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1 Introduction

Modern communication systems are very complex heterogeneous systems realizing world-wide
video and audio communication and using different networks and protocols with a specified
quality of service. Such communication systems consist of servers and clients. Especially cli-
ents are very different user devices, from powerful personal computers to small cellular phones.
A client can communicate with other clients and servers, using services like live video confer-
ences or it can store and can demand video and audio records (see also Figure 1). Clients and
servers are connected by common local and wide area networks.

One of the main challenges for configuration and structuring of such a heterogeneous system is
to guarantee the specified quality of service with a minimum of costs. The designer may meet
the challenge by using his practical knowledge or by building up prototypes or by utilising for-
mal methods such as performance analysis and simulation.
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Abstract

Communication systems consist of many soft- and hardware components with a wide range of
parameters which affect mainly the provided quality of service. One of the main challenges for
configuration and structuring such a heterogeneous system is to guarantee the specified quality
of service with a minimum of costs. In this paper, we introduce a simulation based approach
which helps the designer to determine the best fitting parameter values. Our approach combines
prototyping and simulation in a common environment.
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Fig. 1: Basic elements of a communication system.
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In this contribution, we introduce a simulation based analysis approach which combines the
fore-mentioned analysing methods. In our approach both simulation models and real hardware
and real software prototypes can be executed in a common environment. Results of the appli-
cation of formal methods may be integrated into the simulation models, e.g. distribution func-
tions, profiling results as well as measured values. The approach was driven by our experience
that only a mix of different analysis methods which complement one another may bridge the
analysis gap of such huge heterogeneous systems.
The text is organized as follows. Section 2 details the analysis requirements of the system we
focus on. Section 3 gives an overview of our modelling approach. Implementation aspects are
described in section 4.

2   Requirements in communication system design analysis

Clients and servers of a communication system consist of software and hardware components
like real-time and non real-time operation systems [3], conference system applications [1], data
bases, network processors [5], data processing units, coprocessing hardware[2] [4], RAM, and
persistent memory. Some parts of the system are already implemented, others exist only as ab-
stract or detailed models. The system designer has to find an optimal configuration in accord-
ance with the requested parameter. He has also to determine all important parameters of a given
system configuration to check the system reserve. The main target is then the determination of
an optimal system load with minimal soft- and hardware costs as well as low power dissipation.
To figure out the system parameters the designer can measure, analyse and simulate the whole
system or parts of it. In practice a complete assessment of the whole system will only be possible
with a mixture of these methods. Therefore we propose a procedure that combines all three
methods, e.g measuring the already implemented components and analysing or simulating the
non-existing parts in such way, that the approaches complement each other. The main objec-
tives of such an simulation environment are:

Parameter determination: A lot of parameters influence the system behaviour. One goal of
the system simulation is to find optimal parameter values for a special configuration. Some pa-
rameters are specified by the service demand, for example the video resolution, the number of
colours, the net bandwidth, and the used network protocol. Other parameters depend on the
computer used, like CPU performance, memory size and so on. Additionally there are software
parameters like buffer size and the used algorithm for data processing. There is a large amount
of parameters and the optimal configuration is very system specific. Therefore the parameters
can not determined completely analytically.

Performance analysis:Since optimal system parameters can hardly be determined only ana-
lytically, simulation is also important for examining system performance depending on the
hard- and software parameters.

Configuration analysis: The configuration of a server or client depends on the demanded
service and the client system. For example a specific data compressing algorithm is used de-
pending on system parameters of the client like CPU performance and memory size. There are
a lot of possible hard- and software combinations. It would be useful to determine what combi-
nation is suitable for a special service and configuration.

Relationships between the components:There is a more or less tight correlation between the
components of a configuration. For that reason, the system has to be treated as a whole. For ex-
ample, swapping out parts of the software to hardware would decrease the load of the CPU, but



187

on the other hand, this would lead to a higher load of the system bus since of the gaining effort
for communication. The simulation of the whole system allows detailed analysis of the mutual
dependencies and makes it possible to separate between important and non relevant correla-
tions.

Data transport mechanism: Data packets are exchanged between the system components.
The size, organization and management of these data packages have a great influence on the
system load. The simulation will help to find out and test suitable data representations and their
dependence of the component granularity.

Framework: For the practical development the simulation framework will be useful for de-
sign, implementation and test of real hard- and software components, because real components
can be integrated in the simulation framework.

3   Object oriented system modeling

In a first paragraph, we introduce typical system architectures of a communication system by
an example. For simulation based analysing of such system architecures, the system architec-
ture has to be transformed into a simulator specific simulation model using various modelling
languages (e.g. SDL, VHDL, Verilog, Modelica). In a second paragraph, we show methods how
the system architecures can be mapped into a simulation environment. Therefore, we prefer the
object oriented modelling approach, which keeps the system hierachy, the system structure
and the system component interfaces untouched when mapping the system architecture into a
simulation model. Consequently, the system architecture is found again in the model structure.
In fact, the object oriented modelling reduces the modelling effort as well as the error-suscep-
tibility of the modelling process. The modelling approach includes the incorporation of existing
real hardware or real software into the system model to decrease the modelling effort or to in-
crease the simulation performance. The methodology used for the real component incorporation
is more detailed explained in [9] [10].

System architecture
Figure 2 shows typical hardware structures of real clients and servers. The client in Figure 2 a)
is a common personal computer. The CPU and RAM exchange data over the PCI bridge. Addi-
tional components can be coupled over the PCI system bus which is connected with the PCI
bridge and provides some PCI ports (slots) for the components. In each common PC this will
be a hard disc controller (e.g. SCSI) and a graphic adapter. Moreover, a conference system cli-
ent needs a video card to connect a video camera to the system and a net adapter to realize the
network connection. This configuration can be extended by special hardware e.g. a network
processor, FPGA based prototypes or custom hardware. The purpose of this special hardware is
to support the CPU because the conference system software running on the CPU contains a lot
of time consuming algorithms for video and audio data processing. This algorithm (e.g. a
MPEG coder or decoder) are often very complex and can overload the system resources, e.g.
the CPU performance.
Other very different client structures are possible, as shown in Figure 2 b). For example the vid-
eo camera can include analog and digital data processing units and already provide digital pic-
ture data over a standard interface, e.g. USB.
There are depicted two possible server structures in Figure 2 c) and d). Their base structure is
similar to the clients one, but normally a server is more powerful than a client, because it has to
serve many of clients. A video adapter, like the clients use, is usually not necessary because the
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server stores and provides video data but does not generate them. The server software contains
a database with all stored records. If a client ask for a video, the server searches it in the database
as well as initializes and controls the data transmission if it can provide the requested service.
The network which connects clients and servers may have very different topologies. For exam-
ple it can be a local area network but also a wide area network like the internet. The transmission
way can include different technologies like cable, fiber and radio as well as different protocols.

Model architecture
The system consists of many heterogeneous components, like shown in Figure 2. Our object ori-
ented model approach use this system structure to build a model structure, like illustrated in Fig-
ure 3. The component models can consist of a hierarchical structure of submodels and be
realized using different abstraction levels.
As briefly described in the paragraph above, there is no unique architecture and no unique data
protocol format for a today’s communication systems. The system components are very heter-
ogeneous. Therefore, a wide range of modelling means has to be considered to map the system
into an simulation environment. Furthermore, depending on the simulation goal, the model ab-
straction may be high or low. Figure 3 shows as an example some typical system views. The
model abstraction starts with abstract queuing models describing statistical data rates and delays
and ends with a detailed descriptions of hardware blocks using hardware description languages
such as VHDL or software components using programming languages. For system analysis it
is important to handle all this abstraction layers within a common environment.
The most abstract model approach is to consider all or some of the clients and/or servers as traf-
fic generators and sinks, like shown in Figure 3 a) and d). For example a media server which
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sends data to a client will put data packages in the network and the client will receive it. This
process can be described with some parameters like package size and package distribution func-
tion. This parameters can be determined analytically or by measuring of a already existing sys-
tem. Another abstraction level is shown in part b) and e) of Figure 3. In this case the model is
built with soft- and hardware components. The exact model structure depends on the client or
server configuration as well as on the specific simulation goal. Besides some control compo-
nents this model approach includes a data processing pipe. This pipe contains all components
passed by the data stream. Therefore this model type is e.g. especially suitable to observe the
data flow through a data processing pipe and to determine its parameters or to test various pipe
configurations. A pipe component can be an abstract model that handle abstract data or also real
software.
A more detailed model approach is shown in Figure 3 c) and f). Here, one or more components
are modelled very exactly. In the case of clients it is a Network Engine (c) with its components
and in the case of severs it is a component from the data processing pipe (f). For example the
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components of the Network Engine could be modelled with a hardware description language
(e.g. VHDL or Verilog) or implemented with real hardware.
For the network modelling there exists two basic model approaches: the connection oriented ap-
proach (Figure 4) and the topology oriented approach (Figure 5). In the connection oriented ap-
proach, each possible connection within a network and the appropriate link delay is described.
In contrast, in the topology oriented approach the model includes the network topology which
can consist of different network types and their parameters.
If a designer has to develop a new hardware component he can use the environment to simulate
it before it really exists. In this case the new component will be in the focus of interest and the
remaining system can be abstracted to a data source or sink. Figure 6 shows the system model
scenario derived from Figure 3.
Abstract clients and servers as well as the conference system of the focused client work as traffic
generators and sinks. They send data packages to the more detailed client model, that is in the
focus of interest, e.g. a „protocol engine“. In this example the protocol engine, which realizes
the network protocol, consists of six components: PCI controller, RISC, DSP, FPGA, RAM
module, network adapter, and bus which connects the components.
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4   Object oriented system simulation

As shown above, a communication system contains many heterogeneous components, e.g. the
network, client and server hardware components and their software. The simulation of each sin-
gle component or of component groups is state of the art. A simulator which allows to simulate
the whole system is currently not known. Therefore we use aobject oriented simulation ap-
proach to develop a large heterogeneous simulation framework.

4.1 Simulation Approach

In the last years, the object oriented simulation approach has been established and also our ap-
proach follows this idea [7]. Object oriented simulation means that a system is split into subsys-
tems, which are simulated autonomously [17]. Such a subsystem is named "object" and may
contain other objects, so that an object hierarchy may be built. Figure 7 shows the object struc-
ture (a) and an object hierarchy (b). An object embeds its own simulation algorithm, which can
be a small code fragment but also an extensive simulator. All implementation details are encap-
sulated by the object, only an interface allows data exchange and simulation control.
The advantage of that approach is its flexibility. It makes it possible to mix and exchange ob-
jects easy, whereby very different simulation algorithms can be combined. Furthermore the
simulation algorithms can be optimally adapted to the models.
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4.2 Simulation tools

Because a single simulator which allows to simulate a large heterogeneous communication sys-
tem is currently not known, various simulators have to be coupled. We use the simulation
frameworkPtolemyas top-level simulator to combine all necessary models and simulators (ob-
jects). Ptolemy follows the object oriented approach described above and allows the simulation
of heterogeneous systems, particularly those that mix technologies, including for example ana-
log and digital electronics as well as hardware and software [6]. It is also possible to mix differ-
ent simulation algorithms like data-driven simulation and discrete-event simulation. The
framework provides C++ class structures that can be expanded to build new simulation algo-
rithms and models. It is possible to distribute the simulation task to several computers that are
coupled over a network. For example each client and server of the communication system can
be simulated on one separate computer.
Theoretically, it is possible to develop models for each system component and simulate all with-
in the Ptolemy framework. However this is not the goal of our work, because some components
already exist and other will be developed with specific design tools.
Because some important models are only available in VHDL, we use a VHDL simulator. This
permits the simulation of very large models on hardware level. Since VHDL is a very popular
and flexible hardware description language, we can fall back on many own and foreign models
and model libraries.
The simulation of complex networks requires a suitable network simulator and network models.
We use the simulator NS (version 2), because it is very flexible and supports complex network
scenarios with many transport protocols, routing mechanisms, application models etc. NS is an
object oriented, discrete event driven network simulator developed at UC Berkley written in
C++ and OTcl [15]. It is very useful for simulation of local and wide area networks including
mobile and satellite networks.
A network scenario consists of three levels. The first level defines the network type and topol-
ogy (e.g. a LAN with CSMA/CD MAC protocol), using nodes and links which connect the
nodes. The second level defines the used transport protocols (e.g. UDP or TCP). Finally the ap-
plication-level defines applications (e.g. telnet and ftp), which use the transport protocols.
Main simulation goal is to obtain information about the availability, workload, efficiency, and
failure behaviour of the simulated scenario, dependent on a lot of parameters (link bandwidth,
transport delay, protocols etc.).
The fast simulation of complex processors (e.g. DSP or RISC) requires instruction set simula-
tors (ISS) [14]. An ISS simulates the program running of a processor. The ISS reads commands
and data from a memory model, performs the data processing, and writes the results back to the
memory. Neither the memory nor the processor is normally modelled on hardware level, but
more abstract data processing models are used. This allows a high simulation performance, be-
cause the simulation of the exact hardware behaviour is not necessary. The abstract model level
requires an adaptation if an ISS has to be combined with more detailed models, e.g. a memory
model designed with VHDL.
Figure 8 shows one possible simulator structure. It is a combination of the simulation frame-
work Ptolemy, a VHDL simulator (VSS), a network simulator (NS v2), and an instruction set
simulator. Furthermore a real hardware component is included. In this example we assume that
the PCI controller, network adapter, conference system, and other clients and server models are
available as C code. The FPGA and RAM modules are described in VHDL and for the RISC
and DSP are special instruction set simulators available. The concept is not limited to the listed
simulators, so also other tools (e.g. a Verilog simulator) can be included.
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4.3 Simulator coupling

As seen in Figure 8, more than one simulator is necessary to simulate the whole system. There-
fore, different simulators must be coupled. For simulator coupling different techniques can be
used. To simplify this task, we looked for a standardized interface to couple simulators. Com-
mercially, thebackplaneapproach is widely spread [16]. The backplane is a separate and sim-
ulator independent software to manage the communication between the simulators. As a
disadvantage, the backplane produces a high communication overhead so that the relevancy of
that technique is decreasing. To overcome the overhead while keeping the independency, ven-
dor and simulator independent standard interfaces between complex simulation models and
simulators are being developed such as theOpen Model Interface OMI [11] [13].
The OMI, since 1999 a IEEE standard (P1499), was developed to couple simulators with com-
plex digital models. It is an open standard interface, which allows interoperability between an
application (e.g. a simulator) and functional models, which are presented in a binary form. The
models can be developed in a variety of languages, for example VHDL, Verilog HDL, and C.
To generate a binary form, a suitable compiler is necessary. Because models are supplied in a
binary form, a simple but effective IP (intellectual property) protection is possible. Furthermore,
a single model library may contain models of different model providers. These multiple models
may be used concurrently during one session.
A separate software component exists between application and models, the OMI model manag-
er. The model manager connects the application with the models and provides built-in or exter-
nal models. If the application wants to use a model, the model manager creates and manages a
unique customized instance, derived from the demanded model. Figure 9 shows the resulting
structure. Only the interface between application and model manager is defined by the OMI
specification. The connection between model manager and models as well as instances is unde-
fined. This allows a very high flexibility as well as easy model generation and reuse. The model
manager mainly provides routines to realize the functionality of the models and to deliver model
information. Furthermore the model manager may implement additional functions, for example
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version and licence management. A model query mechanism may be used by the application to
get model information, e.g. ports, parameters, supported data types, viewports etc. Viewports
are model-internal ports, visible from the outside to simplify verification and test. They have to
be provided by the model developer and allow to control the internal visibility with respect to
IP protection.
The interaction between the model and the application is not fixed but can be adapted dynami-
cally during runtime. A so-called callback mechanism allows to register and remove model
function calls (named callbacks), dependent on the required interaction. More information
about the goals and advantages of the OMI can be found in [196].
We use the OMI approach not only to couple simulators with functional models, but also with
other simulators. This is possible, because the Open Model Interface (OMI) supports the de-
scribed object oriented simulation approach, so the applied simulators can be encapsulated in
an object.

In our simulation environment the application is the simulator Ptolemy working as "master"
simulator. All other simulators are simulation objects as depicted in Figure 7. Therefore we have
developed a suitable interface to couple NS with other simulators, e.g. a VHDL simulator. The
interface allows to replace one or more application and protocol models with external models,
which can be performed using another simulator, e.g Ptolemy or VSS.
Figure 10 shows the basic structure if Ptolemy objects use external applications via the OMI.
The OMI provides the external objects to the Ptolemy models (PCI controller, network adapter,
conference system as well as other clients and server). These models can use the FPGA, RAM,
and Bus model that runs on an external VHDL simulator, the network model running on the net-
work simulator, the RISC and DSP model simulated with special instruction set simulators, as
well as a real FPGA. The Ptolemy models "see" only the Open Model Interface but not the ex-
ternal model implementation.

4.4 Integration of real hardware

In [8], we have shown the possibility to include real hardware into simulation environments via
the OMI, exemplarily based on the interface board SimConnect. This board controls the data
transfer between a host computer and a FPGA prototyping board. An application programming
interface (API) realizes data transfer and control functions, which are executed by the SimCon-
nect board. The SimConnect board realizes data exchange between host and FPGA and controls
the FPGA prototyping board according to the called API commands. A more detailed descrip-
tion can be found in [9].
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OMI

Fig. 9: OMI Basic Structure
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To include the FPGA board via the OMI, the SimConnect API is encapsulated by a special OMI
model. Neither the model manager nor the simulator knows that the model functions are real-
ized using hardware. Besides the FPGA instance the simulator may also create other model in-
stances. If the host provides several I/O-ports, also several FPGA boards can be used at the same
time.

5   Conclusion

This contribution describes an approach to simulate a complex communication system. It makes
it possible to mix heterogeneous components, that can be modelled using various abstraction
levels, from an abstract traffic generator to a very detailed VHDL model for example. The de-
signer can integrate the focused component as detailed as necessary and choose a suitable ab-
straction level for all other components.
The implementation approach uses Ptolemy as a framework and the OMl as interface to real
hardware and external design tools, like VHDL simulators. However this approach is not lim-
ited to the OMI or a specific tool.
We have implemented an OMI adaption prototype for the simulation framework Ptolemy, the
VHDL simulator VSS and a hardware prototyping board. Additionally, we have developed an
OMI model manager, which supports some external models as well as the hardware prototyping
board.

Fig. 10: OMI Example Structure
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Presently we are working on the NS simulator interface, which is necessary to couple NS with
Ptolemy via OMI. Because the simulators will run on different computers and platforms, we im-
plement also a connection via sockets, encapsulated by the OMI.
The main objective of our work is to provide a framework, which permits the simulation of large
heterogeneous communication systems, using very different model abstraction levels.
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