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ABSTRACT

Recent works showed the trend of leveraging web-scaled structured
semantic knowledge resources such as Freebase for open domain
spoken language understanding (SLU). Knowledge graphs provide
sufficient but ambiguous relations for the same entity, which can
be used as statistical background knowledge to infer possible re-
lations for interpretation of user utterances. This paper proposes
an approach to capture the relational surface forms by mapping
dependency-based contexts of entities from the text domain to
the spoken domain. Relational surface forms are learned from
dependency-based entity embeddings, which encode the contexts
of entities from dependency trees in a deep learning model. The
derived surface forms carry functional dependency to the entities
and convey the explicit expression of relations. The experiments
demonstrate the efficiency of leveraging derived relational surface
forms as local cues together with prior background knowledge.

Index Terms— spoken language understanding (SLU), relation
detection, semantic knowledge graph, entity embeddings, spoken di-
alogue systems (SDS).

1. INTRODUCTION

Spoken language understanding (SLU) aims to detect the semantic
frames that include domain-related information. Traditional spo-
ken dialogue systems (SDS) are trained with annotated examples
and support limited domains. Recently, structured semantic knowl-
edge such as Freebase1 [1], FrameNet2 [2], etc. is utilized to obtain
domain-related knowledge and help SLU for tackling open domain
problems in SDSs [3, 4, 5, 6, 7].

Knowledge graphs, such as Freebase [1], usually carry rich in-
formation for named entities, which is encoded in triples about entity
pairs and their relation. Such information is usually used for inter-
pretation of natural language in SDSs [8, 9, 5]. However, the entity
lists/gazatteers may bring noise and ambiguity to SLU, for exam-
ple, the commonly used words “Show me” and “Up” can be movie
names, and “Brad Pitt” can be an actor name or a producer name,
which makes interpretation more difficult. Some works focused on
assigning weights for entities or entity types to involve prior back-
ground knowledge of entities, where the probabilistic confidences
offer better cues for SLU [8, 5]. Also, many works focused on min-
ing natural language forms based on the ontology by web search or
query click logs, which benefit discovering new relation types from
large text corpora [10, 11]. The mined data can also be used to help
SLU by adaptation from the text domain to the spoken domain [4].

1http://www.freebase.com
2http://framenet.icsi.berkeley.edu

User Utterance: 
find movies produced by james cameron 

SPARQL Query (simplified): 
SELECT ?movie {?movie. ?movie.produced_by?producer.    
?producer.name"James Cameron".} 

Logical Form: 
λx. Ǝy. movie.produced_by(x, y) Λ person.name(y, z) Λ z=“James Cameron” 

Relation: 
movie.produced_by producer.name 

User Utterance: 
who produced avatar 

SPARQL Query (simplified): 
SELECT ?producer {?movie.name"Avatar". 
?movie.produced_by?producer.} 

Logical Form: 
λy. Ǝx. movie.produced_by(x, y) Λ movie.name(x, z) Λ z=“Avatar” 

Relation: 
movie.name movie.produced_by 

produced_by 

name 

MOVIE PERSON 

produced_by 

name 

MOVIE PERSON 

Fig. 1. The relation detection examples.

On the other hand, the distributional view of semantics hypoth-
esizes that words occurring in the same contexts may have similar
meanings, and words can be represented as high dimensional vec-
tors. Recently, with the advancement of deep learning techniques,
the continuous word representations that represent words as dense
vectors have been shown to perform well in many applications [12,
13, 14, 15, 16, 17]. Furthermore, dependency-based word embed-
dings were proposed to capture more functional similarity based on
the dependency-based contexts instead of the linear contexts using
the similar training procedure [18].

Following the successes, we leverage dependency-based entity
embeddings to learn relational information including entity surface
forms and entity contexts from the text data. Integrating derived
relational information as local cues and gazetteers as background
knowledge performs well for the relation detection task in a fully
unsupervised fashion.

2. KNOWLEDGE GRAPH RELATIONS

Given an utterance, we can form a set of relations that encode
the user’s intent for informational queries based on the seman-
tic graph ontology. Fig. 1 presents two user utterances and their
invoked relations, which can be used to create requests in query
languages (i.e., SPARQL Query Language for RDF3). The two
examples in this figure include two nodes and the same relation
movie.produced by, and we differentiate these examples by

3http://www.w3.org/TR/ref-sparql-query/
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Fig. 2. The proposed framework.

including the originating node types in the relation (movie.name,
producer.name) instead of just plain names (the nodes with gray
color denote specified entities). Given all these, this task is richer
than the regular relation detection task. The motivation to do that
is, since we are trying to write queries to the knowledge source,
we need to make sure that the queries are well-formed and relation
arcs originate from the correct nodes in them. Therefore, this paper
focuses on detecting not only movie.produced by but also the
specified entities producer.name and movie.name, so that we
can obtain a better understanding of user utterances.

3. PROPOSED FRAMEWORK

The whole system framework is shown in Fig 2. There are two major
components: 1) we first utilize background knowledge as a prior to
infer relations, and 2) we capture natural language surface forms for
detecting local observations, which are described in Sections 4 and
Section 5 respectively.

Then probabilistic enrichment is used to integrate probabilistic
information from background knowledge and local relational obser-
vations given the input utterance. Finally an unsupervised learning
approach is proposed to boost the performance. The detail is pre-
sented in Section 6.

4. RELATION INFERENCE FROM GAZETTEERS

Due to ambiguity of entity mentions, we utilize prior knowledge
from gazetteers to estimate the probability distribution of associated
relations for each entity [5]. For example, “James Cameron” can
be a director or a producer, which infers movie.directed by or
movie.produced by relations respectively. Given a word wj ,
the estimated probability of inferred relation ri is defined as

PE(ri | wj) = PE(ti | wj) =
C(wj , ti)∑

tk∈T (wj)
C(wj , tk)

, (1)

where ti is the type corresponding to the relation ri (e.g. the entity
type director.name infers the relation movie.directed by),
T (wj) denotes the set of all possible entity types of the word wj ,
and C(wj , ti) is the number of times the specific entity wj is ob-
served with a specific type ti in the knowledge graph. For example,
the number of movies James Cameron has directed.

5. RELATIONAL SURFACE FORM DERIVATION

5.1. Web Resource Mining

Based on the ontology of knowledge graph, we extract all possible
entity pairs that are connected with specific relations. Following the
previous work, we get search snippets for entity pairs tied with spe-
cific relations by web search4 [3, 10]. Then we mine the patterns
used in natural language realization of the relations. With the query
snippets, we use dependency relations to learn natural language sur-
face forms about each specific relation by dependency-based entity
embeddings introduced below.

5.2. Dependency-Based Entity Embeddings

Most neural embeddings use linear bag-of-words contexts, where
a window size k is defined to produce contexts of 2k words, k
words before and after the target word [12, 13, 14]. However, some
important contexts may be missing due to smaller windows, while
larger windows capture broad topical content. A dependency-based
embedding approach was proposed to derive contexts based on the
syntactic relations the word participates in for training embeddings,
where the embeddings are less topical but offer more functional
similarity compared to original embeddings [18].

A example sentence “Avatar is a 2009 American epic science
fiction film directed by James Cameron.” and its dependency parsing
result are illustrated in Fig. 3. Here the sentence comes from snippets
returned by searching the entity pair, “Avatar” (movie) and “James
Cameron” (director). The arrows denote the dependency relations
from headwords to their dependents, and words on arcs denote type
of the dependency relations. Relations that include a preposition are
“collapsed” prior to context extraction (dashed arcs in Fig. 3), by
directly connecting the head and the object of the preposition, and
subsuming the preposition itself into the dependency label. Before
training embeddings, we replace entities with their entity tags such
as $movie for “Avatar” and $director for “James Cameron”.

The dependency-based contexts extracted from the example
are given in Table 1, where headwords and their dependents can
form the contexts by following the arc on a word in the dependency
tree, and −1 denotes the directionality of the dependency. After
replacing original bag-of-words contexts with dependency-based
contexts, we can train dependency-based entity embeddings for all
target words [15, 16, 17].

For training dependency-based entity embeddings, each word w
is associated with a word vector vw ∈ Rd and each context c is

4http://www.bing.com
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Avatar is a 2009 American epic science fiction film Cameron.directed by James

nsub
numdetcop

nn vmod
prop_by

nn

$movie $directornn nn nn
prop pobj

Fig. 3. An example of dependency-based contexts.

Table 1. The contexts extracted for training dependency entity em-
beddings in the example of the Fig. 3.

Word Contexts
$movie film/nsub−1

is film/cop−1

a film/det−1

2009 film/num−1

american, epic,
film/nn−1

science, fiction
avatar/nsub, is/cop, a/det, 2009/num,

film american/nn, epic/nn, science/nn,
fiction/nn, directed/vmod

directed $director/prep by
$diretor directed/prep by−1

represented as a context vector vc ∈ Rd, where d is the embedding
dimensionality. We learn vector representations for both words and
contexts such that the dot product vw · vc associated with “good”
word-context pairs belonging to the training data D is maximized,
leading to the objective function:

arg max
vw,vc

∑
(w,c)∈D

log
1

1 + exp(−vc · vw)
, (2)

which can be trained using stochastic-gradient updates [18].

5.3. Surface Form Derivation

In addition to named entities detected by gazetteers, there are two
different relational surface forms used in natural languages, entity
surface forms and entity syntactic contexts, which are derived from
trained embeddings by following approaches.

5.3.1. Entity Surface Forms

With only background knowledge gazetteers provided in Section 4,
the unspecified entities cannot be captured because knowledge graph
does not contain such information like the words “film” and “direc-
tor”. This procedure is to discover the words that play the same
role and carry similar functional dependency as the specified enti-
ties. For example, the entity $character may derive the word “role”,
and $movie may derive “film”, “movie” as their entity surface forms.
The unspecified entities provide important cues for inferring corre-
sponding relations.

We first define a set of entity tags E = {ei} and a set of words
W = {wj}. Based on the trained dependency-based entity embed-
dings, for each entity tag ei, we compute the score of the word wj

as

SF
i (wj) =

FormSim(wj , ei)∑
ek∈E

FormSim(wj , ek)
, (3)

where FormSim(w, e) is the cosine similarity between the embed-
dings of the word w and the entity tag e. SF

i (wj) can be viewed as
the normalized weights of the words indicating the importance for
discriminating different entities. Based on SF

i (wj), we propose to
extract top N similar words for each entity tag ei, to form a set of
entity surface forms Fi, where Fi includes surface form candidates
of entity ei. The derived words may have similar embeddings as the
target entity, for example, “director” and $director may encode the
same context information such as directed/prep by−1 in their em-
beddings. Therefore, the word “director” can be extracted by the
entity tag $director to serve its surface form. With derived words Fi

for entity tag ei, we can normalize the relation probabilities the word
wj ∈ Fi infers.

PF (ri | wj) = PF (ei | wj) =
SF
i (wj)∑

k,wj∈Fk
SF
k (wj)

, (4)

where ri is the relation inferred from the entity tag ei, SF
k (wj) is

the score of the word wj that belongs to the set Fk extracted by the
entity tag ek, and PF (ri | wj) is similar to PE(ri | wj) in (1) but
based on derived words instead of specified entities.

5.3.2. Entity Syntactic Contexts

Another type of relational cues comes from contexts of entities; for
example, a user utterance “find movies produced by james cameron”
includes an unspecified movie entity “movies” and a specified entity
“james cameron”, which may be captured by entity surface forms via
PF and gazetteers via PE respectively. However, it doesn’t consider
local observations “produced by”. In this example, the most likely
relation of the entity “james cameron” from the background knowl-
edge is director.name, which infers movie.directed by,
and the local observations are not be used to derive the correct rela-
tion movie.produced by for this utterance.

This procedure is to discover the relational entity contexts based
on syntactic dependency. With dependency-based entity embeddings
and their context embeddings, for each entity tag ei, we extract top
N syntactic contexts to form a set of entity contexts Ci, which in-
cludes the words that are the most activated by a given entity tag ei.
The extraction procedure is similar to one in Section 5.3.1; for each
entity tag ei, we compute the score of the word wj as

SC
i (wj) =

CxtSim(wj , ei)∑
ek∈E

CxtSim(wj , ek)
, (5)

where CxtSim(wj , ei) is the cosine similarity between the context
embeddings of the word wj and the embeddings of the entity tag ei.

The derived contexts may serve the indicators of possible rela-
tions. For instance, for the entity tag $producer, the most activated
contexts include “produced/prep by−1”, so the word “produced” can
be extracted by this procedure for detecting local observations other
than entities. Then we can normalize the relation probabilities the
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Table 2. An example of three different methods in probabilistic en-
richment (w = “pitt”).

r actor produced by location

PE(r | w) 0.7 0.3 0
PF (r | w) 0.4 0 0.6
PC(r | w) 0 0 0

Unweighted Rw(r) 1 1 1
Weighted Rw(r) 0.7 0.3 0.6

Highest Weighted Rw(r) 0.7 0 0.6

contexts imply to compute PC(ri | wj) similar to (4):

PC(ri | wj) = PC(ei | wj) =
SC
i (wj)∑

k,wj∈Ck
SC
k (wj)

. (6)

6. PROBABILISTIC ENRICHMENT AND BOOSTRAPPING

Hakkani-Tür et al. proposed to use probabilistic weights for unsu-
pervised relation detection [5]. We extend the approach to integrate
induced relations from prior knowledge PE(ri | wj) and from lo-
cal relational surface forms PF (ri | wj) and PC(ri | wj) to enrich
the relation weights for effectively detecting relations given the ut-
terances.

This paper experiments to integrate multiple distributions in
three ways:

• Unweighted

Rw(ri) =


1 , if PE(ri | w) > 0 or

PF (ri | w) > 0 or
PC(ri | w) > 0.

0 , otherwise.

(7)

This method combines possible relations from all sources,
which tends to capture as many as possible relations (higher
recall).

• Weighted

Rw(ri) = max(PE(ri | w), PF (ri | w), PC(ri | w)) (8)

This method assumes that the relation ri invoked in word w
comes from the source that carries the highest probability, so
it simply selects the highest one among the three sources.

• Highest Weighted

Rw(ri) = max(P ′E(ri | w), P ′F (ri | w), P ′C(ri | w)),

P ′(ri | w) = 1[i = argmax
i
P (ri | w)] · P (ri | w). (9)

This method only combines the most likely relation for each
word, because P ′(ri | w) = 0 when the relation ri is not the
most likely relation of the word w.

An example of relation weights about the word “pitt” with three dif-
ferent methods is shown in Table 2. The final relation weight of the
relation ri given an utterance u, Ru(ri), can be compute as

Ru(ri) = max
w∈u

Rw(ri). (10)

With enriched relation weights, Ru(ri), we train a multi-class,
multi-label classifier in an unsupervised way, where we learn en-
semble of weak classifiers by creating pseudo training labels in each
iteration for boosting the performance [10, 19, 20, 21]. The detail of

Algorithm 1 Boostrapping
Input: the set of user utterances U = {uj}; the relation weights for

the utterances, Ruj (ri), uj ∈ U ;
Output: the multi-class multi-label classifier E that estimates rela-

tions given an utterance
1: Initializing relation labels L0(uj) = {ri | Ruj (ri) ≥ δ};
2: repeat
3: Training ensemble of M weak classifiers Ek on U and
Lk(uj);

4: Classifying the utterance uj by Ek and output probability
distribution of relations as R(k+1)

ui (ri);
5: Creating relation labels L(k+1)(uj) = {ri | R(k+1)

uj (ri) ≥
δ};

6: until L(k+1)(uj) ∼ Lk(uj)
7: return Ek;

Table 3. Relation detection datasets used in the experiments.

Query Statistics Train Test
% entity only 8.9% 10.7%
% rel only with specified movie names 27.1% 27.5%
% rel only with specified other names 39.8% 39.6%
% more complicated relations 15.4% 14.7%
% not covered 8.8% 7.6%
#utterance with SPARQL annotations 3338 1084

the algorithm is shown in Algorithm 1. Then the returned classifier
Ek can be used to detect relations given unseen utterances.

7. EXPERIMENTS

7.1. Dataset

The experiments use a list of entities/gazetteers from the publicly
available Freebase knowledge graph. The list includes 670K entities
of 78 entity types, including movie names, actors, release dates, etc.
after filtering out the movie entities with lower confidences [8].

The relation detection datasets include crowd-sourced utter-
ances addressed to a conversational agent and are described in Ta-
ble 3. Both train and test sets are manually annotated with SPARQL
queries, which are used to extract relation annotations. Most of data
includes the relations with either specified movie names or specified
other names. In addition, the relations only with specified movie
names are difficult to capture by gazetteers, which emphasizes the
contribution of this task. We use 1/10 training data as a development
set to tune the parameters δ,M , and the optimal number of iterations
in Algorithm 1. The training set is only used to train the classifier of
Algorithm 1 for boostrapping in an unsupervised way; note that the
manual annotations are not used here.

For retrieving the snippets, we use 14 entity pairs from the
knowledge graph related to movie entities, which include director,
character, release date, etc. We extract snippets related to each
pair from web search results, and we end up with 80K snippets,
where the pairs of entities are marked in the returned snippets5.
For all query snippets, we parse all with the Berkeley Parser [22],
and then convert the output parse trees to dependency parses using
the LTH Constituency-to-Dependency Conversion toolkit6 for train-
ing dependency-based entity embeddings [23]. The trained entity
embeddings have dimension 200 and vocabulary size is 1.8× 105.

5In this work, we use top 10 results from Bing for each entity pair.
6http://nlp.cs.lth.se/software/treebank_converter
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Table 4. The relation detection performance of all proposed approaches (N = 15).

Micro F-measure (%)
Unweighted Weighted Highest Weighted

Ori. Boostrap Ori. Boostrap Ori. Boostrap

Baseline
(a) Gazetteer 35.21 36.91 37.93 40.10 36.08 38.89
(b) Gazetteer + Weakly Supervised 25.07 37.39 39.04 39.07 39.40 39.98

Bag-of-Words (c) Gazetteer + Entity Surface Form 34.23 34.91 36.57 38.13 34.69 37.16
(d) Gazetteer + Entity Surface Form 37.44 38.37 41.01 41.10 39.19 42.74

Dep.-Based (e) Gazetteer + Entity Context 35.31 37.23 38.04 38.88 37.25 38.04
(f) Gazetteer + Entity Surface Form + Context 37.66 38.64 40.29 41.98 40.07 43.34

Table 5. The examples of derived entity surface forms based on
dependency-based entity embeddings.

Entity Tag Derived Word
$character character, role, who, girl, she, he, officer
$director director, dir, filmmaker
$genre comedy, drama, fantasy, cartoon, horror, sci

$language language, spanish, english, german
$producer producer, filmmaker, screenwriter

7.2. Results

In the experiments, we train multi-class, multi-label classifiers using
icsiboost [24], a boosting-based classifier, where we extract word
unigrams, bigrams, and trigrams as classification features. The eval-
uation metric we use is micro F-measure for relation detection [5].
The performance with all of the proposed approaches with N = 15
(top 15 similar words of each tag) is shown in Table 4.

The first baseline here (row (a)) uses gazetteers to detect entities
and then infers the relations by background knowledge described in
Section 4. Row (b) is another baseline [10], which uses the retrieved
snippets and their inferred relations as labels to train a multi-class
multi-label classifier, then outputs the relation probabilities for each
utterance as Ru(w), and integrates with the first baseline. Here the
data for training only uses the patterns between entity pairs in the
paths of dependency trees. Row (c) is the results of adding entity
surface forms derived from original embeddings, which is shown for
demonstrating the effectiveness of dependency-based entity embed-
dings (row (d)). Row (e) is the results of adding entity contexts, and
row (f) combines both of entity surface forms and entity contexts.
Below we analyze the effectiveness of proposed approaches.

7.2.1. Effectiveness of Entity Surface Forms

The row (c) and row (d) show the performance of using entity sur-
face forms derived from bag-of-words and dependency-based em-
beddings respectively. It can be found that the words derived from
original embeddings do not successfully capture the surface forms
of entity tags, and the results cannot be improved. On the other
hand, the results from dependency-based embeddings outperform
the baselines for all enrichment methods, which demonstrate the ef-
fectiveness of including entity surface forms based on dependency
relations for relation detection. To analyze results of entity surface
forms, we show some examples about derived words in Table 5. It
can be shown that the functional similarity carried by dependency-
based entity embeddings effectively benefits relation detection task.

7.2.2. Effectiveness of Entity Contexts

Row (e) shows the results of adding entity contexts learned from
dependency-based contexts. It does not show improvement com-
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Gaz.
Gaz. + Weakly Supervised
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Gaz. + Entity Context
Gaz. + Entity Surface Form + Context

Fig. 4. Learning curves over incremental iterations of boostrapping.

pared to baselines. Nevertheless, combining with dependency-
based entity surface forms, the F-measure achieves 43% by highest
weighted probabilistic enrichment, which implies that including
local observations based on syntactic contexts may help relation
detection, but the influence is not significant.

7.2.3. Comparison of Probabilistic Enrichment Methods

From Table 4, among the three probabilistic enrichment methods,
unweighted method performs worst, because it does not differenti-
ate the relations with higher and lower confidence, and some rela-
tions with lower probabilities will be mistakenly outputted. Com-
paring between weighted and highest weighted methods, the first
baseline using the weighted method performs better, while other ap-
proaches using the highest weighted method perform better. The
reason probably is that weighted method can provide more possi-
ble relations for the baseline only using gazetteers to increase the
recall, so the weighted method benefits the first baseline. On the
other hand, proposed approaches have higher recall and the highest
weighted method provides more precise relations, resulting in better
performance when applying the highest weighted method.

7.2.4. Effectiveness of Boostrapping

The F-measure learning curves of all results using highest weighted
probabilistic enrichment on the test set are presented in Fig. 4. The
light blue line marked with circles is the first baseline, which applies
only gazetteers with probability distribution of entity types to rela-
tion detection. After boostrapping, the performance is significantly
improved and achieves about 39% of F-measure. Another base-
line using a weakly supervised classifier (orange line marked with
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squares) performs well before boostrapping, while the performance
cannot be significantly improved with increased iterations. All other
results show significant improvements after boostrapping. The best
result is the combination of all approaches (green line marked with
crosses), and the curve shows the effectiveness and efficiency of
boostrapping. The reason probably is that the probabilities came
from different sources can complement each other, and then bene-
fit the classifiers. Also, only adding dependency-based entity sur-
face forms (yellow line marked with triangles) performs similar to
the combination result, showing that the major improvement comes
from relational entity surface forms. The figure demonstrates the
effectiveness of boostrapping for improving relation detection.

7.2.5. Overall Results

The proposed approaches successfully capture local information
other than background knowledge, where the relational surface
forms can be learned by dependency-based entity embeddings
trained on query snippets. After combining with prior relations
induced by gazetteers, the relational information from the text do-
main can benefit the relation detection for the spoken domain. Also,
the fully unsupervised approach shows the effectiveness of applying
structured knowledge to SLU for tackling open domain problems.

8. CONCLUSION

This paper proposes an unsupervised approach to capture the rela-
tional surface forms including entity surface forms and entity con-
texts based on dependency-based entity embeddings. The detected
relations viewed as local observations can be integrated with back-
ground knowledge by probabilistic enrichment methods. Experi-
ments show that involving derived entity surface forms as local cues
together with prior knowledge can significantly improve the relation
detection task and help open domain SLU.
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