
Introducing Dynamic Distributed Coordination in Web Services for Next
Generation Service Platforms

Muhammad Mukarram Bin Tariq, Toshiro Kawahara

DoCoMo Communication Laboratories USA, Inc.
{tariq, kawahara}@docomolabs-usa.com

Abstract

We present a technique called Dynamic Distributed

Service Coordination Protocol (DDSCP) that enables
dynamic and distributed coordination for composed
services and applications in telecommunication
networks. Individual service components are modeled
as web services and DDSCP facilitates coordination
among these components by dispatching executable
processes to the service components that specify
different steps that the service component must follow
in response to (receipt of) specific messages and
events. The collective and concurrent execution of
these processes at different service components
achieves overall goals of the service. The planning
and creation of these processes is not our focus in this
paper. We describe the structure and processing of
different messages DDSCP, and describe how this
protocol can work.

Our model has several advantages over the existing
service platforms for 3rd Generation Mobile Networks,
such as Parlay/OSA, and the web-service composition
models. These advantages include introduction of
flexibility among network components at finest level,
ease of creation of highly customized services, easy
integration with foreign components, reduced
application complexity, increased reuse of application
components, and possibility of increased user
participation in managing her services, and thus
reducing load on the network.

1. Introduction and Overview

The success of future mobile telecommunications
systems depends on their ability to provide a steady
stream of useful and highly customizable application.
Two main challenges in providing highly customized
services in the networks are: 1) how to create new
services, and 2) how to manage these in a scalable
manner. In this paper, we present a new framework
and a associated protocol that allows highly
customizable services. We believe that using this
protocol in conjunction with a loosely coupled model,
such as that of web-services, we can largely overcome

these challenges. It also extends the web-services
architecture beyond its current model.

Loose coupling and programmability are widely
accepted solutions to the first of the two challenges we
mentioned above. In a loosely coupled network, the
network components are largely independent of each
other; they can work and evolve independently without
having much effect on each other. This eases the
introduction of new functionalities and allows fast
evolution of the network, which is the primary substrate
for new services. Programmability refers to ability to
change the behavior of the network and its components
after initial deployment. This allows that the network
to meet the requirements of future services and any
problems that are discovered in course of time are
easily fixed. Programmability also refers to be able to
write applications that benefit from the baseline service
components.

The second challenge, scalable management, has
several aspects. In this paper, however, we are
primarily concerned with manageability of customized
services, or applications in a telecommunications
network, and within that, how the services are created
and provisioned, how they are coordinated.

Present telecom networks are tightly coupled, offer
low programmability and manage applications in way
that is a non-scalable, certainly in the face of expected
wave of highly personalized services. Parlay [4], and
its 3GPP adoption, Open Service Access (OSA)[3],
which represent the state of the art in service platforms
for telecommunication networks, provide an API that,
in principle, allows programmability and creation of
new applications. However, the “wrap-around” nature
of this API leaves the internal rigidity of the network
intact. Even with grouping the network functionality in
to service capability functions, the network can, at best,
be seen as one large component, instead a collection of
several small independent and loosely coupled
components. MExE [14] and USAT [15] allow some
degree of involvement of user devices in the process of
service creation and execution, but much of the burden
of service provisioning remains on the network. The
network is responsible for providing services,
managing user profiles, and ensuring that the users get
a service that is in accordance with their profiles.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357222555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we present an alternative model that
tackles the shortcomings of the existing service
platforms. For loose coupling, our proposal is to view
the network as a collection of several small
independent components, based on web-services
model, wherever practical. We refer to these
components as service components. Programmability
is available in form of customized applications that
consist of sets of dynamically deployable customized
processes. These processes, once deployed, not only
customize the behavior of the web-service on which
they are installed, essentially creating a custom agent.
These processes also enable distributed coordination
between service components, allowing them to work
concurrently towards the goal of the application, just
like in multi-agent systems.

Moreover, in our model, the users can store these
distributed applications as part of their portfolio,
possibly on their device, or create them on the fly, such
as a part of service composition, and trigger their
deployment on demand. This frees up the network of
cumbersome management responsibility.

Recognizing the fact, that network is often a shared
infrastructure among millions of users, the framework
has some built-in security, and safety features. These
features allow deployment of only authorized
processes, and provide hooks through which the service
components can ensure that the processes for one user
do not interfere with services for others.

In this paper, we do not address the exact
mechanism through which these applications and their
constituent processes are created. It could be done by
application developers, or by automated agents, and
could be based on the service composition methods.
Our focus in this paper is a framework that defines the
structure of these processes, and how they are
distributed and how the service components process
them to achieve dynamic and distributed coordination
leading to achievement of overall goals of a service.

The core of this framework is a protocol, which we
refer as the Dynamic Distributed Service Coordination
Protocol or DDSCP. Its primary responsibility is
distribution of the processes. The processes
themselves are expressed as workflows, specifically in
BPEL4WS [8]; we do propose some changes and new
activities to accommodate the dynamic deployment
requirement.

The basic model is that a service initiator dispatches
a DDSCP InstallProcess message to the service
components. This message contains a process along
with a set of parameters that define the subset of
messages and the events that a process is interested in
processing. The InstallProcess message also contains

information related to integrity of these processes, and
some preprocessing activities, that allow a receiving
service component to customize the process further
before execution. The execution of the process can
trigger dispatch of processes to other service
components.

Our model allows several service initiators to
“install” their own customized versions of processes for
the same service components, so that the service
component behaves differently for each of these
initiators, however, the local policy and safety rules of
the component can restrict the privilege of installing
process and the types of messages that the these
processes can handle.

The structure of rest of this paper is as follows. In
section 2, we present related work. Section 3 is
dedicated to detailed description of DDSCP. In section
4 we present the overall service platform model, that
describes the modified web-service structure to allow
use of DDSCP, and puts use of DDSCP in context with
other components of the service platform. This section
also describes advantages of overall model and
different features of DDSCP. In section 5, we present
examples that illustrate the working of the DDSCP. In
section 6, we discuss various aspects and issues related
to the new service platform and the service
coordination protocol. We close the paper with a word
on conclusion and future work in the section 7.

2. Related Work

Our work relates to a number of areas. These
include the service platforms for existing networks,
customizable web-services, personalization techniques
in the Internet services, dynamic distributed
coordination of activities with workflows,
programmable networks, such as Active Networks, and
more fundamentally, the object oriented concurrent
programming techniques.

Coordination is an important step in any component-
based model. Coordination can be centralized or
distributed. In centralized coordination, a single entity
communicates with all other components, and
maintains the state of the overall composition. In
distributed coordination, there are several coordination
points that are responsible to coordinated different
aspects of the overall composition. Distributed
coordination, while relatively hard to conceptualize and
manage, has several advantages over the centralized
coordination approach, including scalability, reuse, and
robustness. Rainmaker, by Paul et al. [10][11], is a
distributed workflow infrastructure where a source can
dynamically assign tasks to performers, achieving a

distributed coordination model. This model serves as
basis for distributed coordination in our work as well,
where we can roughly characterize the service
originator or the user as the source, and different
service components as performers. Our protocol
provides a realization of this model that is suitable for
web services. In our model, a service component can
be working for a number users, or service originators,
so the security and safety are a big concern. We
provide mechanisms related to security and safety so
that the processes of one user may not interfere with
those of others, and that the service components only
accept processes from trusted entities.

Active Networks (AN) [1][2] held immense promise
to provide fine grain customized behavior from
network nodes through programmability. However, in
our opinion, one of their disadvantages, which also
impeded their wide adoption, was the need for the
messages and packets to be aware of active networking
and carry a reference to the process that must execute
on the message. This requirement, although allowed
fine control as to which process is executed, was not
practical, and a considerable hindrance in the evolution
of AN. Active Packets and Plug-in extensions for AN
tried to isolate the effect of evolution, but the basic
model of packet carrying the reference remained
unchanged. Recently, Song et al. [12] hinted on this
limitation of AN, and extend AN model to support
customized processing without requiring packets to
carry a reference. We also avoid the requirement of
unsuspecting messages carrying the reference to the
process, for our framework.

Finally, the notion of independent and customizable
web-services components working towards a goal is
fundamentally similar to object oriented concurrent
programming and concurrency in open systems and
Agents paradigm. Actors [7] allow reconfigurability
and inherent concurrency. Actors can send messages to
themselves and to other actors, create new actors, and
specify replacement behaviors. The process
deployment on service components using DDSCP is
equivalent to the creation of new actors (customized
web-service) and specifying a replacement behavior.
Just like actors, web-services have address binding and
can send and receive messages to each other. Hence,
we can use the Actors to reason about web-services and
dynamic behavioral updates in web-services, although
we do present any formal analysis in this paper.

3. DDSCP Messages and Processing

DDSCP is a simple protocol whose primary purpose

is to distribute the processes to the service components.

The protocol includes mechanisms through which the
receiving service components can verify the integrity of
the processes. It also provides certain parameters that
the processes can use to correlate their activities.

3.1. DDSCP Messages

InstallProcess message is of primary importance in

DDSCP. This message contains an executable process
in its payload, along with process properties,
correlation parameters and security related information.
Figure 1, shows a simplified XML representation of
this message.

First part of the message is the
InstallProcessHeader element. This element includes
information about the process correlation and security.
One of the concerns of a service component receiving a
foreign process is that the process is coming from a
trusted entity1. The message header includes
information about a primary authority that has
authorized the process in the payload of the message to
be executed as part of a set of processes identified by
the ProcessGroupIdentifier. A service component only
executes the process if it trusts the primary authority.

<InstallProcess

</InstallProcess>

<process>
<activity 1>
<activity 2>
<dispatchProcess>

<Destination Information>
<PreDispatchActivity>
<Process>

</dispatchProcess>
…
<activity N>

</process>

<PreProcessActivities/>
<PreProcessActivitiesData/>

<InstallProcessHeader>
<ProcessAuthority>

<PrimaryAuthority/>
<DelegatedAuthority/>
<ProcessInvokeAuthority/>

</ProcessAuthority>
<ProcessGroupIdentifier/>

</InstallProcessHeader >

<ProcessProperties>
<ProcessIdentifier/>
<CorrelationParameters/>
<ExpectedElements/>

</ProcessProperties>

Figure 1. The DDSCP InstallProcess Message

The header also includes a list of invocation
authority identifiers (public keys) and a process
identifier tuples. The tuples bind the entity with the
process identifier that the primary authority allows it to
dispatch or invoke at another service component. To
enhance process reuse, it may be necessary to defer the
invocation authorities binding. For this purpose, the
primary authority assigns an intermediate or delegate

1 There are other, arguably more important concerns, such

as, safety of the process, but they are orthogonal to the issue
of transport of the process, and a number of schemes already
exist that can verify certain safety properties in a given piece
of code.

authority, bound to the ProcessGroupIdentifier. This
authority can alter the binding of invocation authority
and process identifier dynamically, and include as a
signed separate element. The primary authority signs
the entire InstallProcessHeader element to ensure its
integrity.

Next in the message is the element containing
process properties. These properties include an
identifier for the current process (processIdentifier)
bound, using public key of the primary or delegated
authority, to the hash of the process included in the
payload, the processGroupIdentifier included in the
message header, and the identity of the receiving
service component. The primary or delegate authority
also binds the names of elements that the receiving
service component must expect in the message. This is
to prevent malicious entities from stripping off parts of
the message and causing unintended behavior.

An important part is the correlation parameters.
Unlike BPEL4WS, we require declaration of these
parameters ahead of installation. These parameters
define the subset of messages that the process is
looking to handle, or for which the process wants to
provide customized behavior. Depending on the policy
of the service component, the process may be required
to declare such parameters for both incoming and
outgoing messages.

Other properties in the process properties element
define whether and where the service component
should report on completion of execution of the
process or if any errors occur during the execution of
the process. The process properties element must be
signed by one of the authorities identified for this
process in the header.

The optional PreProcessActivities element includes
a set of activities that the receiving service component
must perform before executing the subsequent process.
The element may include activities in same format as
the main process, and may additionally include a
transform that operates on the main process to prepare
it for execution. The reason for inclusion of this
capability is that depending on the conditions under
which the sending entity dispatches the InstallProcess
message, the author of the application may want the
process of the receiving service component to be
modified. In simplest cases, the transform may initiate
the process differently, and it more complicated
scenarios, the transform may make radical changes in
the process, such as for context aware adaptation.
However, the later is not recommended due to safety
concerns. In order to protect against malicious
intermediaries, the PreProcessActivities element is
bound to the process it is intended for, by using digital

signature of the primary or delegate authority over the
PreProcessActivities element and the hash of the
process. The “conditions” that make the process
modification necessary are of course dynamic in nature
and cannot be pre-signed by an authority. These are
included in the message as a separate element called
the PreProcessActivitiesData element by the
dispatching entity. These conditions serve as input to
the PreProcessActivities.

The last element in the message is the process that
the service component must install and execute. More
precisely, service component executes the output of the
transform, if such a transform is present. The element
is signed by the primary or delegated authority, and the
service component must verify the signatures prior to
applying the transform.

Other messages in DDSCP include
IntallProcessAccept, InstallProcessReject and
messages for interacting with the checkpoint service
(that we will describe shortly). The
IntallProcessAccept message indicates to the sender
that the receiving service component has accepted the
process that was earlier sent in an InstallProcess
message. The InstallProcessReject message indicates
that the receiving service component did not accept the
process. The message body optionally includes the
reasons. Apart from these, there are messages to set
and retrieve check-pointed information; we will
describe this feature shortly.

As indicated before, we are presently using
BPEL4WS as the language to specify the process;
however, we have defined additional activities that
facilitate the distributed coordination. Description of
these activities follows next.

3.2. New Activities for DDSCP

We define three new activities within the BPEL4WS

framework to facilitate different aspects of dynamic
distributed control. First of these is the
DispatchProcess activity. This activity instructs the
processing service component to dispatch a process to
another entity. The process to be dispatched is
included inside the DispatchProcess activity element.
The DispatchProcess activity element also includes the
destination of the process to be dispatched and optional
PreDispatchActivities element that contains a set of
activities that the sending service component must
perform before dispatching the process to the
destination. The PreDispatchActivities element has the
same format as the PreProcessActivities that we
presented in previous subsection, and its purpose is to
is to generate the PreProcessActivitiesData element

that the service component receiving the process will
use in its pre-process activities. Explanation of
processing of DDSCP messages, given in the next sub-
section, will clarify this further.

Second of the new activities is AbortProcess
activity. This activity includes a process identifier,
along with optional correlation parameters needed to
identify the correct instance of the process that should
be aborted. The service component executing the
process containing this activity verifies whether the
identified process exists locally, and whether the
invocation authority of the current process is an
authority on the process to be aborted. If the service
component successfully verifies both of these
conditions, it immediately aborts the process.

 Last of the three new activities is CheckPoint
activity. The activity identifies a checkpoint server and
a set of elements whose value the service components
should send to the checkpoint server. This
multipurpose activity may be used for inspection and
safety.

3.3. Processing the DDSCP Messages

Figure 2 shows the pseudocode for processing an

incoming InstallProcess message. The first step is to
verify whether the service component trusts the primary
authority identified in the message. This is decided
based on the policy of the receiving service component.
If it does not trust, it sends an InstallProcessReject
message to the sender and discards the message without
further processing.

On Receive InstallProcess Message

If I do not trust the primary authority
send InstallProcessReject and stop processing

else if Cannot Successfully Verify that
(Sender is allowed Invocation Authority
AND All necessary elements are present
AND Integrity of all elements is verifiable
AND Message is intended for me
AND The Correlation Parameters are allowed

for the process)
send InstallProcessReject and stop processing

else
send InstallProcessAccept
execute PreProcessActivities if present
execute the process

END

Figure 2. Pseudocode for processing InstallProcess

If the service component trusts the primary
authority, it verifies all the signatures on the
InstallProcessHeader and confirms that the sender of
the InstallProcess message is an authorized invocation
authority for the present process. It verifies that all the
expected elements are present in the message and that
the integrity of all the elements is intact. It additionally
verifies if it is correct recipient of the process by

comparing the identity of the receiving service
component specified in the ProcessProperties element.

Lastly, the service component verifies if the
authorization of the process to operate on the messages
defined by the correlation properties. This may be
done based on the rules defined in the policy for the
service component. The correlation parameters define
a subset of messages, and if admitted the service
component only routes the messages defined by that
subset to the customized process. In BPEL4WS
terminology, a process may not wait for any messages
outside the subset defined by these parameters.

The main purpose this scrutiny is to ensure that a
customized process for one user does not interfere with
service for other users. This is done by ensuring that
the subsets of “critical” messages for the processes are
disjoint. For example if there is process for customized
call processing, a process for user TARIQ may only
register for messages with TO or FROM field set to
TARIQ.

If all of the above verify, the service component
sends a IntallProcessAccept message to the sender of
the InstallProcess message, and proceeds with the
preprocessing steps. If any of the tests fail, the service
component sends an InstallProcessReject message to
the sender and discards the message without further
processing.

The preprocessing activity is a process in itself and
the service component processes the activities as usual;
however, the preprocessing activities element may
contain an XSL transform that takes any preprocessing
data elements and the process element as input and
generates a new process element. In order to overcome
the limitation of XSLT that it takes only one document
as input, we must either combine multiple elements into
a single or use the entire InstallProcess element as
input. Figure 3 shows this process schematically.

Header

PreProcessActivity

PreProcessData

PROCESS

X
XSL Transform

Input 1

Input 2
X

NEW-PROCESS

Process Properties

InstallProcess Message

Figure 3: Preprocessing Activities

Upon completion of the transform and any other
preprocessing activities, the service component
proceeds to execution of the process. The process
execution does not require any special attention,
besides what is defined in BPEL4WS, until it reaches
one of the activities we have defined in previous sub-
sections.

The DispatchProcess activity requires the service
component to dispatch a process to another service
component. The DispatchProcess element includes the
process to be dispatched, along with address of
receiving service component and a set of PreDispatch
Activities. The pre-dispatch activity has same syntax as
the preprocess activities; and just like the preprocess
activity it may also include a transform that operates on
the process element. However, the goal of the pre-
dispatch activity is to create necessary pre-process data
for the destination service component, and as such, the
transform in this activity creates a
PreProcessActivitiesData element.

As part of processing this activity, the service
component creates an InstallProcess message, copies
the Header of the current InstallProcess message to the
new InstallProcess. It also copies the
ProcessProperties, PreProcessActivities, and Process
element from the DispatchProcess activity to the new
InstallProcess message. The output of pre-dispatch
activity is also spliced into the new InstallProcess
Message. The service component now dispatches the
InstallProcess message to the destination and continues
with any other activities that are included in its process.
Figure 4 shows a schematic of the processing of the
DispatchProcess activity.

We have already defined the processing of
AbortProcess and the Checkpoint activity in previous
section.

<dispatchProcess>
<DestinationInformation/>
<PreDispatchActivity/>
<ProcessProperties/>
<PreProcessActivities/>
<Process/>

</dispatchProcess>

Current
InstallProcess
Message New

InstallProcess
Message

COPY

X

Header

PreProcessData

PreProcessActivity

PROCESS

Process Properties

Header

PreProcessData

PreProcessActivity

PROCESS

Process Properties

COPY

Figure 4: Processing the DispatchProcess Activity

4. Service Platform Model

4.1. Overview

We view every application as a composition of

service components. In context of using this platform
for services provided by the telecommunication
network, the network shall provide some of these
service components as part of the infrastructure.
Examples of such service components include, network
firewall function, authentication, authorization, and
accounting functions, billing functions, location

information functions, content distribution functions,
specialized transport function, e.g., multicast, or
privacy enabled transport function, or media translation
and processing gateways. Other service components
may reside outside the network, at public places, or
with third-party service providers, or at user’s
premises, e.g., his home devices and sensors networks
at home.

With dynamic and distributed coordination model,
the application initiator dispatches processes to all the
service components involved in the application. Upon
receipt of these processes, the service components
work towards the eventual goal of the application
concurrently by executing their assigned processes.
The process dispatch protocol groups the related
processes together to facilitate the correlation among
all the process for the application.

S4

S2S3

S1

Customizable Service
Components

Service Registries
(Local/Global)

or

Service
Coordinator
and/or
Initiator

Customized
Processes
for involved
components

(Logical)
Service Delivery

Authors of
Customized
Applications

Customized applications
as sets of processes

Repository of Reusable
Processes

Preferences

Figure 5. Components of the Service Platform

Figure 5 shows a high-level view of the overall
service platform. The authors of the application
(programmers or automated agents) provide
customized applications to the service initiator or
coordinator. The coordinator then disperses these
processes to the appropriate service components using
the DDSCP. The service components, as a result of
execution of these processes, start working towards the
application goal. In the course of this execution, the
service components may dispatch process to other
service components.

The result of the execution of these processes is
logically delivered to the user. The platform also
includes repositories for registration of available
service components and their capabilities, and a
repository of reusable processes or patterns, that the
application developers can use to expedite the process
of service creation further.

One concern with this model is to reduce the
number of processes running on the service
components. In general, we want to reduce the number
of idle or inactive processes. For the services that
originate at the user, such as an outgoing call, the user
can simultaneously send the signaling message and the
active message containing the customized process to

the service components. The process remains active
for the duration of the call, and then fades away.
However, many services are not initiated by the user
requesting the customization, e.g., an incoming call.
We have two choices here. First is to “pre-install” the
customized processes, however, this is increase the
number of inactive processes. Other approach is to
have the service components look for appropriate
customized process. A repository can maintain all the
customized processes, if the process handler does not
find a customized process for an a legitimate message,
it can query the DDSCP handler to find an appropriate,
and DDSCP handler can then trigger the repository to
find the best customized process, and dispatch it to the
service component. This is shown in Figure 6.

Common XML Messaging Substrate

Message Handler

Process Handler
DDSCP
Handler

Default
Process

Custom
Process 1

Custom
Process 2

Custom
Process n

Other Messages
DDSCP
Messages

Policy
Handler

Users or
Agents

working on
User’s Behalf

Repository of
Customized
Processes

NETWORK

A DDSCP
Compliant

Web Service
Component Other Components

Add a
process

Is there a
customized
process?

Figure 6. Web Services Component Supporting DDSCP

4.2. New Structure of Web Service
Components

Figure 7 shows the stack diagram for dynamic and

distributed coordination support for a service
component based on web services technologies. It
differs from the traditional web services in that it
includes a separate layer responsible for dynamic
distributed coordination. In particular, this layer works
in tandem with the process layer, (shown in figure 6),
allowing dynamic installation of new processes on the
web service and their proper initialization. These
initialization parameters later serve to facilitate
correlation between the messages and their intended
processes. If the service interface includes methods for
DDSCP, it is a declaration that the service supports
DDSCP protocol.

Primary Functionality

QoS Plane

WSDL

DDSCPe.g.,
BPEL4WS

supports interfaces for
backward compatibility

Process Manipulation

Common XML Messaging Substrate

Service
Implementation

Service Interface

Process

Security Plane
Management Plane

Custom Processes

Figure 7: Web Services Component Supporting DDSCP

4.3. Advantages of our model

One advantage of dynamic distributed coordination

model is that by installing an appropriate process on a
service component, the application can create a
customized version of that component. In object
oriented programming terminology, this is equivalent
to creating an object of a subclass of original service
component, with the exception that the subclass in this
case cannot introduce new interfaces. The assigned
process can override the behavior of the service
component within certain constraints. This process of
modifying web service components can be referred to
as creating customized web-services. In fact, using our
model same service component can present different
customized behaviors to different applications.
Availability of this customizable service component
can greatly simplify the application.

Now the question arises, can we not have the
process to customize the component reside at the
application instead of the component itself?. The short
answer is that our model does not preclude this; the
customization process can run remotely, if the service
component relays all the related messages to the
application server. However, having the process
locally available at the component has a few
advantages. One is that the service component can
perform a series of related tasks locally, without
reverting to the original application or customization
process after completion of each task. This can
significantly improve performance of the overall
system.

By virtue of DispatchProcess activity, our model
allows the service components to dispatch processes to
other service components, if the author of the process
of the sending service component specifies so in the
process. This powerful feature enables dynamic and
conditional deployment of new processes, which in turn
form new coordination points.

Another advantage is that with our model, the
execution of the application does not depend on the
persistent availability of the centralized coordinator.
Relaxation of this requirement means that now a device
like the user’s mobile equipment, which may have
shaky connectivity, can easily manage its own services.

Yet another advantage of the model is simplification
of management of highly customized services. Service
customization often means treating the information in
unique ways for the customers. If we were to
accommodate all the customizable behaviors in a
centralized coordination point, the application will
become extraordinarily complicated. With our model,
the service provider can represent every customized

service for each individual user as a set of customized
sub-processes. The complexity of individual sub-
processes is much less than that of a centralized
process. This division also makes possible the reuse
and outsourcing of sub-processes. Moreover, as the
service initiator takes the responsibility of “installing”
appropriate set of sub-processes on demand, the
network and service environment can remain free of
inactive processes.

5. Example Usage

5.1. A programmable sensor network
controller

Let us start with a simple and non-

telecommunication related example. Suppose we have
a small sensor network that reads the temperature in
different rooms in a house, and controls the windows,
doors, and air conditioning system in the house. We
can consider the sensor network controller and the
controllers of different entities as service components.
Let’s also assume that only the sensor network
controller is “programmable” in the sense that it can
receive the dynamic process. Using our model, we can
write and dispatch a small process to the controller that
tells it what messages to send to doors, windows, and
air-conditioning units, based on sensor readings in
different parts of the house.

Although this scenario can also be built with other
existing models, but with our model, it is much easier
to customize the behavior of the sensor network
controller.

5.2. Arrangements transcontinental meeting
for collaborative work

Consider an application that monitors the calendar

service of a user, and makes necessary arrangements
for any meetings that are scheduled. The application
wants to ensure that there is never a language gap,
meeting material is made available to all the
participants in appropriate language, that the meeting
notes are generated, and all the proceedings are
recorded, and that the meeting is arranged through a
terminal that most convenient for the user at the time of
meeting.

In this example there are a number of service
components involved, and the nature of the call that
will be established for the meeting is not exactly
standard, i.e., it is a customized application that uses
the telecommunication infrastructure. Following
describes how we can represent this application as a set

of distributed processes, running at different service
components, so that the network does not need to make
any prior arrangements for the service.

The service components involved here are the
calendar service (C), a personal assistant service (PA),
a user profile information service (Prf), Location
service (Loc), the user terminal (Trm), translation
service (Trans), recording service (R), and multimedia
call signaling proxies (P).

Figure 8 shows the above-mentioned customized
call using DDSCP. The circles represent different
service components; the circles with shaded cap
represent the service components that support DDSCP.
A user desiring such an application can obtain it from
an external application developer. In this example, we
consider that a personal assistance is working on user’s
behalf, so the user dispatches the process to the PA.
The application activities in the process for the process
at PA require it to interact with the calendar service to
obtain the meeting schedule and participant list.

Process for
translated,

recorded call
and minutes

GetMeetingSchedule()
GetParticipantList()

GetUserProfInfo()3

2

FindUserLocation()
4 Process to establish

translated and recorded
call between me and

participants

5

6

PP

TrmTrm
PAPA

LocPrf

C

Application
Author

Obtain Collaborative
Meeting Application

0

Trans

R

Other Components

Asks PA to run
the process

1

Figure 8: Establishing a Customized Call with DDSCP

At the scheduled time, the PA obtains the profile
information about the participants (including
information about the languages they speak), and
decides whether translation may be required. The PA
then finds the location of the user, and the most
convenient terminal using the location service. The PA
negotiates with the terminal to learn about its
capabilities, including whether it supports DDSCP.
Based on the terminal capabilities, the PA dispatches a
process to the terminal telling it how to establish the
desired multimedia session. This process has a number
of activities that the terminal has to perform, and a
process that it dispatches to the signaling proxy in the
network. The process tells the proxy about the session
requirements, and the step it needs to follow. It
interacts with the translation and recording services to
achieve the service goals. Meanwhile the terminal
continues to provide interaction with the user. All of
this happens concurrently, without any prior
provisioning in the network.

5.3. A Note on Implementation

 We are developing DDSCP capable web-service
components, and a prototype to demonstrate the
concept. The prototype closely follows the model of
Figure 6, and is being implemented in Java.

However, we have faced some difficulties in using
BPEL4WS as the process language. The requirement
of defining the roles and partner links, pre-hand in the
WSDL is proving to be a major difficulty in using
unadulterated BPEL4WS with our service components.
We are investigating how to introduce direct
addressing, so that we can use the dynamically process
easily. Mandell and McIlraith [9] take an interesting
approach to dynamically incorporate service partners in
BPEL4WS framework. However, we need more than
that, because in our model even roles are not
predefined. Another difficulty is lack of support to
initialize a process externally during implicit starts.

We are exploring how we can make changes that are
compatible with existing BPEL4WS framework. We
will hopefully report detailed results from the
implementation and prototype experience in a future
publication.

6. Discussion

Our service platform architecture and DDSCP have

a number both interesting and debatable aspects. Let
us start by discussing the merits of distributed
coordination. It is true that distributed coordination is
not beneficial or desirable in all scenarios. For
example, in environments where we cannot trust the
service components to execute the process correctly
and completely, we may want to revert to centralized
coordination. Cognizant of this fact, we note that
centralized coordination is only a special case of
distributed coordination, as defined in our model.
Although we presently do not explicitly support
dynamically transforming a distributed coordination
application into a centrally coordination application,
the application author can always use the centralized
coordination by avoiding DispatchProcess activities in
the application process of the main coordinator, e.g., in
the first of the two examples given above. Moreover, a
cleverly written preprocessing block can transform the
process at runtime such that it uses centralized control
for non-trusted service components.

Another point to consider is the need for dynamic
deployment and the associated overhead and safety
concern. Because of limited number of services
offered on networks today, dynamic deployment seems
extraneous. However, we believe that need for

dynamic deployment will emerge as networks offer
more personalized services, especially the kind that are
created on demand and have short lifetime. Statically
configuring the network infrastructure to support all
possible customized services is not feasible.

Although our framework caters for process integrity
and declaration of correlation parameters to isolate the
processes from each other, and minimize chances of
interference between processes of different users, the
security remains a major concern. There are a number
of techniques for portable code, such as Java, that can
verify properties, liveliness, access control, and
resource for a particular piece of code. However, we
realize that security concern in a service platform
environment may be different from traditional systems,
because of shared infrastructure and highly distributed
nature of the system; we plan to address these issues
rigorously as part of future work. Admittedly, it is hard
to convince a telecommunication network operator,
which strives to provide five nines reliability, to opt for
something that even remotely resembles a software
agent.

Within the context of security and safety, one
concern is the presence of transform in the pre-
processing activities that has capability to modify the
process. While we have taken care to design the
system in a way that a service component may execute
transforms only on its own process, and that we can
ensure the integrity of both the process and the
transform during its traversal through other service
component, we realize that this is not a elegant
solution. Careful authoring of process and allowing
initial parameterization can circumvent the need. We
are considering a slight modification to our model
where we can just “scoop out” the messages identified
by the correlation parameters in the InstallProcess
message, to a remote service, and run the process at
that remote processor.

Within the existing model, in order to address the
process transport overhead problem, we are
considering how to dispatch processes by reference.
We are also investigating whether it possible to safely
create customized processes from a basic
representation so that we only need to transport the
required customization and not the entire process.

Another overhead related with the dynamic
deployment of processes is that of increased
complexity of individual service components.
Considering a non-dynamic deployment scenario; a
typical process that capture all the possible
customization scenarios, will be large. The way
workflows work today, the service component will
spawn a new process for every context, e.g., for every

new call created, or an order placed. With dynamic
deployment of customized process, although we will
have just as many active processes on a service
component, as the non-dynamic deployment case,
however, customized processes for specific users are
likely to be smaller than the all-encompassing process
and thus the overall load on the service may be less.

The above argument also related to the point that
whether we need “processes” for customizations, or
can we just use different parameters in the messages as
triggers to customization. We feel that to achieve same
level of customization, we will end up with an all-
encompassing process that might be both complicated
and hard to run and maintain.

7. Conclusion and Future Work

We have presented a technique to enable distributed

coordination among components of a dynamically
composed web service. This technique has a number
of advantages, including performance enhancements,
reduced complexity of applications and thus rapid
deployment, reduced load on the service environment
by allowing users to take charge of their own services,
and robustness by eliminating any centralized
coordination.

We note that this technique also raises a number of
new issues. Most notable of these is that of security
and safety. Other issues include improving reusability
of processes to enhance rapid service development.
Similarly, we have not explicitly addressed the
increased complexity of service components
themselves, and its impact on scalability. We are
addressing these issues as part of on going work.

8. References

[1] D. L. Tennenhouse, D. Wetherall. Towards an Active
Network Architecture. In Multimedia Computing and
Networking 96, San Jose, CA. Jan. 1996.

[2] D. Wetherall, J. Guttag, D Tennenhouse, ANTS: A
toolkit for building and dynamically deploying network
protocols. In IEEE Openarch'98. April 1998.
[3] Open Service Access (OSA); Application Programming
Interface (API); 3GPP TS 29.198.
[4] The Parlay Group: http://www.parlay.org/
[5] The Parlay Group: Web Services Working Group.
"Parlay Web Services Architecture Comparison." October
31, 2002. http://www.parlay.org/
[6] Z. Maamar, Q. Sheng, B. Benatallah . Interleaving Web
Services Composition and Execution Using Software Agents
and Delegation. AAMAS'03 Workshop on Web Services and
Agent-based Engineering, 14 July 2003, Melbourne,
Australia.
[7] G. Agha and C. Hewitt. Concurrent programming using
actors. In A. Yonezawa and M. Tokoro, editors, Object-
Oriented Concurrent Programming, 37-53. MIT Press, 1988.
[8] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.
Klien, F. Leymann, K. Liu, D. Roller, D. Simth, S, Thatte, I.
Trickovic, S. Weerawarana. "Business Process Execution
Language for Web Services 1.1." May 2003.
[9] D. Mandell and S. McIlraith. "Automating Web Service
Discovery, Customization, and Semantic Translation with a
Semantic Discovery Service." Poster Session, The Twelfth
International World Wide Web Conference 20-24 May 2003,
Budapest, HUNGARY
[10] S. Paul, E. Park, D. Hutches, J. Chaar. "RainMaker:
Workflow Execution Using Distributed Interoperable
Components." ECDL 1998: pp. 801-818
[11] S. Paul, E. Park, J. Chaar. "RainMan: A workflow
system for the Internet." USENIX Symposium on Internet
Technologies and Systems 1997
[12] S. Song, S. Shannon, M. Hicks, S. Nettles. "Evolution
in Action: Using Active Networking to Evolve Network
Support for Mobility." IWAN 2002: pp. 146-161
[13] G. Alonso and C. Mohan. Workflow Management
Systems: The next Generation of distributed Processing
Tools. In S. Jajodia and L. Kerschberg (Eds.): Advanced
Transaction Models and Architectures. Kluwer Academic
Publishers, 1997, pp. 35-62.
[14] 3GPP TS 22.057. Mobile Execution Environment
(MExE);Service description, Stage 1.
[15] 3GPP TS 22.038. USIM/SIM Application Toolkit
(USAT/SAT); Service description; Stage 1.

