procedure is based on an optimized depth-first graph traversal

method. In order to reduce the number of states that must be explored to complete

a verification, Spin uses a partial order reduction method presented in paper [16] by

D. Peled. If size of a verification problem is too big to be verified exhaustively, Spin

can perform a verification with approximately the same results of an exhaustive run

in relatively small memory. For this purpose Spin uses bit-state hashing or supertrace

technique [11, 12].

To check correctness properties of an algorithm in Spin, a model must be written

in Promela that describes the behavior of the system, then correctness properties that

express requirements on the systems behavior are specified; the absence of deadlocks, run

time errors, memory leaks. Finally, the model checker runs to check if the correctness

properties hold for the model and if not, to provide a counterexample( a computation

that does not satisfy a correctness property).
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2.2 Fine-grained Independent Task Parallelism

In a multiprocessor system, task parallelism is achieved when processors execute a dif-

ferent threads (or processes) on the same or different data. The threads may execute

the same or different code. In the general case, different execution threads communicate

with one another as they work. Communication takes place usually to pass data from

one thread to the next as part of a workflow. As a simple example, if we are running code

on a 2-processor system (CPUs “a” and “b”) in a parallel environment and we wish to

perform tasks “A” and “B” , it is possible to tell CPU “a” to preform task “A” and CPU

“b” to perform task “B” simultaneously, thereby reducing the runtime of the execution.

The tasks can be assigned using conditional statements. Task parallelism emphasizes

the distributed (parallelized) nature of the processing (i.e. using threads), as opposed

to the data (data parallelism). Most real programs fall somewhere on a continuum be-

tween task parallelism and data parallelism [22]. Two tasks are independent if none of

them writes a location that the other task reads or writes. Two independent tasks can

be executed in arbitrary order or in parallel with no difference in observable behavior

(for instance memory content when both tasks have completed). In independent task

parallelism, only independent tasks may be executed in parallel, obviating the need for

any synchronization between concurrent activities. This is in contrast to the situation in

more general multi-threading which allows dependencies between threads that need to

be manged using explicit synchronization [9]. In parallel computing, granularity means

the amount of computation in relation to communication, i.e., the ratio of computation

to the amount of communication. So fine-grained parallelism means individual tasks

are relatively small in terms of code size and execution time.Further more The data is

transferred among processors frequently in amounts of one or a few memory words.



Chapter 3

The Wool Library

The Wool library involves around four thousand lines of C code, and includes many

preprocessor branches. For example it uses different synchronization techniques based

on the architecture of the machine it is being run on or to increase its performance Wool

uses different optimizations which can be enabled or disabled by the user. On the other

hand, Wool creates an arbitrary number of states during execution which means it is

not feasible to verify the whole library exhaustively. Our solution for overcoming this

problem was to build a simplified model of the underlying design of Wool which not only

preserves its essential characteristics but that avoids known sources of complexity and

hopefully can be verified exhaustively. In order to model Wool, the first task was to know

the library itself and data structures and algorithms it uses to perform independent task

parallelism.

In order to perform parallelism, Wool is using work-stealing scheduling to divide the

work between working threads. Two scheduling paradigms have arisen to address the

problem of scheduling multi-threaded computations: work sharing and work stealing.

In work sharing, whenever a processor generates new tasks, the scheduler attempts to

migrate some of them to other processors in hopes of distributing the work to underuti-

lized processors. In work stealing, however, underutilized processors take the initiative:

they attempt to “steal” tasks from other processors [6].

The Wool’s scheduler is using a novel work stealing algorithm called “The Direct

Task Stack” [9] with operations like spawn,sync and steal. In this chapter we will

introduce this algorithm, its operations and the data structures it uses. We also describe

9
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the different synchronization techniques utilized in this algorithm.

3.1 The Direct Task Stack Algorithm

In Wool, each process is called a worker and each worker has a small data structure called

a “worker descriptor” which contains the data structures for that worker. In particular

it contains:

• An array of task descriptors for tasks spawned by this worker .

• A pointer to the next task to steal, used by thieves,called bot.

• A pointer to the latest spawned task, used by the owner to synchronize with its

own tasks, called top.

• Various other things, including statistics counters.

The following piece of C code shows a short definition of worker data structure as

we are going to model:

typedef struct _Worker {

task *top ,

*bot;

long int is_thief;

Task p[];

}

The is_thief specifies whether the current worker is a thief or not. We will later see

how this field is used by the library. p is the array of task descriptors. A task descriptor

is a data structure for holding information about tasks. It contains several data fields.

The following piece of C code shows the definition of task descriptor in Wool library.

Please note that the actual code both for worker and task data structures are longer

and more complex but they essentially boil down to what we present here.

typedef struct task{

void *f;

balarm_t balarm;

}
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In this code the f field is a pointer to the task function. This is the function that

each task will run upon execution. The balarm field is used for different synchronization

purposes which we will cover later in this chapter and next chapter.

The array of task descriptors works like a double ended queue(dequeue). Each worker

process can spawn new tasks in its dequeue and each new task will be placed on top

of other tasks. Then it will synchronize with these tasks in a Last In First Out(LIFO)

order, it removes them from the dequeue and executes them. Here the top pointer is

responsible to keep track of the last spawned task. Other workers, in case they are idle

and don’t have any ready task in their dequeue, can steal and execute tasks randomly

from the bottom side of other processes’ dequeue(where bot pointer points to). Among

all the operations a worker process can execute, four of them are particularly important:

spawn, sync, wool_sync and steal. Figure 3.1 shows pseudo code for these opera-

tions. In the actual Wool system, the implementation is slightly more complex due to

additional optimizations and tests for task pool extension.

spawn: This operation takes the top pointer(this is where the worker will spawn the

new task) and arguments of the task function . Then a new task is generated and its

arguments are assigned. Finally the top pointer will be incremented. The spawned task

either will be executed by the owner after performing sync operation or it will be stolen

and executed by another worker.

sync: By executing this, a worker thread will try to remove the latest spawned task

from its dequeue and execute it. Either the task is there and the operation will be

performed successfully or the task is already stolen by some other worker in which case

the owner will execute wool_sync.

wool_sync: This operation gets a task and its state as input arguments. First it will

keep reading the state of the task as long as its value is equal to EMPTY. That is because

we want to wait until the owner of that task write the new value of task’s state. This is

done in line 3 of wool_sync operation in figure 3.1. After this the wool_sync operation

will try to get exclusive access to the task and checks its state. If the task is executable,

it executes it, otherwise if it is stolen then it will start leap-frogging with the thief.
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1 spawn(task *top , a_1 ,..., a_n ) {

2 top ->a_1 = a_1;

3 ...

4 top ->a_n = a_n;

5 top ->state = TASK;

6 top ++;

7 }

1 steal( worker *victim ) {

2 task *t = victim ->bot;

3 state s1 = t->state;

4 state s2;

5 if( is_task(s1) ) {

6 s2 = cas_val (&(t->state),s1 , EMPTY);

7 if( s1 != s2 || victim ->bot != t) {

8 if( s1 == s2 ) t->state = s1;

9 } else {

10 t->state = STOLEN( self_idx );

11 victim ->bot = t+1;

12 get_wrapper(s1)(t);

13 t->state = DONE;

14 }

15 }

16 }

1 sync(task *top) {

2 state s;

3 top --;

4 s = swap( &(top ->state), EMPTY );

5 if(s == TASK)

6 return top.f( top ->a_1 , ..., top ->a_n

);

7 else {

8 wool_sync( top , s );

9 return top ->result;

10 }

11 }

1 wool_sync( task *t, state s ) {

2
3 while( s == EMPTY ) s = t->state;

4 if( is_task(s) )

5 s = swap( &(t->state), EMPTY );

6 if( is_task(s) )

7 get_wrapper(s)(t);

8 else if( is_stolen(s) )

9 while( t->state != DONE )

10 steal( get_thief(s) );

11 bot --;

12 }

Figure 3.1: Wool operations

steal: This operation, as argument, takes the victim worker. It will try stealing a

task from the bottom of the victim dequeue and then examines it’s state. If steal was

not successful, for example because another thief steals that task before this one then

nothing happens and steal operation ends. Otherwise if thief succeeds in stealing the

the task but bot pointer is changed, the thief can not continue stealing and backs off.

But if thief succeeds and bot is not changed then it changes the state of stolen task

to STOLEN, executes the task and then changes back the state of finished task to DONE.

Backing off from stealing when the bot pointer is changing is to avoid violating the

“NoMiss” property. This is completely explained in 4.2.4 and 5.2.1.

Figure 3.2 shows two consequent steps of the algorithm execution and status of

different workers’ dequeues in each step. At first step worker 1 has two tasks to execute,

worker p has three tasks, worker q is idle and worker n has one task. At second step

worker 1 synchronizes with last task, executes it and removes it from the stack. Worker

q, who has no task to execute, steals one task from bottom of worker p and dequeue of

worker n remains unchanged.

The operations spawn, wrap and sync, and f (the function that actually does the

work of the task, not shown in the figure) are task specific, while wool_sync and steal

are part of the run time system and used by all tasks. One advantage of having task
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Figure 3.2: The Direct Task Stack

specific functions is that for example in sync a worker thread when synchronizing with

an already spawned task, it can do a direct call to f which is the executable function

of the task and execute it inline. This is visible to compiler optimization. A task

descriptor has one field for each argument the function f of the task accepts. It also has

an additional “state” field with the following values:

• EMPTY, signifying either a transient state during stealing where the task is not

inside the dequeue because it is stolen or that there is no task stored in that task

descriptor.

• TASK, which means that there is a task with a f function that can be stolen or

inlined.

• STOLEN(i), denoting a task that has been stolen by worker i (knowing the thief

is necessary for leap frogging [20]. Leap-frogging is stated later in this chapter).

• DONE, for a task that has been stolen and where the thief has completed its

execution.

3.1.1 Synchronization Techniques

A worker thread may call two different operations to synchronize with the spawned

tasks. Normally each worker after spawning a task calls sync operation to synchronize.

Here two scenarios may happen: either the task is available in the dequeue and worker

will execute it, or the task is already stolen by another worker process in which case the

owner will call the public wool_sync operation. Normally when there are more than

one task inside the dequeue, worker can execute tasks by removing them from top end
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and thieves can steal tasks from the bottom end with no need for synchronization.

But when there is only one task inside the dequeue there is possibility that the owner

and a thief want to get that task at the same time. Here the algorithm needs to use a

synchronization technique. Most workstealing algorithms synchronize thief and victim

based on values of top and bot pointers [2], but the direct task stack algorithm uses

the f field in the task descriptor instead. At a sync, the owner acquires the task using

an atomic exchange on the f field. This way thieves are decoupled from the frequently

changing top pointer and the pointer can be kept private to the owner.

Wool uses two different synchronization techniques based on hardware architectures

it is run on. On intel itanium architecture(ia64) it uses THE SYNC method and on other

architectures it uses EXCHANGE method. Since in this report we are concentrating on

EXCHANGE method here we give a short description of what this method do and how

it performs synchronization.

3.1.1.1 EXCHANGE

The EXCHANGE version that we are concentrating on in this report is using an atomic

exchange primitive for synchronization. So different threads can access one thread’s

task stack concurrently. As already explained each task in Wool library has a function

field which we call it f. In the EXCHANGE version Wool performs the synchronization

on f field; If f is pointing to a valid function definition in memory then the task is

ready inside the task stack, i.e not stolen. Otherwise the task is not present in the stack

because it is stolen. In a work stealing algorithm when thief wants to steal a task, it

should make sure no one else has already access to that task, i.e it should gain exclusive

access to that task first. As stated already, a thief will steal the task that victim’s bot

pointer points to. This is normally the first task at the bottom end of victims dequeue.

We call the task thief tries to steal as the “victim task”. In EXCHANGE version thief

first exchanges the f of victim task with the predefined value “T BUSY”. T BUSY is

used to show that the task is currently owned by another process and not stealable. So

if another thief comes to steal that task it will notice that f of the task is T BUSY and

it backs off. When the thief finishes executing the stolen task, it will change the value

of f to “STOLEN DONE” which is another predefined value showing the task is fully

executed and not available any more.
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3.1.1.2 Leap-frogging

When a sync operation finds the task is stolen but not yet completed, it will be blocked

until the joined task completes. In order for the scheduler to be greedy (which amounts

to ensuring that there is not simultaneously stealable work and idle processors [6]), it

needs to find other work to do for that processor in the meantime. One alternative is to

randomly steal work from the other workers. But this may lead to loss of parallelism if

the task the sync waits for completes but the stolen work is not completed while there

are idle processors and no other worker in the system. The solution that Wool uses is

leap frogging [20] where the worker executing the sync is constrained to stealing only

from the worker that stole the task. Then it can not be the case that the stolen code

has not completed when the sync has become unblocked [9]. Intuitively that is because

the victim steals back a smaller part of its own task from the thief. So this smaller part

should be executed faster than the bigger part which is being stolen.



Chapter 4

Building the Model

In this section we will mainly focus on describing how we have translated (part of) the

Wool code written in C to Promela and how we have created the model. We will try to

show a direct correspondence between each part of the C code and its translated Promela

code. Since Promela is a modeling language, rather than a conventional programming

language, it lacks several run time mechanism, such as dynamic memory management

and function call-return. In respect to this the modeling power is bounded by some

restrictions imposed by the state explosion problem and by some specific limitation of

Promela [13]. Therefor we need to imitate such mechanisms inside Spin.

We will first explain how we have modeled Wool’s worker threads in Spin. Each

worker thread may perform any of four operations spawn, sync, wool_sync and steal,

so in this chapter we have also shown how these operations are modeled and we have also

drawn a direct comparison between the model code in Promela and its corresponding

code in C.

Finally, in section 4.3, we will show how we have modeled the task functions in

Promela as it was needed for the model to work properly.

4.1 Worker threads

As mentioned in section 3.1, in Wool each worker thread has its own array of task de-

scriptors(task stack) and we need to model it. Furthermore, each worker has two pointers

16
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namely top and bot which are pointing to nodes of its task stack. Each worker’s bot

pointer should be accessible by the other workers but it’s top pointer is private to itself

and no one else will access it. In our model we have NoOfWorkers number of processes

with general name of “thread”. NoOfWorkers is a constant defined at the beginning of

model. So for example if NoOfWorkers is 5 we will have 5 “thread” processes. Programs

in Promela are composed of a set of processes. Each process includes a set of instructions

which will execute when it is called. Each process in Promela has a read-only identifier

which automatically gives a unique number to each process as it is instantiated. This

identifier is accessible using _pid variable and using it we can access and work with

different thread processes. We will use _pid in our model to access different processes.

Each process in Spin is executed in two ways. One way is to start them as soon as we

start executing the whole model. These processes are called active processes. To define

this kind of processes one should add the keyword active at the beginning of definition

line. Other group of processes will not start execution automatically and need a second

process to call them. Please refer to [4] for further information about processes in Spin.

Here is how we define our worker threads.

1 active [NoOfWorkers] proctype thread ()

Then we define the worker and task data structures similar to how they are defined

in the Wool library. Please note that these data-structures are already discussed in sec-

tion 3.1. Figure 4.1 shows the C code for defining the worker and task data structures

and their corresponding definition in Promela.

The astute reader will notice that the Promela version of task structure has one

extra field “s”. This field is later used for verification purposes and will be explained

in Chapter 5. Now we are going to introduce the operations each worker process can

perform and the way they affect the data-structures.
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1 typedef struct _worker {

2 Task *top ,

3 *bot;

4 long int is_thief;

5 Task p[];

6 }

7
8
9 typedef struct task{

10 void *f;

11 balarm_t balarm;

12
13 }

14

Data-structures definition in C

1 typedef worker{

2 pointer bot;

3 pointer top;

4 bit is_thief;

5 task tStack[StackSize]

6 }

7
8
9 typedef task {

10 function f;

11 byte s;

12 b_alarm alarm

13 }

14

Data-structures definition in
Promela

Figure 4.1: Wool Data Structures and their definition in C and Promela.

4.2 Operations

4.2.1 Spawn

Spawning a task makes it available for parallel execution, but does not guarantee that

it will actually be executed in parallel. If a processor becomes idle it tries to steal

spawned but not yet executed tasks from some other processor, and it is only such

stolen tasks that execute in parallel with other tasks spawned on the same processor [9].

In the Wool library each worker thread has its own task stack. At a spawn operation,

a new task will be generated and its data fields like f, balarm, etc will be set and then

this new task will be placed at the cell where top pointer currently points to. Then the

top pointer will be incremented by one. But the bot pointer will remain unchanged.

Figure 4.2 shows the C code of spawn operation and its translation in Promela. Please

note that the codes we are presenting from now on are short version of the actual code.

That is for better understanding and preserving the space. The complete code of the

library is available at appendix A. The figure also shows the status of a worker’s task

stack before and after spawn operation.
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1 inline void spawn(Task *top){

2 TD *p = (TD *) top;

3 p->balarm = NOT_STOLEN;

4 // get the owner of task

5 Worker *self = get_self(p);

6 // next line sets the f function of

the task

7 STORE_PTR_REL (&(p->f));

8 top++ ;

9 }

10

11

spawn code in C

1 inline spawn(top , func){

2 workers[myid]. tStack[top].alarm =

NOT_STOLEN;

3 // the s field is added by us and

4 // will be used for verification

purpose

5 workers[myid]. tStack[top].s = 1;

6 workers[myid]. tStack[top].f = func;

7 top ++;

8 }

9

spawn code in Promela

Figure 4.2: A task stack before and after spawn operation. The big ball shows a new
spawned task.

4.2.2 Sync

There are two different synchronization operations in Wool library. First is the sync

which is private to each task. It is executed by each worker after a spawn operation.

By executing sync, the worker first decrements its top pointer to point to the top most

task at its stack. Here two scenarios may happen: either the task is still in the stack so

worker thread does a direct call to the f function of the task and runs it. This way the

task is considered done and it will be removed from the stack. Another scenario that

may happen here is that worker thread comes to sync with the task, but the task is not

there, i.e stolen. Then it will call the other synchronization operation which is public

to all worker threads and is part of the run time system. In the Wool source code this

second synchronization function is called wool_sync. Figure 4.3 shows the source code

of sync in C and its translation in Promela.
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1 inline RTYPE SYNC(Task *top)

2 {

3 Task *q = top;

4 void (*f) = T_BUSY;

5 top -- ;

6 balarm_t a = NOT_STOLEN;

7 EXCHANGE( f, q->f );

8 if(f > T_LAST)

9 {

10 // execute the task

11 TD *t = (TD *) q;

12 return CALL(top , t->d.a.ARG_1)

;

13 }

14 else

15 {

16 // the task is stolen

17 wool_sync(top , a);

18 return ((TD *)q)->d.res;

19 }

20 }

21

sync code in C

1 inline sync(top , channel){

2
3 top --;

4 f = T_BUSY;

5 a = NOT_STOLEN;

6
7 EXCHANGE( f, workers[myid].

tStack[top].f );

8
9 if

10 ::f > T_LAST ->

11 workers[myid]. tStack[top].s++;

12 run do_f(myid , f , channel ,

top);

13 ::else ->

14 wool_sync(top ,a,channel);

15 run do_f(myid , T_DONE ,

channel , top);

16 fi

17 }

18

sync code in Promela

Figure 4.3: sync operation’s code in C and Promela

4.2.3 Wool sync

As mentioned in the previous section, when a worker thread comes to sync on a task at

its top pointer, the task may be stolen by another in which case the victim will call the

wool_sync operation. By executing this operation, worker first will check to see if the

task is already done by the thief or not. If yes it will do nothing and simply exit the

operation. But if the task is still in hands of thief, then the leap frogging process will

begin; The victim will start stealing tasks from thief worker and execute them. It will

continue stealing and executing tasks from thief while its original task is being executed

by the thief. Figure 4.4 shows a comparison between wool_sync code in C and its

translation in Promela.

4.2.4 Steal

Stealing happens when there are idle worker threads and available job, i.e stealabe tasks

in one or more other threads. When a worker thread spawns a task, this task will either

be executed by the owner or it will be stolen and executed by another worker. When a

thread wants to steal a task from a victim, it sets its tp pointer to bot pointer of the

victim. As we already know bot pointer is always pointing to the next stealable task, if
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1 void wool_sync(Task *t,balarm_t a )

2 {

3 Worker * self = get_self ( t );

4 // the thief is done executing the task

5 if( a == STOLEN_DONE ) {}

6 // the thief steal ownes the task

7 else if( a > B_LAST ) {

8 int done = 0;

9 int thief_idx = a;

10 do { // leap -frogging

11 int s_out = SO_NO_WORK ;

12 s_out = steal(self ->idx , thief_idx ,(Task *) t +

1, 0 );

13 if( t-> balarm == STOLEN_DONE ) {

14 done = 1;

15 }

16 } while ( ! done );

17 } else {

18 // the task is niether done , nor owned by

thief.

19 // error situation.

20 exit ( 1 );

21 }

22 if( self ->bot > t ) {

23 // the stolen task is now executed so we need

24 // to update the bot pointer

25 self ->bot = (Task *) t;

26 }

27
28

wool sync code in C

1 inline wool_sync(top ,a,chl){

2
3
4 if

5 :: ((a == STOLEN_DONE))->

6 skip;

7 :: (a > B_LAST) ->

8 do //leap -frogging

9 ::steal(a,top + 1,chl);

10 IF (workers[myid]. tStack[top

].alarm == STOLEN_DONE) ->

11 break;

12 FI

13 od

14 :: else -> assert (false);

15 fi;

16
17 IF (workers[myid].bot > top) ->

18 workers[myid].bot = top

19 FI;

20
21 }

22

wool_sync code in Promela

Figure 4.4: wool_sync operation’s code in C and Promela

any. Then using the atomic exchange operation, one thief will get exclusive access to the

stolen task. It will then call the f function of the task i.e execute it and finally the thief

will inform the victim its task is finished. figure 4.6 shows the source code for Steal

operation in C and its translation in Promela. One important point in steal operation

is that thieves should always check if the task they are stealing(which is the task bot

points to) is actually the bottom most task in the stack and there is no other task below

the bot pointer. Because each thief after performing the steal operation will increment

the bot pointer. So if there was a task below the bot, it will remain hidden from the

next steal operation. Eventually there is the risk that this task remains hidden from

all steal operations and never get executed. So thieves always make sure there are no

unstolen tasks below the task they are trying to steal and in case there is such task,

they will back off and abort steal operation. But if there is no unstolen task remained

under bot pointer, thief will complete steal operation and execute the task. This is

visible in the source code of figure 4.6 between lines 18 through 25. figure 4.5 also

shows a scenario which may lead to the described problem. In fact this problem is one
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Figure 4.5: A scenario which violates “NoMiss” Property

important correctness property of Wool library that we are going to verify in our model

which is described fully in next chapter.

4.3 Simulation of Task Functions

As we mentioned earlier in 3.1, each task has a function pointer which is pointing to

the start of the function definition that the task upon synchronization calls. In our

verification we needed to model the functions because otherwise we wouldn’t be able

to simulate the situation that a victim steals a task back from the thief(leap-frogging).

Since the function each task calls is independent from the behavior of direct task stack

algorithm we decided to abstract it away in our model by simply replacing the f field of

the task structure in C code with an integer field in our Promela code. Furthermore in

a real run of a wool program, the function of a task may contain new spawn operations

which will generate new tasks. In order to simulate this behavior and since we are not

aware of the body of functions in a task, we needed a way to simulate the situation of
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1 static int steal( int self_id , int

victim_id)

2 {

3 volatile Task *tp, *ep;

4 void (*f) = T_BUSY;

5 Worker *self = workers[self_idx ];

6 volatile Worker *victim = workers[

victim_idx ];

7 tp = victim ->bot;

8 if( tp->balarm != NOT_STOLEN || tp->f

<= T_LAST ) {

9 return SO_NO_WORK; //no task to steal

...

10 }

11 if(tp->balarm == NOT_STOLEN && tp ->f >

T_LAST) {

12 EXCHANGE( f, tp->f );

13 if( f > T_LAST ) {

14 int all_stolen = 1;

15 tp->balarm = self_idx; // keep

the id of thief for leap -frogging

16 // in following for loop we check

if there

17 // are unstolen tasks below bot

pointer

18 for( ep = victim ->bot; ep < tp; ep

++ ) {

19 if( ep->f > T_LAST ) {

20 all_stolen = 0;

21 }

22 }

23 if( all_stolen ) {

24 // no task left below bot , so update

bot

25 victim ->bot = (Task *) tp+1;

26 }

27 // back off

28 else{

29 tp = NULL;

30 }

31 }

32 if( tp != NULL ) {

33 // execute function of stolen task

34 f(top , (Task *) tp );

35 STORE_INT_REL( &(tp->balarm),

STOLEN_DONE );

36 return SO_STOLE;

37 }

38 return SO_NO_WORK;

39 }

40
41

Listing 4.1: steal code in C

1 inline steal(v_id , top , channel){

2 f = T_BUSY;

3 i = 0; /* FOR loop counter */

4 tp = workers[v_id].bot;

5 all_stolen = 1;

6
7 if

8 :: (! workers[v_id]. is_thief) ->

9 if

10 :: (workers[v_id]. tStack[tp].alarm ==

NOT_STOLEN) &&

11 (workers[v_id]. tStack[tp].f > T_LAST

) ->

12 EXCHANGE(f,workers[v_id]. tStack[tp].f

);

13 if

14 :: (f > T_LAST) ->

15 workers[v_id]. tStack[tp].s ++;

16 workers[v_id]. tStack[tp].alarm =

myid;

17 FOR(i,workers[v_id].bot ,tp)

18 IF (workers[v_id]. tStack[i].f >

T_LAST) ->

19 all_stolen = 0;

20 FI

21 ROF(i,workers[v_id].bot ,tp) ;

22 IF(all_stolen) ->

23 workers[v_id].bot = tp + 1;

24 FI;

25 :: else ->

26 tp = Undef;

27 fi;

28 :: else -> tp = Undef;

29 fi;

30 IF (tp != Undef) ->

31 workers[myid]. is_thief =0;

32 run do_f(myid , f , channel , top );

33 channel ? _ ; // wait for the task

function to complete

34 workers[myid]. is_thief =1;

35 workers[v_id]. tStack[tp].alarm =

STOLEN_DONE;

36 FI;

37 :: else -> skip;

38 fi

39 }

40

Listing 4.2: steal code in Promela

Figure 4.6: steal code in C and its translation in Promela

spawning new tasks during execution of the current task in our model. We offered a

solution based on the famous Fibonacci series [21]. We say each value of f in our model

has an implicit meaning with itself; if current value of f in a task is 5, it means we are

going to calculate Fibonacci sequence from 1 to 5 in a recursive way. So we need to first

calculate Fib of 4 and Fib of 3. But for calculating Fib of 4 we again need to have Fib
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Figure 4.7: Two worker threads executing a task concurrently

of 3 and Fib of 2 before hand and so on. So what we do is that we start a worker thread

and this worker thread spawns a task with f initialized to for example 5. At the same

time we start another worker thread with an empty task stack. Since this worker has no

task to execute, it will steal tasks from the first worker. Each worker when it wants to

sync with a spawned task will look at its f value(if the task is present and not stolen).

If the value is bigger than 1, it will spawn two new tasks with f=f-1 and f=f-2 but if

the value is 1 or 0, the task will be executed which here means simply removed from the

stack. Since Spin does not support recursive calls, we used the method presented in [14]

to simulate recursive calls in our model. Briefly in this method we utilize Spin processes

as functions. But since Spin processes do not return any value we needed a way to

simulate return values in processes. This is done using channels. The caller process and

the called process use a common channel between themselves to transfer values. This

channel is defined by caller process. For further information about this method please

refer to referenced paper by K. Jiang. Figure 4.7 shows a simple run of the model.

In this figure the following sequence of events happen:
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Step1 : Worker1 spawns a new task with f value 3.

Step2 : Worker1 performs sync on that task and since the task is ready and no other

worker has stolen it, it will execute it which means remove that task from the stack and

spawn two new tasks with f values 2 and 1 respectively. Now worker2 starts working and

since it has no ready task in its task stack it starts with stealing a task from worker1.

Step3 : Worker2 steals a task from bottom of worker1’s task stack and executes it. Since

this task has f value 2, after execution, worker2 will spawn two new tasks 1 and 0.

Step4 : Worker2 syncs with task 0 and executes it and removes it from the stack. It

continues executing its tasks.

Step5 : Worker2 will execute 1 and removes it from the stack as well. Then it will inform

the worker 1 that its stolen task is now executed by writing done on the place of stolen

task.

Step6 : Worker1 after a delay continues to sync with its top most task which is task

with f value 1. It will execute and remove it from the stack and continue to sync with

the stolen task and since this task is already stolen and executed it will just remove it

from the stack.

Step7 : Execution of the original task at this step is considered done.

In this chapter we explained how we modeled a part of Wool parallel library in Spin

model checker. In next chapter we will show how we used this model to verify Wool

against some correctness properties.



Chapter 5

Verification and Simulation

The Spin model checker is mainly used for two purposes: Simulation and Verification.

Simulation means running one possible trace of the model from the beginning. It is

usually used to check the constructed model and watch its behavior. Verification is the

process of checking all possible traces of the model against a given correctness property.

If any of the traces violates the given property then Spin will record the trace up to the

location where violation happens and present this recorded trace to the user.

In this chapter we will first describe how we have used Spin’s simulation to check our

model and make sure it behaves as the original Wool library. After that we will define

some correctness properties and describe the techniques we have used to help Spin to

verify these properties. Finally we will present the results of verifications.

5.1 Simulation

The Spin model checker has the ability to run a model by performing a simulation. It

means to choose one trace among all possible traces a model generates and execute it.

Spin can choose this trace in three different ways:

• Random

• Interactive and

• Guided

26
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In random simulation Spin will start running the model. Each time it reaches to a

non-deterministic choice in the model it will choose one of the branches randomly until

all processes are stopped. Another type of simulation is Interactive simulation. In this

method, Spin starts running the model until it reaches a non-deterministic choice. Then

Spin will present different choices to the user and asks the user to select his desired

choice. The user can choose this method to reach to his desired state in the model. And

finally the last method of simulation is guided simulation. In order to perform guided

simulation, Spin needs an input file which contains the whole trace for simulations. This

file can be generated as a result of a previous verification [13].

We use Spin’s random and interactive simulation options to run our model and to

check if it works the way intended and it behaves exactly as Wool behaves.

5.2 Verification

After building the model and running different simulations using Spin to make sure that

our model preserves the behavior of the original Wool library, we are going to verify our

model against some correctness properties. The correctness properties we have checked

in this report are: “no unstolen task below bot pointer”, “no task stolen twice” and

“no task both stolen and inlined”. We call these properties “NoMiss”, “StealOnce” and

“StealOrInline” respectively. For the selected size of our model(described below), Spin

is able to verify exhaustively and does not report any error which means the model

preserves the properties. For each property we will show a scenario which leads to a bug

if certain conservations in the model are removed.

5.2.1 NoMiss corretness property

As we mentioned earlier in section 4.2.4, Since steal operation updates the bot pointer,

because of the absence of explicit synchronization in EXCHANGE synchronization

method, this may cause the situation where a stealable task remains below the bot

pointer which will invalidate Wool’s implicit synchronization protocol. So making sure

no stealabe task is left below the bot pointer is the first and most important correctness

property of Wool we want to verify with help of our model. Figure 5.4 shows a possible

trace of the program that leads to the situation. The figure shows a worker thread who
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first spawns two new tasks. The bottom task is stolen by another worker and the bot

pointer gets incremented. Then the thread comes to synchronize with its tasks but gets

delayed. Another thief comes to steal the second task from the owner so it points its

tp pointer to where victim’s bot points to. Then the thief gets delayed and the owner

continues with synchronization. It synchornizes with both tasks and then spawns two

new tasks. Now the thief thread is activated and wants to continue its steal. Since the

tp pointer is pointing to a valid task(although this is not the previous task thief tried to

steal) thief will succeed and steal the task and increment the victim’s bot pointer. As

a result there remains one stealable task below the bot pointer of owner thread which

is not visible to other steal operations.

In order to overcome this problem Wool uses a simple solution. Whenever thief

wants to update victim’s bot pointer it first checks if there are any unstolen tasks left

below it and if yes, thief will not increment the bot pointer. The following lines of code

shows how we modeled this solution in Spin.

1 FOR(i,workers[victim_id ].bot ,tp)

2 IF (workers[victim_id ]. taskStack[i].f > T_LAST) ->

3 all_stolen = 0;

4 FI

5 ROF(i,workers[victim_id ].bot ,tp) ;

The code above checks all the tasks that are currently below the bot pointer in

victims task stack. If any of them is not stolen yet, then the variable all_stolen will

be assigned 0. This variable has initial value of 1. After this step program will check

all_stolen. If it is 1 it indicates there are no unstolen tasks left below bot and it can

be updated:

1 IF(all_stolen) ->

2 workers[victim_id ].bot = tp + 1;

3 FI;

So Wool uses the variable all_stolen as a flag. If all the tasks below the bot pointer

are already stolen then this flag is true and the steal operation can proceed and the bot

pointer can be updated. But if this flag is false then the steal operation can not succeed.

So obviously Wool is using a very simple method to preserve the “NoMiss” property.

Furthermore in the above piece of code no mechanism is protecting the IF command, So
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1 active proctype NoMiss_monitor (){

2 int i;

3 atomic{

4 if

5 :: (workers [0]. bot > 0) ->

6 FOR(i,0,workers [0].bot -1)

7 IF (workers [0]. tStack[i].f > T_LAST) ->

8 assert(false);

9 FI

10 ROF(i,0,workers [0].bot -1)

11 :: else -> skip

12 fi;

13 }

14 }

Figure 5.1: A monitor process for verifying the “NoMiss” property

there is the risk that between checking the all_stolen and updating the bot pointer,

the thread gets delayed and then another thread changes the bot location in such a way

that a task is left below the bot and the “NoMiss” property is violated. Considering

these we wanted to make sure that Wool’s simple protection mechanism works and

preserves the correctness property. In order to achieve that, we added a monitor process

which will check this correctness property during all steps of running model and we

call it NoMiss_monitor. A monitor is an active process that always runs and checks a

specific property during execution of the model. If at any time during execution, the

correctness property is violated the monitor process will report the violation. Figure

5.1 shows the body of monitor process.

In order for the model to be able to generate a trace that violates this correctness

property we also needed to provide a suitable input(test harness), proper number of

worker processes(i.e as few as possible while at the same time able to produce the buggy

state) and a good initial value for f(i.e as low as possible) . Figure 5.2 shows our test

harness for this purpose. For this test we tried our verification with two worker processes

and f initialized to one.

The code in figure 5.2 checks the _pid which is Spins internal variable for keeping

the id of current running process [13]. If it is 0 it means currently the worker 0 is running

and it will spawn two tasks repeatedly and it does this twice. The other worker(ie. the

process with _pid=1) will try to steal from worker 0 twice.
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1 if

2 :: (_pid == 0) ->

3 f = initialF;

4 spawn(workers[_pid].top , f);

5 spawn(workers[_pid].top , f-1);

6 sync(workers[_pid].top , return_channel);

7 return_channel ? _ ;

8 sync(workers[_pid].top , return_channel);

9 return_channel ? _ ;

10
11 f = initialF;

12 spawn(workers[_pid].top , f);

13 spawn(workers[_pid].top , f-1);

14 sync(workers[_pid].top , return_channel);

15 return_channel ? _ ;spawn(workers[_pid].top , f);

16 sync(workers[_pid].top , return_channel);

17 return_channel ? _ ;

18
19 :: else ->

20
21 steal(0,workers[_pid].top ,return_channel);

22 steal(0,workers[_pid].top ,return_channel);

23 fi;

24
25 }

Figure 5.2: A test harness we used along with NoMiss_monitor for verification of
model against the “NoMiss” property

5.2.2 StealOnce and StealOrInline corretness properties

The second correctness property we want to verify using our model is “StealOnce”. We

want to verify that a task can not be stolen twice. Another similar property we can

verify in our model is “StealOrInline” which states that no task should be both stolen

and inlined. In this part we add codes to our Promela model to be able to verify these

two properties together. In order for the model to be able to verify these properties, we

add a new field s to task data type. This is a counter, which at every linearizion point

of Steal and sync we increment its value by one. S has initial value of one, So if a

task is stolen more than once or both inlined and stolen then s will have a value grater

than 2. Therefore we can verify these two properties by always checking the value of s

is equal or smaller than 2. For this purpose we add another monitor process responsible

for checking the value of s. Figure 5.3 shows the Promela code of this monitor. The

monitor will always make sure that s can never reach a value bigger than 2. Since this

monitor is checking the property that a task should only be stolen or inlined once we

call it Once_monitor.

In order to prevent violation of these properties the EXCHANGE synchronization

mechanism in Wool is good enough. In this mechanism whenever a thief or a an owner
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1 active proctype Once_monitor (){

2 int i;

3 atomic{

4 FOR(i,0,StackSize -1)

5 IF (workers [0]. tStack[i].s > 2) ->

6 assert(false);

7 FI

8 ROF(i,0,StackSize -1)

9 }

10 }

Figure 5.3: Monitor for “StealOnce” and “StealOrInline” properties

of a task wants to steal or inline a task, it first exchanges its f with an invalid value

atomically which will prevent others to interleave during the exchange process. After the

exchange is done, the task will have an invalid value in its f field so when other workers

or the owner come to run another exchange on the task, they will note that the task has

an invalid f value meaning that the task is not available(i.e already stolen or inlined).

This way each task at any time can be stolen or inlined only by one worker process and

that process is the one that can successfully execute the atomic exchange operation on

the task before others. If this exchange operation was not performed atomically then

there was the possibility these correctness properties are violated.

5.3 Verification Results

5.3.1 Verification results for NoMiss property

All verifications were conducted on a 3.00 GHz Pentium 4 processor with 2.2 GB of

usable RAM using Spin Version 5.2.5. We used most of default XSpin settings for all

verification attempts, except when we increased the memory limit from 128 MB to 2

GB to allow the search to complete. In cases where verification did not complete with

default parameters within physical memory limits, verification with compression was

performed.

As we mentioned earlier in this chapter, wool uses the variable all_stolen to prevent

the violation of NoMiss property. Wool does this by checking the value of all_stolen

at every steal operation and if it is 0, which means all the tasks below bot are not

stolen yet, then Wool stops stealing otherwise finishes it.
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In order for us to make sure that in our model, the test harness and provided inputs

are able to generate the trace which violates this property, we first removed the check

that Wool does on all_stolen from the steal operation. Then we verified the model in

Spin. The following table shows the result of verification in this case. Spin was able to

find the bug and report an error trace. Figure 5.4 shows a scenario based on verification

results that causes the violation of “NoMiss” property . What happens here is that a

worker thread first spawns two tasks consequently. Then another worker thread steals

one task from its bottom, executes it and marks it as done. It also updates victim’s bot

pointer and increments it by one. Then another thief comes to steal from this worker

and points its tp pointer to where bot points to but it gets delayed for any reason.

The worker thread sync with top most task in its stack and then with the task which

was stolen and done by the other thief worker. When synchronizing with a stolen task,

owner will decrement the bot pointer so bot will now point to where top points. Note

that a thief is still interested in stealing and its tp pointer is still pointing to a cell but

it is waiting to be preempted. Finally the owner spawns two new tasks and then the

thief eventually succeeds in stealing and then it increments victim’s bot pointer. Now,

as obvious in the picture, there is one task left under the bot pointer which is hidden

from thief threads.

Time(s) Used memory(MB) Vector size(Byte) State stored+Matched Search Depth

0.04 4.258 263 14191 173

Table 5.1: Verification results when model violates “NoMiss”

After this step we added the check on all_stolen to the steal operation and using

the same inputs and test harness we run the verification again. Spin verifies the model

without any error. Then we increased the size of input parameters to have a more

realistic verification. Spin was able to verify the model with initial f set to 2 also using

default verification parameters. It was also able to verify the model with f set to 3 but

we needed to activate compression option. Table 5.2 shows results for f=3 and having

compression enabled.

Time(s) Used memory(MB) Vector size(Byte) State stored+Matched Search Depth

23.9 95.169 519 3083339 571

Table 5.2: Verification results when model preserves “NoMiss”

for f values bigger than 3 Spin was not able to verify the model exhaustively. So

using our model we showed that for the small test harness we fed the model with, small
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Figure 5.4: A scenario that will violate NoMiss property

initial values of f and two worker threads the simple protection mechanism that Wool

uses to preserve the correctness property “NoMiss” is actually working.

5.3.2 Verification Results for StolenOnce and StolenOrInlined proper-

ties

As explained in 3.2.1.1, in EXCHANGE synchronization method, Wool is synchronizing

different working threads on the f field of the task they access concurrently. All threads

who want to own a task will perform an atomic exchange on the f field and exchange

its value with a predefined value(invalidates it). The first successful thread will own the

task and other threads will notice that the f value is not valid any more so they will

back off. If this synchronization mechanism does not work properly, then the properties

“StolenOnce” and “StolenOrInlined” may be violated because for example two threads

may steal one task at the same time or a thread steal a task while the owner is

executing it. Therefore in order to make sure that this synchronization mechanism

is enough to preserve the two correctness properties, we first used Spin verification
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to observe what happens if we alter the mechanism so that it does not perform the

exchange atomically. So we removed the atomic keyword from the beginning of our

exchange inline function and run the verification. In this verification we used two worker

threads, f initialized to 3 and task stacks of size 5. Spin was able to find a trace that

violated the “StolenOrInlined” property. The table 5.3 shows Spins’s verification results.

Intuitively what happens here is the owner thread reads the f of a task in its stack before

synchronizing with it. But before invalidating task’s f, it gets delayed. A thief thread

reads the same value of f and since it is still valid it continues with first invalidating the f

and then stealing the task. Finally the owner resumes and although the f is invalidated

by the thief and the task is not there anymore, since it has a valid copy of f, it continues

with synchronization which causes violation of property.

Time(s) Used memory(MB) Vector size(Byte) State stored+Matched Search Depth

32 16.53 663 14765044 782

Table 5.3: Verification results when model violates “StolenOrInlined”

We changed back the exchange inline function to its previous state by adding the

atomic keyword and then we verified the model against the two correctness properties.

Spin was able to verify the model with two worker processes and initial value f up to 3.

But for f value of 4 Spin was not able to verify exhaustively. Table 5.3 shows output

of spin verification for f=3.

Time(s) Used memory(MB) Vector size(Byte) State stored+Matched Search Depth

31.8 111.087 543 3717192 615

Table 5.4: Verification results when model preserves “StolenOrInlined” and
“StolenOnce”
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Conclusion and Future Works

Wool is a parallel library which uses a novel work-stealing algorithm [9] and achieves

low spawning overhead and reasonable stealing cost. Our work in this project was a first

attempt towards verification of the Wool against a number of correctness properties.

We mainly focused on the verification of its underlying work-stealing algorithm. The

first property was “NoMiss” which checks there is no unstolen tasks left below the bot

pointer of the worker thread. As we already explained in chapter 5, the pointer is

always pointing to the oldest stealable task. If a task is stealable but it is remained

below the bot pointer it means that task is the oldest stealable task while the bot is not

pointing to it and hence the synchronization mechanism of Wool becomes invalidated.

Our verification showed that for a small and simple test harness that is capable of

violating the property, two worker threads and task’s function(f) initiated to 3, Wool’s

simple protection mechanism works fine and avoids violation. For the “StolenOnce” and

“StolenOrInlined” correctness properties which are stating that a task should not be

stolen twice or should not be both stolen and inlined, we added a counter field s to task

data structure and then using this extra field and a monitor process we were able to

verify the model against these properties and we didn’t get any error report from Spin.

Wool is a library written in C code with different options and alternative branches

implemented inside its code to give programmers and users the power to choose different

optimizations based on hardware architectures they are using or other factors. In this

work we mainly focused on synchronization methods that Wool uses based on hardware

architectures. Among the two methods Wool offer namely THE and EXCHANGE,

35
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we decided to model the latter one because it not using any locking mechanism for

synchronizing between the working threads. Therefor it was interesting to verify the

method to make sure that it is still synchronizing properly despite it is not using any lock.

There were other optimization options in the Wool code that depending on whether they

are active or not, the library would act differently. We assumed default values for these

options. So what we did in our project is the verification of the Wool library with respect

to the EXCHANGE synchronization and its default options. There are possibilities to

extend the current model so that it involves the other synchronization method(THE)

as well as the other optimization options it utilizes. Since Wool is using a work-stealing

deque as the basic data-structure, there is also room for automatic verification of this

library against general functional properties of a work-stealing deque. Furthermore our

verification is using a small model with only two number of worker threads, but one can

extend this verification to an unbounded number of threads. Finally in our model we

use a task array of maximum size 6, but one can extend the verification to verify task

arrays with unbounded size.
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