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Short-term electric load is significantly affected by weather, especially the temperature effects in summer. External factors can result
in mutation structures in load data. Under the influence of the external temperature factors, city electric load cannot be easily
forecasted as usual. This research analyzes the relationship between electricity load and daily temperature in city. An improved
ARIMAX model is proposed in this paper to deal with the mutation data structures. It is found that information amount of the
improved ARIMAX model is smaller than that of the classic method and its relative error is less than AR, ARMA and Sigmoid-
Function ANN models. The forecasting results are more accurately fitted. This improved model is highly valuable when dealing
with mutation data structure in the field of load forecasting. And it is also an effective technique in forecasting electric load with

temperature effects.

1. Introduction

Short-term load forecasting (STLF) is mainly used to forecast
the power load for the next few days or week [1-3]. It
plays an important role in the modern electricity Demand
Side Management (DSM), as its accuracy directly affects the
economic cost of operators in the electricity market. Accurate
load forecasting is helpful for security, stability, and economic
operation in power grid. It is also advantageous in making
reasonable arrangements for maintenance plan. Meanwhile,
power load forecasting can optimize power system dispatch
and reduce production cost.

Short-term daily peak power load in summer fluctuates
regularly, showing an obvious periodical characteristic. It
is greatly affected by temperature, wind, precipitation, and
other meteorological factors. There are significant mutation
structures in load data [4-6]. There are traditional methods
in power load forecasting, such as regression model, gray
model, support vector machines, neural networks, and time
series. Ramén Cancelo et al. [7] used Red Eléctrica de
Espafia (REE) to forecast the electricity load from a day
to a week ahead. Hipperta et al. [8] adapted large neural
networks in electricity load forecasting to handle nonlinear
time series data. Felipe Amarala and Castro Souza [9] used

smooth transition periodic autoregressive (STPAR) models
for short-term load forecasting. Amjady and Keynia [10]
proposed a new neural network learning algorithm based
on a new modified harmony search technique. This learning
algorithm is widely used to search the solution space in
various directions, by which overfitting problem and trapping
in local minima and dead bands can be avoided. Wangdi et
al. [11] adapted ARIMAX model to determine predictors of
malaria for the subsequent month. And the test showed that
prediction accuracy has been greatly improved. Chadsuthi et
al. [12] studied seasonal leptospirosis transmission and the
association with rainfall and temperature by using ARIMAX
model showing that factoring in rainfall (with an 8-month
lag) yields the best model for the northern region. The above
forecasting methods are obviously effective in dealing with
mutation structures and intelligent algorithms. However,
they are not ideal in practical operation due to the limita-
tion of data and laboratory equipment. The generalization
capability is also weak. Traditional time series forecasting
methods highlight the time role, without considering the
external factor effects. Thus, the forecasting accuracy of
time series methods is poor, with obvious defect [13, 14].
Based on the above research, an improved ARIMAX model



is proposed here by combining the traditional time series
with regression analysis to forecast short-term electric load,
which has a strong practice value in the short-term power
load forecasting field. This model fills the gaps of external
effects on electric load. The prediction result showed that the
improved ARIMAX model has a smaller model information
amount than AR(p) or ARMA(p, q) [15, 16].

2. Sigmoid-Function ANN Model

ANN (Artificial Neural Network) is very practical forecasting
technology in short-term electric load forecasting fields,
especially for those nonlinear data. The basic concepts about
ANN are shown as
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Through the operating of first-order derivative to output
unit, f '(Netkj) is obtained as follows:

Ooy;
f' (Nety) = Wekt]kj = 0 (1-0i5)

Output layer unit: §;; = (taj - okj) 0y (1 - okj) )
Hidden layer unit: &;; = oy; (1 - ij) Z6kmwmj,

Weight tuning function: Awj; (£ + 1) = n6y;0y;.

The specific algorithm of Sigmoid-Function ANN model
is shown as follows:

(1) The initial value of weight or threshold is defined as
w;;(0), while 6 ;(0) is small random number.

(2) Training samples are input vector X, (k = 1,2,
..., P); expectation output d;, (k = 1,2,..., P). Steps
from (3) to (5) are carried out for each input sample.

(3) Computing actual output and the state of hidden units
in network

Orj = 1 (ijiok,-+6j>. (4)
i
(4) Calculation training error

Output layer: §; = (ta]- - ok]-) 0 (1 - okj),

©)
Hidden layer: §;; = oy; (1 - ij) ZSkmwmj.
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(5) Correcting weights and thresholds

wj (¢+1) = wj; )+ 18 0 + o [wj; () = wy; (= D] (6)
6
0, (t+1)=0;(t)+nd;+a [0, (1) 0, (t-1)].

(6) When index k is located at P, judging if E < .

3. Time Series Theory

Time series is a typical time-domain analysis method. It can
be used to reveal the internal laws of the sequences from the
perspective of autocorrelation.

Typical time-domain analysis steps are the following:

(1) Observing sequence features.

(2) Selecting the appropriate fitted model according to
the features computed by SAS.

(3) Model testing and optimization process.

(4) Using fitted model to infer the nature of sequence.

Core contents of time series analysis method are pro-
posed by American statistician George E. P. Box and United
Kingdom statistician Gwilym M. Jenkins in their book
Time Series Analysis Forecasting and Control, in which it is
called autoregressive moving average model (ARIMA). Some
important concepts are displayed here.

Stationarity. {x,} is set as time series, and m € ¢, (¢ is
positive integer) t,t,,...,t,, € T, VT € ¢, (¢ is integer),

3F, ;e (X1, X550 0rX,,) = AT (%15 Xg e e s Xpy)s
named {x,} for strictly stationary time series.

White Noise. Time series {x,} meet the condition (1) Vt €
T, 3EX, = u (2) Vt,s € T; then

o7, t=s
y(t,s) = (7)
0, t#s
named {x,} for white noise sequence or displayed as
X, ~WN (p,0%). (8)
Definition 1. The model is named autoregressive moving aver-
age model, if it contains the following structures, abbreviated

as ARMA(p,q) :

Xp = oy, et X+ 016

0,6 ¢,#0,60,#0,
E(g) =0,
i €
Var (¢,) = 0,
E(ge) =0, s#t,
E(x.,) =0, Vs<t.
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Introduced delay operator B, it can also be presented as

®(B)x, = O (B)¢,. (10)

Cointegration Theory. The cointegration theory was put
forward by Engle and Granger in 2001 [17]. Model can be
calculated without the requirement that all sequences are
stationary, if the cointegration relationship is obvious. The
typical cointegration test is EG test [18-20].

Definition 2. Supposing that the response variable {y,} and
the input variable sequences {x,},..., {x;} are all stationary,
the regression model is established in response to the input
variable sequences and response sequences:

0,
[’l Zq) EB; lxlt+8t’

0 (B) (11)

g = a,
@ (B)
abbreviated as ARIMAX model.

In the actual modeling process, an improved ARIMAX
model is proposed to forecast the short-term electric load. The
specific process is displayed below.

4. The Improved ARIMAX Modeling Process

4.1. Modeling Steps. These are as follows

(1) Perform logarithmic transformation on the original
response sequence and the inputted sequences in
order to meet the homogeneity of variance assump-
tion.

(2) Checking the stationarity of logarithmic transforma-
tion sequences,

{ln y,}s{lnx;},.... {lnx;}. (12)
If the sequences are stationary, move on to the next
step; if not, conduct differential operation to the
logarithmic sequences and testing stationarity again;
then execute the second-order differential operation
until the stationarity is satisfied.

(3) Establishing the ARMA model about {V"In x,},

0, (B) .
(Dxi (B) xit*

V'inx;, = (13)

{V"In x,} are N-order difference stationary inputted
sequences.

(4) Establishing the ARMA model about {V" In y,},

@w (B)

Vn In Yit = (B) ytt

(14)

{V'Iny,} are the N-order difference stationary
response sequences.

(5) Exploring the correlation coeflicient between the
stationary N-order difference logarithmic sequences
“V"In y,” and “V"In x,” to determine the structure of
improved ARIMAX model. This step is the improved
part for traditional ARIMAX model. Therefore, the
revised ARIMAX model can be calculated as follows:

©; (B)
ch B5 e (15)

(6) Fitting residual sequence {¢,}

® (B)
& = o (B) (16)

{a,} is a zero mean white noise sequence.

Based on the above steps the improved ARIMAX model
can be applied into load forecasting process.

4.2. Modeling Flowchart. See Figure 1.

5. Load Forecasting with ARMA Model

5.1. Load Data. The table in the appendix shows the daily
maximum power load data and the maximum temperatures
in a city from Ist June to 14th August (see Table 12). In this
paper, the data is used to explore the classical time series
models and ANN models are used to firstly forecast load.
In Section 6, an improved ARIMAX model is established to
compare the prediction accuracy [21-23].

It can be seen in Figure2 that load data has an
upward trend and clear cyclical fluctuations by observing
the sequences, showing that the sequences are nonstationary
[24, 25].

5.2. Establishing ARMA Model. After the time series analysis
on the load data by SAS software, autocorrelation table is
previously mentioned. Table 1 shows that the autocorrelation
coeflicients of the sequences are always positive [26-28]. It
can be inferred that daily peak power load data is nonstation-
ary series with a monotonic trend, which is shown in Figure 2.

At the same time, the partial autocorrelation table can
be obtained. Table 2 shows that only the first-order partial
autocorrelation coefficient is significantly greater than two-
time standard errors [29]. The rest partial autocorrelation
coefficients rapidly decline to zero, making random fluctua-
tions within two-time standard deviation ranges. Thus it can
be regarded as the first-order truncation.

According to white noise test, statistic P (probability) is
less than 0.05; thus the sequence is nonwhite noise. Then,
the AR(1) model is applied to forecast power load data. In
residual autocorrelation coefficient test about AR(1) model,
it is shown that statistic P is larger than 0.05; thus this model
applies.

After the SAS processing, AR(1) model can be presented
as

&
x, =289582+— " 17
t 1 -0.90534 = B (17)
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FIGURE 1: ARIMAX modeling flowchart.

TABLE 1: Autocorrelation table.

Lag Correlation -198765432101234567891 Std. error
0 1 | R ] 0

1 0.93898 | [roopeeoneeoonesone | 0.114708
2 0.86458 | [renseennnnone | 0.190683
3 0.81703 | |>f>+>e>u»>u»wx»>+*>«*>¢ | 0.236709
4 0.78057 | |>+>+>e*>k>uum»>e*x»*>¢ | 0.271289
5 0.74394 | . [Propepneteeos | 0.299386
6 0.70116 | . [ttt | 0.322794
7 0.66555 | [kttt | 0.342248
8 0.63503 | [ttt | 0.358874
9 0.60586 | [retettnet | 0.373367
10 0.5797 [ [rmtetnet | 0.386086
11 0.54107 | i | 0.397374
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FIGURE 2: Load and temperature figure.

TABLE 2: Partial autocorrelation table.

Lag Correlation -198765432101234567891
0.93898
—0.14458
0.2036

|
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0.01204 |
~0.05103 |
0.06133
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In order to optimize the ARMA model, the minic option
is used to detect the best order [30]. Setting ARMA(p,q)
model as x, = p + (O(B)/D(B))g,, the option detects the
ARMAC(3,2). The ARMA(p, q) model is presented as

x; = 2949.334

1 — 0.97485B + 0.3208B> (18)

+ &.
1 - 1.97331B + 1.49699B% — 0.52368 B>

6. Load Forecasting with Improved ARIMAX
Model

6.1. Testing Statistics. Regardless of the kinds of models, the
P value of test statistic 7 is significantly greater than 0.05
by ADF test. Daily maximum power load data series are
markedly nonstationary. Therefore, the following analysis is
conducted on nonstationary data sequence.

Firstly, performing logarithmic transformation on the
original sequence,

x,y — Inx,Iny. 19)

TABLE 3: Autocorrelation check for white noise.

To lag Pr > ChiSq
12 0.1066
18 0.2526

TABLE 4: Augmented Dickey-Fuller unit root tests.

Type Lags Pr < Rho Pr < Tau Pr>F
0 <0.0001 <0.0001
Zero means 1 0.0001 <0.0001
2 0.0001 <0.0001
0 0.0007 0.0001 0.001
Single mean 1 0.0001 0.0001 0.001
2 0.0002 0.0001 0.001

Thus the sequences can meet the homogeneity of vari-
ance. The white noise test of In x sequence indicates that the
In x sequence is a nonwhite noise sequence. Unit root test
shows that the P value of 7 statistic is significantly greater than
0.05. It is suggested that In x sequence is nonstationary. There
is one unit root in In x sequence at least. And the analysis on
In y sequence is similar to that of In x [23-25].

Secondly, operating first-order differential operators to
{In y,} and {lnx,} sequences to get stationary {Aln y,} and
{Aln x,},

Inx;,Iny, — Alnx, Aln y,. (20)

Thirdly, operate stationary test and white noise test to
logarithmic sequence after first-order differential {Aln y,}
and {Aln x,}. The test result shows that the P value of white
noise test is greater than 0.05, which means that {Aln y,} and
{Aln x,} sequences are pure random white noise sequences
[26]. And the P value of 7 statistic is less than 0.05, showing
that {Aln y,} and {Alnx,} sequences are stationary series.
Until now, the test analysis has been finished.

6.2. Computing Aln y, and Aln x, Sequences Model. Firstly,
the Aln y model is established. The test shows that Aln yisa
stationary white noise sequence; thus the fitting model is

Alny =¢,. (21)

Secondly, the Alnx model is established (see Table 6).
The test results obtained by SAS from Tables 3 to 5 show
that Aln x is a stationary white noise sequence (the P value
in Table 3 is larger than 0.05, while the P value in Table 4 is
smaller than 0.05). The best order for ARMA(p, q) model is
[AR(0), MA(4)]. Therefore, the fitting model is ARMA(0, 4)
or MA(4) model. The constant term is not significant, using
the noint option to remove the intercept. The final fitting
model is shown as [31]

Alnx, = (1-0.45098B")¢,. (22)
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TABLE 5: Minimum information criterion.

Lags MA(0) MA(1) MA(2) MA(3) MA(4) MA(5)
AR(0) —5.14349 —5.22355 —5.48448 —5.51557 —-5.51716 —-5.51704
AR(1) —5.13228 —-5.19252 —5.42776 —-5.4607 —5.4677 —5.48567
AR(2) —5.35327 —5.40243 —-5.37285 —5.41553 —5.41986 —5.46426
AR(3) —5.3958 —5.42964 —5.39755 —5.36473 —5.3641 —5.41041
AR(4) —-5.40213 —5.42436 —5.39489 -5.36661 —-5.30905 —-5.37159
AR(5) —5.4457 —5.422 —5.40418 -5.3893 —-5.33506 —5.32363
Minimum table value: BIC(0,4) = —5.51716
TABLE 6: Fitting parameter of A In x model.
Parameter Estimate Standard error t-value Approx. Pr > [t| Lag
MA(1,1) 0.45098 0.10373 4.35 <0.0001 1
TABLE 7: Relationship number table of Aln y and Aln x.
Lag Correlation -198765432101234567891
-3 0.05145 | * |
-2 —0.24894 | k| |
-1 -0.17628 | oo |
0 0.49787 | |>t>+>+>+>(»x-x-x-x->e |
1 0.15016 | [, [
2 ~0.02468 | | |
3 —0.05311 | l |
TABLE 8: Parameter estimates of REG procedure.

Variable Dependent variable Parameter estimates Standard error t-value Pr> |t|
Alnx Aln y 0.37098 0.07442 4.98 <0.0001

TABLE 9: Autocorrelation check of residuals. means that there is no hysteretic effect between response
To lag Pr > ChiSq sequence a.nd input sequences. Therefore, the model should
P 00578 be treated in the same period.

: The regression analysis in Table 8 shows that the final

12 0.0687 regression coeflicient is 0.37098.
18 0.1588

TaBLE 10: Crosscorrelation check of residuals with input In x.

The statistics test is carried out on residual sequence,
showing that the residual sequence is stationary white noise
sequence (Pr > 0.05). The fitted model for residual sequence
is & = a,, and a, is zero mean white noise sequence [32-35].

To lag Pr > ChiSq It is known that there is significant correlation in the
5 0.0581 zero-order between the two sequences in Table 7. The same
11 0.0634 period model is established between Aln y and Aln x, based
17 0.0732 on the parameter estimates in Table 8 and tests in Tables

6.3. Computing Load Data with Improved ARIMAX Model.
The above model is used to filter input variable sequence
{Alnx,}---{Alnx;} and the response variable sequence
{Aln y,}. The mutual relationships numbers between the
independent variables and the response variable are calcu-
lated after filtration by ARIMA analysis process.

It can be found in Table 7 that only the 0-order delay
mutual relationship number is significantly nonzero, which

9~10. The P value in Table 9 is larger than 0.05; thus the
autocorrelation check of residuals shows that the model is
effective for forecasting loads:

Aln y, =0.37098AIn x, +¢,, 23
& =a.

The load from 15th to 31st is forecasted according to the
improved ARIMAX model.
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TABLE 11: Predictions of different models.

Actual power load Prediction value of

Prediction value of

- Predicti lue of
Prediction value of reciction vaiue o

Obs. data improved ARIMAX AR(1) ARMA(3,2) Slgmofl'\f;‘]“mon
16 2685 2678 2648 2699 2698
17 2833 2820 2810 2855 2844
18 2924 2930 2917 2934 2934
19 3112 3122 3128 3130 3128
20 2393 2400 2428 2441 2412
21 2570 2600 2650 2661 2598
22 2689 2709 2723 2741 2699
23 2730 2788 2796 2801 2812
24 2597 2638 2654 2687 2611
25 2216 2219 2225 2258 2215
26 1935 1929 1971 1995 1952
27 1826 1822 1910 1984 1857
28 1897 1850 1927 1968 1904
29 1945 1926 2018 2100 1965
30 2244 2230 2101 2154 2264
31 2261 2258 2177 2137 2274
AIC Criterion -72.7 381.4 433.8 78.6
SBC Criterion -71.5 383.9 436.6 79.2
MAE 0.0037 0.0389 0.0494 0.0185
By operating logarithm to the forecasting results “In y,” 3500
the next 15-day maximum load can be obtained, which is
shown in Table 11. g
MAE (Mean Absolute Error) is computed as follows: g 3000 -
- 2=l
MAE = EM) (24) é 2500
where , is the prediction value, y, is the actual value, and T E-
is the sample size. é 2000
It can be seen in Table 11 that the MAE of the improved <
ARIMAX model is the minimum, Sigmoid-Function ANN 1500
ranked second small, followed by AR model, and ARMA D S
model is the maximum. It means that the improved ARIMAX EEEEEEREEE2E23 S 5 & b b &
model is better than S-ANN, AR, or ARMA model according ZgEg % g % g ? g g g % Z f:. f:" 2 ::. Z
to the AIC and SBC Criterion in Table1l. The revised - A EHSH S
ARIMAX model is more effective, by which more accurate
load results can be obtained. —— Actual peak power load —— ARMA(3,2)
It can be seen in Figure 3 that the blue line is the actual — K}l{%‘;ved ARIMAX —— Sigmoid-Function ANN

daily maximum power load data, while the red line is the fore-
casting data of improved ARIMAX. The difference between
improved ARIMAX model and actual power load data is
the minimum among these models. Residual stationarity and
white noise test show that the residual is stationary white
noise sequence, showing that ¢, = a,. There is second-
order delay correlation between In y and In x. The final fitting
model is

In y, = 2.86647 + 1.41495In x,_, + ¢,,
(25)
& =a.

FIGURE 3: Forecasting graphics.

7. Conclusion

Based on the above analysis, the improved ARIMAX model
can effectively dig up self-related information of load data.
As an effective method for short-term load forecasting,
the model can get a more accurate prediction result than
traditional time series models. Prediction accuracy of this
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TABLE 12: Daily maximum power load and temperature data in some city in 2010.

Time Peak power load Maximum temperature Time Peak power load Maximum temperature
Ist Jun. 1787 24.9 9th Jul. 2662 333
2nd Jun. 1752 23.5 10th Jul. 2679 35.6
3rd Jun. 1804 26.3 11th Jul. 2383 32.6
4th Jun. 1858 28.7 12th Jul. 2473 32.2
5th Jun. 1804 30.2 13th Jul. 2596 35.6
6th Jun. 1810 311 14th Jul. 2429 311
7th Jun. 1790 25.9 15th Jul. 2585 32.8
8th Jun. 1788 23.8 16th Jul. 2558 345
9th Jun. 1739 24.2 17th Jul. 2628 35.2
10th Jun. 1791 25.5 18th Jul. 2739 35.1
11th Jun. 1822 28.2 19th Jul. 2883 35.8
12th Jun. 1848 28.9 20th Jul. 2896 36.5
13th Jun. 1811 22.8 21st Jul. 2829 36.8
14th Jun. 1746 28 22nd Jul. 2812 36
15th Jun. 1652 321 23rd Jul. 2841 35.6
16th Jun. 1698 33.2 24th Jul. 2746 34.8
17th Jun. 1983 29.9 25th Jul. 2672 329
18th Jun. 2106 33.4 26th Jul. 2642 32.6
19th Jun. 1881 277 27th Jul. 2791 35.3
20th Jun. 1869 29.7 28th Jul. 3026 36.4
21st Jun. 2069 32.2 29th Jul. 3105 36.8
22nd Jun. 2109 30.3 30th Jul. 3054 37
23rd Jun. 2007 26.9 31st Jul. 2870 36.2
24th Jun. 1869 27.5 1st Aug. 2999 36.7
25th Jun. 1994 30.3 2nd Aug. 3256 38
26th Jun. 2014 31.4 3rd Aug. 3286 38.7
27th Jun. 2059 32 4th Aug. 3404 39.5
28th Jun. 2163 29.1 5th Aug. 3464 40.5
29th Jun. 2237 32 6th Aug. 2766 32.9
30th Jun. 2456 35.8 7th Aug. 2646 33.9
Ist Jul. 2708 359 8th Aug. 2847 35.7
2nd Jul. 2760 35.9 9th Aug. 3094 36.8
3rd Jul. 2829 35.6 10th Aug. 3310 38.8
4th Jul. 2972 37 11th Aug. 3348 39
5th Jul. 2829 321 12th Aug. 3357 37.5
6th Jul. 2387 28.5 13th Aug. 3290 37.8
7th Jul. 2528 33.7 14th Aug. 3265 37.8
model is greatly improved, which is of high value in X;: Training samples
engineering application area. It is verified by relative error & Accuracy requirements
analysis of ARMA and the improved ARIMAX that the {x,}: Time series
revised model has higher prediction accuracy than usual EX,: Mean of time series {x,}
forms. ¢, Autoregressive coefficient

0, Random interference coefficient
Notation ®(B): Q-order moving average coefficient

polynomials

Nety;: The state of network unit u; O(B): Residual sequence moving average
0j: Output unit coeflicient polynomials
8+ Output (hidden) layer unit B: Delay operator

w;;(0): Initial value of weight or threshold o: Standard deviation.
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