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Abstract

In this article we study basic properties of the mixed BV-Sobolev
capacity with variable exponent p. We give an alternative way to de-
fine mixed type BV-Sobolev-space which was originally introduced by
Harjulehto, Hästö, and Latvala. Our definition is based on relaxing
the p-energy functional with respect to the Lebesgue space topology.
We prove that this procedure produces a Banach space that coincides
with the space defined by Harjulehto et al. for bounded domain Ω and
log-Hölder continuous exponent p. Then we show that this induces
a type of variable exponent BV-capacity and that this is a Choquet
capacity with many usual properties. Finally, we prove that this ca-
pacity has the same null sets as the variable exponent Sobolev capacity
when p is log-Hölder continuous.
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1 Introduction

Variable exponent analysis has become a growing field of interest during the
past 10–20 years. Variable exponent problems originated with the study of
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variable exponent function spaces and certain variational problems [22, 26,
28, 29]. Then the study spread out to e.g. harmonic analysis, geometric
analysis, and fuller theory of partial differential equations.

As an introduction to the subject of variable exponent problems, the
reader is advised to the original article [22], the forthcoming monograph [8],
and the survey articles [9, 18, 25].

In this article, we study a class of ”bounded-variation-like” functions and a
capacity in the variable exponent setting. In general, the study of capacity is
closely related to the potential theory, say the Wiener regularity of boundary
points with respect to a variational problem. For such study of capacity in
the variable exponent case, see [2]. As another example of related variable
exponent potential theory, we mention [20]. Capacity is also the correct way
of measuring the fine regularity properties of Sobolev functions. For the
variable exponent case see [15, Section 5] and also [14, 16, 19].

Let p be a finite variable exponent. The p(·)-capacity of set E ⊂ Rn is
defined as

Cp(·)(E) = inf

∫
Rn
|u|p(x) + |∇u|p(x)dx,

where the infimum is taken over admissible functions u ∈ Sp(·)(E) where

Sp(·)(E) =
{
u ∈ W 1,p(·)(Rn) : u ≥ 1 in an open set containing E

}
.

It is easy to see that if we restrict these admissible functions Sp(·) to the case
0 ≤ u ≤ 1, we get the same capacity. In this case it is obviously possible to
also drop the absolute value from |u|p(x).

The p(·)-capacity enjoys the usual desired properties of capacity when
p− > 1, see [15]. However, just as in the constant exponent setting, some
of these properties require different argument when p− = 1. In the classical
treatment of 1-capacity, see [11], properties such as limit property of capacity
with respect to increasing sequence of sets are first proved for BV-capacity.
Then the corresponding result is obtained for 1-capacity by proving that
these two capacities are in fact equal. This BV-approach has been used to
study questions related to 1-capacity for example in [11] in the Euclidean
setting and in [13, 21] in the setting of metric measure spaces. We note that
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BV-capacity has also been studied without comparison to the 1-capacity, for
general reference see [31, Chapter 5.11] in the case of BV-capacity and [10,
Chapter 4.7] in the case of 1-capacity.

When studying the 1-capacity, one encounters some difficulties. It has
turned out that the function space W 1,1(Ω) does not offer the best possi-
ble framework for studying variational problems; instead, several difficulties
arise. On the other hand, the space of BV functions provides a better setting,
bypassing some of these difficulties. Aware of the obstacles in the constant
exponent case, we choose this BV-based approach as our starting point. We
give an alternative definition for the mixed BV-Sobolev space of functions
presented in [17]. The original definition is based on directly separating the
modular into a ”Sobolev part” and a ”BV part”, defined on separate parts
of the domain, whereas our definition is based on relaxing the p(·)-energy
functional over whole of the domain. The rough idea is that the functions
should behave like Sobolev functions when p(·) > 1 and like BV-functions
when p(·) = 1. For general introduction into the procedure of relaxation of
a functional, see [5, Chapter 1.3 and Example 1.4.2]. See also [7, Examples
3.13, 3.14].

We obtain several properties for our mixed BV-Sobolev space of func-
tions. We show that it has a naturally induced modular, that it is a Banach
space, that the modular has an important semicontinuity property, and that
the space has certain well-behaved closure properties. We also show that our
definition of the class of functions coincides with [17] under certain assump-
tions. The new definition should also work well for unbounded domains.

We conclude by defining a capacity based on the mixed BV-Sobolev space.
We show that this capacity has many properties we would usually expect
from a capacity related to potential theory: it is continuous with respect to
an increasing sequence of sets, it defines an outer measure, and so forth. As
a result, this capacity is a Choquet capacity. We finally show an equivalence
between the mixed capacity and the Sobolev capacity with respect to null
sets.

We note that our approach has some advantages over [15, 17]. Our mixed
modular has a lower semicontinuity property which is mainly due to the def-
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inition via relaxation. It is known that lower semicontinuity of the modular
can be used to prove many properties of the capacity, confer [11, 13] and [31,
Chapter 5.12]. The lower semicontinuity is not known in the case of [15] and
thus properties of a similarly induced capacity remain unknown to us.

Also, in the paper [17] the authors study the case of bounded Ω and
strongly log-Hölder continuous p. We will be able to establish an equivalence
between two definitions even after relaxing the condition of strong log-Hölder
continuity to regular log-Hölder continuity. However, it seems to us that in
[17], it is required that Ω has finite measure. In contrast, our definition of a
mixed space does not depend on this assumption.

Finally, in [15] the Choquet property of the variable exponent Sobolev
capacity is established in the case p− > 1. It is not known whether it is true
for p− = 1. In contrast, the proofs for our mixed capacity do not distinguish
between the cases p− > 1 and p− = 1. Our mixed capacity is a Choquet
capacity with the same null sets as the Sobolev capacity.

2 Preliminaries

Let Ω ⊂ Rn be an open set. A measurable function p : Ω→ [1,∞) is called a
variable exponent. Note that we may later on impose additional restrictions
on the variable exponent. We denote

p+ := ess sup
x∈Ω

p(x), p− = ess inf
x∈Ω

p(x),

and for E ⊂ Rn,

p+
E := ess sup

x∈E
p(x), p−E = ess inf

x∈E
p(x).

The set of points where p attains value 1 will be important, so we reserve
special notation for it. Following [17], we denote

Y := {x ∈ Ω : p(x) = 1} .

In this paper, we always assume that p+ <∞. This assumption is typical,
since it ensures that the notion of convergence in modular is equivalent to the
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typical convergence in norm; we shall use this fact later on. See [22, (2.28)
on p. 598]. Also, we note that the concept of ∞-capacity is, in general, not
very useful, so it is reasonable to restrict the consideration to the strictly
finite case.

We define a modular by setting

%p(·)(u) =

∫
Ω

|u(x)|p(x) dx.

The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable func-
tions u : Ω → R for which the modular %p(·)(u/λ) is finite for some λ > 0.
We define a norm on this space as a Luxemburg norm:

‖u‖Lp(·)(Ω) = inf
{
λ > 0 : %p(·)(u/λ) ≤ 1

}
.

It is known that Lp(·)(Ω) is a Banach space. The variable exponent Lebesgue
space is a special case of a Musielak–Orlicz space, but here we only consider
the Lebesgue and Sobolev type spaces. For constant function p the variable
exponent Lebesgue space coincides with the standard Lebesgue space.

The variable exponent Sobolev space W 1,p(·)(Ω) consists of functions u ∈
Lp(·)(Ω) whose distributional gradient ∇u has modulus in Lp(·)(Ω). The vari-
able exponent Sobolev space W 1,p(·)(Ω) is a Banach space with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

We also define
%1,p(·)(u) = %p(·)(u) + %p(·)(∇u).

We recall the definition of log-Hölder continuity.

Definition 2.1. Function p : Ω → R is locally log-Hölder continuous on Ω

if there exists c1 > 0 such that

|p(x)− p(y)| ≤ c1

log
(
e+ 1

|x−y|

)
for all x, y ∈ Ω. We say that p is globally log-Hölder continuous on Ω if it is
locally log-Hölder continuous on Ω and there exists p∞ ≥ 1 and a constant
c2 > 0 such that

|p(x)− p∞| ≤
c2

log(e+ |x|)
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for all x ∈ Ω. The constant max{c1, c2} =: c is called the log-Hölder constant
of p.

Remark. We usually replace the constants c1, c2 by the maximum c. This
is due to the fact that we may extend a log-Hölder continuous function to
a larger domain, but in such procedure one of the constants may become
larger. However, the maximum c remains in extension.

Remark. In what follows, we usually only speak about log-Hölder continuity.
The meaning will be clear from the context. In a bounded set, we mean by
this local log-Hölder continuity. In an unbounded set, we mean by this global
log-Hölder continuity.

The assumption of log-Hölder continuity is typical in the variable expo-
nent setting. It ensures the following important estimate:

R−(p+B−p
−
B) ≤ C.

This for a ball B of radius R > 0 and a uniform constant on the right
hand side. We shall explicitly make use of this estimate. In general, this
estimate has some important consequences, such as the density of smooth
functions and that convolution-based mollifiers are available as smoothing
operators. For a discussion, see the introduction to [23]. Assumption of log-
Hölder continuity is also crucial in the regularity theory of partial differential
equations with variable exponent [30].

In [17], the authors introduce a mixed BV-Sobolev-type space of func-
tions. One of their main results is concerned with the problem of energy
minimization. The authors use a slightly stronger condition for the expo-
nent, the strong log-Hölder continuity.

Definition 2.2. Exponent p satisfies the strong log-Hölder continuity con-
dition if p is log-Hölder continuous in Ω and

lim
x→y
|p(x)− 1|log 1

|x− y|
= 0

for every y ∈ Y .
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This condition is necessary for some results in the theory of minimizers
and of partial differential equations. Earlier on, it was used by Acerbi and
Mingione in e.g. [1]. In [17], the effect of strong log-Hölder continuity is
as follows. The authors use the mollifiers as smoothing operation and show
that their definition of a mixed pseudo-modular is upper semicontinuous with
respect to these mollifiers and with respect to a closed subset. We repeat
this as Theorem 3.3 later on. We will also relax this result in Theorem 3.4
at the cost of a multiplicative constant.

3 The mixed BV-Sobolev space: known results

In order to define the mixed BV-Sobolev space, we first recall the ordinary
BV-space, i.e. functions of bounded variation.

Definition 3.1. Denote

‖Du‖(Ω) := sup

{∫
Ω

u divϕdx : ϕ ∈ C1
0(Ω; Rn), |ϕ| ≤ 1

}
.

A function u ∈ L1(Ω) has bounded variation in Ω, denote u ∈ BV(Ω), if
‖Du‖(Ω) < ∞. We denote u ∈ BVloc(Ω), if u ∈ BV(U) for every open set
U ⊂⊂ Ω.

If u ∈ BV(Ω), then the distributional gradient Du is a vector valued
signed Radon measure and ‖Du‖(·) is the total variation measure associated
with Du. A set E ⊂ Rn has finite perimeter in Ω, if χE ∈ BV(Ω). The
perimeter of E in Ω is defined as

P (E,Ω) = ‖DχE‖(Ω).

For the properties of BV-functions, e.g. the lower semicontinuity of total vari-
ation measure, approximation by smooth functions, and the coarea formula,
we refer to [10, Chapter 5], [31, Chapter 5], and [12, Chapter 1].

We now present the definition of the mixed BV-Sobolev space introduced
in [17]. Let Ω be open and bounded and E ⊂ Ω Borel.
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Definition 3.2. Define the mixed-type pseudo-modular

%BVp(·)(E)(u) := ‖Du‖(E ∩ Y ) + %Lp(·)(E\Y )(∇u).

Define the mixed-type norm

‖u‖BVp(·)(Ω) := ‖u‖Lp(·)(Ω) + inf
{
λ > 0 : %BVp(·)(Ω)(u/λ) ≤ 1

}
.

Define the space BVp(·)(Ω) to consist of all measurable functions
u : Ω→ R with ‖u‖BVp(·)(Ω) <∞. Define also u ∈ BV

p(·)
loc (Ω), if u ∈ BVp(·)(U)

for every open U ⊂⊂ Ω.

By [17, Proposition 4.3], the space BVp(·)(Ω) is a Banach space.
We denote the standard mollification ϕδ ∗u =: uδ. The following result in

[17] links approximation and upper semicontinuity of the BV-Sobolev pseudo-
modular.

Theorem 3.3 (Theorem 4.6 in [17]). Let Ω ⊂ Rn be bounded and let p be
a bounded, strongly log-Hölder continuous variable exponent in Ω. If u ∈
BVp(·)(Ω) and F ⊂ Ω is closed, then

lim sup
δ→0

%BVp(·)(F )(uδ) ≤ %BVp(·)(F )(u).

We note that if the proof of [17, Theorem 4.6] is examined carefully, we
may also state the following.

Theorem 3.4. Let Ω ⊂ Rn be bounded and let p be a bounded, log-Hölder
continuous variable exponent in Ω. If u ∈ BVp(·)(Ω) and F ⊂ Ω is closed,
then

lim sup
δ→0

%BVp(·)(F )(uδ) ≤ C%BVp(·)(F )(u)

with 1 ≤ C <∞.

Remark. Note that we now relaxed the condition of strong log-Hölder conti-
nuity to log-Hölder continuity. The price we have to pay is the appearance
of constant C. This constant will depend only on the log-Hölder constant of
p.
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Proof. We only shortly comment on the difference in the proof. In the proof
of [17, Theorem 4.6] between estimates (4.4) and (4.5), points are chosen in
such a way that

|z − y|−n(p(z)−1) < 1 + ε

with y ∈ Y . If strong log-Hölder continuity is relaxed to log-Hölder continu-
ity, we may do the same procedures, but instead with

|z − y|−n(p(z)−1) < eC + ε .

Here C depends on the log-Hölder constant of p. This will carry over to the
remainder of the proof, so eventually we shall have

lim sup
δ→0

%BVp(·)(F )(uδ) ≤ eC%BVp(·)(F )(u) .

In [17], the authors continue to study the solutions of certain partial
differential equations. Their main result is presented as [17, Theorem 7.1].
Roughly speaking, let us have a sequence of variable exponent p(·)-Laplace
equations with exponents that are bounded away from 1 and which converge
to a strongly log-Hölder continuous exponent p which attains also the value
1. Then the solutions to these equations tend to a function u ∈ BVp(·)(Ω)

which is also a solution in Ω \ Y and minimizes the mixed energy %BVp(·)(·)
in compact subsets of Ω.

Next, we are to present a different definition for a mixed BV-Sobolev
space, which we show to be equivalent under certain assumptions. Note that
instead of studying partial differential equations, we then continue to study
capacities. This can be seen as a motivation for the new definition. At least
for us, the new definition made studying the capacity much more natural.

4 The mixed BV-Sobolev space: alternative def-

inition

We will now give an alternative definition for the mixed BV-Sobolev space.
The assumption p+ < ∞ guarantees that Liploc(Ω) is dense in Lp(·)(Ω), see
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[22, Theorem 2.11], and therefore we take the following approach based on
relaxing the functional

u 7→
∫

Ω

|∇u|p(x)dx.

The density result is actually true for smooth functions as well, but we restrict
our consideration to relaxation with respect to sequences of locally Lipschitz
functions. As a class, Lipschitz functions have better closedness properties;
especially the cases where we consider pointwise maxima and minima will be
important.

Definition 4.1. Define the pseudo-modular

%B̃Vp(·)(u) := inf

{
lim inf
i→∞

∫
Ω

|∇ui(x)|p(x)dx

}
,

where the infimum is taken over all sequences (ui)
∞
i=1 in Liploc(Ω) ∩ Lp(·)(Ω)

such that ui → u in Lp(·)(Ω). If the basic set is some E other than Ω, we
may emphasize this by writing %B̃Vp(·)(E)(u). Define the space

B̃Vp(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : %B̃Vp(·)(u) <∞

}
.

Remark. For constant function p > 1 this definition gives the ordinary
Sobolev space W 1,p(Ω). Also, if p ≡ 1 we obtain the functions of bounded
variation. In fact, it can be seen that

%B̃Vp(·)(u) =

∫
Ω

|∇u|pdx for p(·) ≡ p, 1 < p <∞,

%B̃Vp(·)(u) = ‖Du‖(Ω) for p(·) ≡ 1.

For these kinds of results, we provide as references [7, Examples 3.13, 3.14]
and [3, Theorem 3.9]. Note that these are not the original results but rather
good overall references.

As a matter of definition, some elementary calculations and standard
techniques from the theory of modular spaces, we have the following.

Lemma 4.2. The pseudo-modular %B̃Vp(·) is convex. It is continuous and
decreasing as a mapping

λ 7→ %B̃Vp(·)

(u
λ

)
for u ∈ B̃Vp(·)(Ω) and λ > 0.
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Remark. Actually, the pseudo-modular has all the properties of a continuous
convex modular, except for the fact that %B̃Vp(·)(u) = 0 does not imply u = 0.

The basic idea of Definition 4.1 is to allow ”BV-like” behaviour of the
functions in Y . It might not seem natural at first, but this gives a better
approach towards tools such as capacity than working with the Sobolev space
W 1,p(·)(Ω). It is also noteworthy that usually scaling with a constant λ does
not behave well in the world of variable exponent modulars. However, it
can be shown that if %B̃Vp(·)(u) has a minimizing sequence ui, then λui is a
minimizing sequence for %B̃Vp(·)(λu).

We next move to defining a norm in our space. Let us define

‖u‖B̃Vp(·) := ‖u‖p(·) + inf
{
λ > 0 : %B̃Vp(·)(u/λ) ≤ 1

}
for u ∈ B̃Vp(·)(Ω). Let us establish that this definition yields a norm.

Theorem 4.3. Let Ω ⊂ Rn be open. Then B̃Vp(·)(Ω) equipped with ‖ · ‖B̃Vp(·)

is a norm space.

Proof. We know that ‖·‖p(·) is a norm. By [24, Theorem 1.5], the convex
pseudo-modular %B̃Vp(·) defines a homogeneous pseudo-norm as

inf
{
λ > 0 : %B̃Vp(·)(u/λ) ≤ 1

}
.

It is clear that the sum of a norm and homogeneous pseudo-norm defines a
norm.

One of the main motivations to consider the mixed BV-Sobolev space in
this paper is the following lower semicontinuity property. A similar property
is true, and well known, in the classical BV-space, see e.g. [31, Theorem
5.2.1]. On the other hand, such a result is not available in the Sobolev space
W 1,1(Ω); thus it is reasonable to consider BV-type behaviour in Y .

Theorem 4.4. Let ui ∈ B̃Vp(·)(Ω) be such that ui → u in Lp(·)(Ω). Then

%B̃Vp(·)(u) ≤ lim inf
i→∞

%B̃Vp(·)(ui).
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Proof. According to the definition of %B̃Vp(·) for every i = 1, 2, . . . we can
choose a function vi ∈ Liploc(Ω) ∩ Lp(·)(Ω) such that

‖ui − vi‖p(·) <
1

i

and ∣∣∣%B̃Vp(·)(ui)−
∫

Ω

|∇vi|p(x)dx
∣∣∣ < 1

i
.

Since

‖u− vi‖p(·) ≤ ‖u− ui‖p(·) + ‖ui − vi‖p(·) → 0

as i→∞, we obtain that

%B̃Vp(·)(u) ≤ lim inf
i→∞

∫
Ω

|∇vi|p(x)dx ≤ lim inf
i→∞

(
%B̃Vp(·)(ui) +

1

i

)
≤ lim inf

i→∞
%B̃Vp(·)(ui).

Similarly as the space BVp(·)(Ω), the mixed BV-Sobolev space B̃Vp(·)(Ω)

is a Banach space.

Theorem 4.5. The space B̃Vp(·)(Ω) equipped with the norm ‖ · ‖B̃Vp(·) is a
Banach space.

Proof. If (ui)
∞
i=1 is Cauchy sequence in B̃Vp(·)(Ω), then it is Cauchy sequence

in Lp(·)(Ω) and there exists u ∈ Lp(·)(Ω) such that ui → u in Lp(·)(Ω). Every
Cauchy sequence is bounded. Boundedness in norm implies boundedness in
modular in the case p+ < ∞. Thus there exists M > 0 such that for every
i = 1, 2, 3 . . .

%B̃Vp(·)(ui) ≤M .

Now Theorem 4.4 implies

%B̃Vp(·)(u) ≤ lim inf
i→∞

%B̃Vp(·)(ui) <∞

and u ∈ B̃Vp(·)(Ω). Let λ > 0 and Nλ be such that i, j ≥ Nλ implies

%B̃Vp(·)

(ui − uj
λ

)
≤ 1.
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Since ui − uj → ui − u in Lp(·)(Ω) as j → ∞, it follows from Theorem 4.4
that

%B̃Vp(·)

(ui − u
λ

)
≤ lim inf

j→∞
%B̃Vp(·)

(ui − uj
λ

)
≤ 1.

Letting λ→ 0 we have that ui → u in B̃Vp(·)(Ω).

In the next section we shall repeatedly use the following lemma and The-
orem 4.4 to prove the properties of capacity.

Lemma 4.6. Let u, v ∈ B̃Vp(·)(Ω). Then

%B̃Vp(·)(max{u, v}) + %B̃Vp(·)(min{u, v}) ≤ %B̃Vp(·)(u) + %B̃Vp(·)(v).

Proof. Let ui, vi ∈ Liploc(Ω) ∩ Lp(·)(Ω), i = 1, 2, . . . be sequences such that
ui → u, vi → v in Lp(·)(Ω) and∫

Ω

|∇ui|p(x)dx→ %B̃Vp(·)(u),

∫
Ω

|∇vi|p(x)dx→ %B̃Vp(·)(v)

as i→∞. Clearly max{ui, vi} → max{u, v} and min{ui, vi} → min{u, v} in
Lp(·)(Ω), as i→∞ and hence

%B̃Vp(·)(max{u, v}) + %B̃Vp(·)(min{u, v})

≤ lim inf
i→∞

∫
Ω

|∇max{ui, vi}|p(x)dx

+ lim inf
i→∞

∫
Ω

|∇min{ui, vi}|p(x)dx

≤ lim inf
i→∞

∫
Ω

|∇max{ui, vi}|p(x) + |∇min{ui, vi}|p(x)dx

= lim inf
i→∞

∫
Ω

|∇ui|p(x) + |∇vi|p(x)dx

= lim
i→∞

∫
Ω

|∇ui|p(x)dx+ lim
i→∞

∫
Ω

|∇vi|p(x)dx

=%B̃Vp(·)(u) + %B̃Vp(·)(v).

If we assume Ω to be bounded and p to be log-Hölder continuous, our
definition of mixed space is equivalent with the definition of [17]. See our
Definition 3.2.
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Theorem 4.7. Let Ω ⊂ Rn be a bounded open set and p log-Hölder contin-
uous exponent with p+ <∞. Then B̃Vp(·)(Ω) = BVp(·)(Ω).

Proof. Let u ∈ BVp(·)(Ω) and Ωi be subdomains of Ω such that Ωi ⊂ Ωi+1

for every i = 1, 2, . . . and
∞⋃
i=1

Ωi = Ω.

Let Ui = Ωi+1 \ Ωi−1 for i = 1, 2 . . . where Ω0 = ∅. Let {ψi}∞i=1 be the
partition of unity subordinate to the open cover {Ui}∞i=1, that is functions

ψi ∈ C∞c (Ui) such that 0 ≤ ψi ≤ 1 for every i = 1, 2, . . . and
∞∑
i=1

ψi = 1 in Ω.

Let ε > 0. Obviously, U i is a closed subset of Ω for every i, so according to
Theorem 3.4 we can choose δi > 0 such that∫

Ω

|uδiψi − uψi|
p(x) dx < 2−iε∫

Ω

|u∇ψi − uδi∇ψi|
p(x) dx < 2−iε

%BVp(·)(U i)
(uδi) < C%BVp(·)(U i)

(u) + 2−iε.

The constant C ≥ 1 is the constant from Theorem 3.4. We denote

vε :=
∞∑
i=1

uδiψi.

It is clear that vε ∈ Liploc(Ω) ∩ Lp(·)(Ω) and∫
Ω

|vε − u|p(x) dx =

∫
Ω

∣∣∣∣∣
∞∑
i=1

uδiψi −
∞∑
i=1

uψi

∣∣∣∣∣
p(x)

dx

≤
∫

Ω

(
∞∑
i=1

|uδiψi − uψi|

)p(x)

dx

≤
∫

Ω

2p
+
∞∑
i=1

|uδiψi − uψi|
p(x) dx

≤ 2p
+
∞∑
i=1

∫
Ω

|uδiψi − uψi|
p(x) dx

≤ 2p
+

ε.

14



Thus vε → u in Lp(·)(Ω) as ε → 0. Since
∞∑
i=1

∇ψi = 0 on Ω we obtain the

following identity for the derivative∫
Ω

|∇vε|p(x) dx =

∫
Ω

∣∣∣∣∣
∞∑
i=1

∇(uδiψi)

∣∣∣∣∣
p(x)

dx

=

∫
Ω

∣∣∣∣∣
∞∑
i=1

ψi∇uδi + uδi∇ψi

∣∣∣∣∣
p(x)

dx

=

∫
Ω

∣∣∣∣∣
∞∑
i=1

ψi∇uδi −
∞∑
i=1

(u∇ψi − uδi∇ψi)

∣∣∣∣∣
p(x)

dx.

Thus ∫
Ω

|∇vε|p(x) dx

≤ 2p
+

∫
Ω

∣∣∣∣∣
∞∑
i=1

ψi∇uδi

∣∣∣∣∣
p(x)

+

∣∣∣∣∣
∞∑
i=1

(u∇ψi − uδi∇ψi)

∣∣∣∣∣
p(x)

dx

≤ C
∞∑
i=1

∫
Ω

|ψi∇uδi|
p(x) dx+ C

∞∑
i=1

∫
Ω

|u∇ψi − uδi∇ψi|
p(x) dx

≤ C
∞∑
i=1

∫
U i

|∇uδi |
p(x) dx+ C

∞∑
i=1

∫
Ω

|u∇ψi − uδi∇ψi|
p(x) dx.

For the last sum we have that
∞∑
i=1

∫
Ω

|u∇ψi − uδi∇ψi|
p(x) dx ≤ ε.

The first sum can be estimated as follows
∞∑
i=1

∫
U i

|∇uδi |
p(x) dx =

∞∑
i=1

%BVp(·)(U i)(uδi)

≤
∞∑
i=1

(
C%BVp(·)(U i)(u) + 2−iε

)
≤

∞∑
i=1

(
C‖Du‖(U i ∩ Y ) + C

∫
U i\Y
|∇u|p(x) dx

)
+ ε

≤ C%BVp(·)(Ω)(u) + ε.
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Here we used the fact that ‖Du‖(·) is a measure and that
∞∑
i=1

χU i ≤ 3. Thus

lim inf
ε→0

∫
Ω

|∇vε|p(x)dx <∞

and u ∈ B̃Vp(·)(Ω).
Assume next that u ∈ B̃Vp(·)(Ω). Let ui ∈ Liploc(Ω)∩Lp(·)(Ω), i = 1, 2, . . .

be such that ui → u in Lp(·)(Ω) and∫
Ω

|∇ui|p(x)dx→ %B̃Vp(·)(u)

as i→∞. For j = 1, 2, . . . let

Vj =
{
x ∈ Ω : p(x) > 1 +

1

j

}
.

Clearly Vj ⊂ Vj+1 for every j = 1, 2, . . . and the sets Vj form an open covering
for Ω \ Y . Without loss of generality we may assume that the sets Vj are
nonempty. The sequences (ui)

∞
i=1 and (∇ui)∞i=1 are bounded in Lp(·)(Vj) for

each j = 1, 2, . . ., and the spaces are reflexive due to p−Vj > 1. In what
follows, we do a diagonalization argument: starting from index 1, we always
choose the subsequences from previous subsequences while passing from Vj

to Vj+1. Let now j be arbitrary. By boundedness and reflexivity, there exists
a subsequence, hereafter taken to be the whole sequence, which has weak
limits

ui ⇀ vj and ∇ui ⇀ wj

in Lp(·)(Vj) for each j. Using the definition of weak derivative and uniqueness
of weak limit, it can be seen that actually wj = ∇vj. From this collection
of subsequences, we pick a diagonal sequence; for simplicity we again denote
this by ui. The subsequence for vj+1 has been extracted from the previous
one, so we have for the diagonal sequence

ui ⇀ vj in Lp(·)(Vj),

ui ⇀ vj+1 in Lp(·)(Vj+1),

16



and the same for the gradients. By the definition of weak convergence, it is
an easy calculation to see that actually∫

Vj

vjw dx =

∫
Vj

vj+1w dx

for all w ∈ Lp′(·)(Vj). Here we also use the facts that Vj ⊂ Vj+1 and that the
dual space is just the conjugate Lebesgue space. By a well known variation
lemma we now deduce that vj = vj+1 a.e. in Vj. The same can be seen for
gradients. We can now define a function v on Ω \ Y by setting v(x) = vj(x)

when x ∈ Vj \ Vj−1. It is clear that now ∇v = ∇vj a.e. in Vj \ Vj−1. Since
ui → u in Lp(·)(Vj) for every j = 1, 2, . . . it follows that u = v a.e. in Vj for
every j = 1, 2, . . . Hence u = v a.e. in Ω\Y and v ∈ Lp(·)(Ω\Y ). By Lemma
2.1. in [17] ∫

Vj

|∇v|p(x)dx ≤ lim inf
i→∞

∫
Vj

|∇ui|p(x)dx ≤ %B̃Vp(·)(u)

for every j = 1, 2, . . . This implies that∫
Ω\Y
|∇v|p(x)dx = lim

j→∞

∫
Vj

|∇v|p(x)dx ≤ %B̃Vp(·)(u)

and hence |∇v| ∈ Lp(·)(Ω \ Y ). Thus v ∈ W 1,p(·)(Ω \ Y ) and u = v a.e. in
Ω \Y implies that u ∈ W 1,p(·)(Ω \Y ). Since |Ω| <∞, we obtain that ui → u

in L1(Ω) as i→∞ and by the lower semicontinuity of the variation measure
and Hölder’s inequality

‖Du‖(Ω) ≤ lim inf
i→∞

∫
Ω

|∇ui|dx

≤CΩ,p(·) max
{
%B̃Vp(·)(u),

(
%B̃Vp(·)(u)

) 1
p+

}
<∞.

Thus u ∈ BV(Ω) ∩W 1,p(·)(Ω \ Y ) and u ∈ BVp(·)(Ω).

Remark. By the above proof, it is clear that when Ω is bounded and p is
bounded and log-Hölder continuous, the two pseudo-modulars will have the
following ”equivalence-like” relation:

1

C
%B̃Vp(·)(u) ≤ %BVp(·)(u) ≤ C max

{
%B̃Vp(·)(u),

(
%B̃Vp(·)(u)

) 1
p+

}
.
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We actually show in the next theorem that this can be improved to a true
equivalence.

Theorem 4.8. Let p be log-Hölder continuous, p+ <∞, and Ω bounded. We
may state the following true equivalence:

1

C
%B̃Vp(·)(u) ≤ %BVp(·)(u) ≤ C%B̃Vp(·)(u).

Proof. By the proof of Theorem 4.7 it is clear that%B̃Vp(·)(Ω)(u) ≤ C%BVp(·)(Ω)(u),

%BVp(·)(Ω\Y )(u) ≤ %B̃Vp(·)(Ω)(u),

so it remains to estimate ‖Du‖(Ω ∩ Y ). Let u ∈ B̃Vp(·)(Ω). The usual
convention is that the variation measure is extended from open sets to Borel
sets as

‖Du‖(Ω ∩ Y ) = inf {‖Du‖(U) : U open, Ω ∩ Y ⊂ U} .

Let us define the sets

Uj :=

{
x ∈ Ω : dist (x,Ω ∩ Y ) <

1

j

}
for integers j ≥ 1 and denote

p+
j := p+

Uj
.

Since the sets Uj shrink monotonously to Y at the least at rate 1
j
and p is

log-Hölder continuous, it is clear that p+
j → 1. Similarly as in the proof and

remark of Theorem 4.7, we may deduce that

‖Du‖(Ω ∩ Y ) ≤‖Du‖(Uj)

≤C max

{
%B̃Vp(·)(Uj)

(u),
(
%B̃Vp(·)(Uj)

(u)
) 1

p+
j

}
≤C max

{
%B̃Vp(·)(Ω)(u),

(
%B̃Vp(·)(Ω)(u)

) 1

p+
j

}
for all j. Here we have used the fact that since u ∈ B̃Vp(·)(Ω), also u ∈
B̃Vp(·)(Uj), and we have used the estimates from the proof of Theorem 4.7 for
B̃Vp(·)(Uj) instead of B̃Vp(·)(Ω). Letting j →∞ and thus p+

j → 1 concludes
the proof.
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5 Mixed BV-Sobolev capacity

In this section, we will define a mixed capacity. It is the capacity naturally
induced by the mixed space B̃Vp(·)(Ω). Let us define the admissible functions.
If E ⊂ Ω, we denote by AB̃Vp(·)(E) functions u ∈ B̃Vp(·)(Ω), 0 ≤ u ≤ 1 such
that u = 1 in an open neighbourhood of set E.

Definition 5.1. Let E ⊂ Ω. The mixed capacity is defined as

CB̃Vp(·)(E) := inf
{
%p(·)(u) + %B̃Vp(·)(u) : u ∈ AB̃Vp(·)(E)

}
.

We will study the properties of the mixed capacity and conclude that
it is in fact a Choquet capacity. In this section, we will heavily utilize the
semicontinuity property of Theorem 4.4 and the lattice property of Lemma
4.6. Similar principles are used also when dealing with the classical BV
capacity, see [11] and [31, Chapter 5.12].

Theorem 5.2. The mixed capacity CB̃Vp(·)(·) is an outer measure.

Proof. Clearly CB̃Vp(·)(∅) = 0 and E1 ⊂ E2 implies that AB̃Vp(·)(E2) ⊂
AB̃Vp(·)(E1), hence CB̃Vp(·)(E1) ≤ CB̃Vp(·)(E2). To prove the subadditivity
we may assume that

∞∑
i=1

CB̃Vp(·)(Ei) <∞.

We let ε > 0 and for every index i = 1, 2, . . . choose functions ui ∈ AB̃Vp(·)(Ei)

such that
%p(·)(ui) + %B̃Vp(·)(ui) ≤ CB̃Vp(·)(Ei) + ε2−i.

Let
u := sup

1≤i<∞
ui

and notice that

%p(·)(u) ≤
∞∑
i=1

%p(·)(ui) <∞.

Hence u ∈ Lp(·)(Ω). We define

vj := max
1≤i≤j

ui
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and notice that vj → u in Lp(·)(Ω) as j → ∞ by dominated convergence.
Therefore, by using Theorem 4.4 and Lemma 4.6 we obtain that

%p(·)(u) + %B̃Vp(·)(u) ≤
∞∑
i=1

%p(·)(ui) + lim inf
j→∞

%B̃Vp(·)(vj)

≤
∞∑
i=1

%p(·)(ui) + lim inf
j→∞

j∑
i=1

%B̃Vp(·)(ui)

=
∞∑
i=1

%p(·)(ui) +
∞∑
i=1

%B̃Vp(·)(ui)

≤
∞∑
i=1

CB̃Vp(·)(Ei) + ε.

Clearly u ∈ AB̃Vp(·)

( ∞⋃
i=1

Ei
)
and hence

CB̃Vp(·)

( ∞⋃
i=1

Ei

)
≤

∞∑
i=1

CB̃Vp(·)(Ei).

The capacity behaves well for increasing sequence of sets. Note that this
property is not known for the variable exponent Sobolev capacity defined in
[15] in the case p− = 1.

Theorem 5.3. Let E1 ⊂ E2 ⊂ . . . ⊂ Ei ⊂ Ei+1 ⊂ . . . ⊂ Ω be an increasing
sequence of sets. Then

CB̃Vp(·)

( ∞⋃
i=1

Ei

)
= lim

i→∞
CB̃Vp(·)(Ei).

Proof. By monotonicity

lim
i→∞

CB̃Vp(·)(Ei) ≤ CB̃Vp(·)

( ∞⋃
i=1

Ei

)
.

In order to prove the opposite inequality we may assume that

lim
i→∞

CB̃Vp(·)(Ei) <∞.

For every index i = 1, 2, . . . choose function ui ∈ AB̃Vp(·)(Ei) such that

%p(·)(ui) + %B̃Vp(·)(ui) < CB̃Vp(·)(Ei) + ε2−i.
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Let

vi := max
{
u1, . . . , ui

}
= max

{
vi−1, ui

}
wi := min

{
vi−1, ui

}
,

and notice that vi, wi ∈ B̃Vp(·)(Ω) for every index i = 1, 2, . . . and

Ei−1 ⊂ int
{
wi ≥ 1

}
.

We define E0 = ∅ and v0 ≡ 0 and by using Lemma 4.6 we obtain

%p(·)(vi)+%B̃Vp(·)(vi) + CB̃Vp(·)(Ei−1)

≤ %p(·)(vi) + %B̃Vp(·)(vi) + %p(·)(wi) + %B̃Vp(·)(wi)

= %p(·)(max{vi−1, ui}) + %B̃Vp(·)(max{vi−1, ui})

+ %p(·)(min{vi−1, ui}) + %B̃Vp(·)(min{vi−1, ui})

≤ %p(·)(vi−1) + %B̃Vp(·)(vi−1) + %p(·)(ui) + %B̃Vp(·)(ui)

≤ %p(·)(vi−1) + %B̃Vp(·)(vi−1) + CB̃Vp(·)(Ei) + ε2−i.

Thus, by adding these inequalities consecutively up to index i, we see a
telescope sum and obtain

%p(·)(vi) + %B̃Vp(·)(vi) ≤ CB̃Vp(·)(Ei) +
i∑

j=1

ε2−j.

We define a function
v := lim

i→∞
vi

and by monotone convergence we obtain that

%p(·)(v) = lim
i→∞

%p(·)(vi) ≤ lim
i→∞

CB̃Vp(·)(Ei) + ε.

We note that vi → v in Lp(·)(Ω) by dominated convergence, and by using
Theorem 4.4 we have that

%B̃Vp(·)(v) ≤ lim inf
i→∞

%B̃Vp(·)(vi) ≤ lim
i→∞

CB̃Vp(·)(Ei) + ε.
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Thus v ∈ AB̃Vp(·)

(
∞⋃
i=1

Ei

)
, and we have the estimate

CB̃Vp(·)

(
∞⋃
i=1

Ei

)
≤ %p(·)(v) + %B̃Vp(·)(v)

≤ lim inf
i→∞

%p(·)(vi) + lim inf
i→∞

%B̃Vp(·)(vi)

≤ lim inf
i→∞

(
%p(·)(vi) + %B̃Vp(·)(vi)

)
≤ lim

i→∞
CB̃Vp(·)(Ei) + ε.

Letting ε→ 0 completes the proof.

The following theorem states that CB̃Vp(·)(·) is an outer capacity. This
theorem actually does not depend on the properties in Section 4. This is a
general property of almost all capacities that are defined in a similar way;
the important point in the definition is u ≡ 1 in an open neighbourhood.

Theorem 5.4. For any E ⊂ Ω we have

CB̃Vp(·)(E) = inf
{
CB̃Vp(·)(U) : E ⊂ U ⊂ Ω, U an open set

}
.

Proof. By monotonicity

CB̃Vp(·)(E) ≤ inf
{
CB̃Vp(·)(U) : E ⊂ U ⊂ Ω, U an open set

}
.

We can assume that CB̃Vp(·)(E) < ∞. Let ε > 0 and take u ∈ AB̃Vp(·)(E)

such that

%p(·)(u) + %B̃Vp(·)(u) < CB̃Vp(·)(E) + ε.

Since u ∈ AB̃Vp(·)(E) there is an open set U , E ⊂ U ⊂ Ω such that u = 1 on
U , which implies

CB̃Vp(·)(U) ≤ %p(·)(u) + %B̃Vp(·)(u) < CB̃Vp(·)(E) + ε.

Hence

inf
{
CB̃Vp(·)(U) : E ⊂ U ⊂ Ω, U an open set

}
≤ CB̃Vp(·)(E).

22



The capacity behaves well for decreasing sequence of compact sets. This
is also a general property not depending on tools from Section 4.

Theorem 5.5. If K1 ⊃ . . . ⊃ Ki ⊃ Ki+1 ⊃ . . . are compact subsets of Ω and

K =
∞⋂
i=1

Ki, then

CB̃Vp(·)(K) = lim
i→∞

CB̃Vp(·)(Ki).

Proof. By monotonicity

lim
i→∞

CB̃Vp(·)(Ki) ≥ CB̃Vp(·)(K).

Let U ⊂ Ω be an open set containing K. Now by the compactness of K,
Ki ⊂ U for all sufficiently large i. Therefore

lim
i→∞

CB̃Vp(·)(Ki) ≤ CB̃Vp(·)(U)

and since CB̃Vp(·)(·) is an outer capacity, see Theorem 5.4, we obtain the claim
by taking infimum over all open sets U containing K.

The mixed capacity satisfies the following strong subadditivity property.

Theorem 5.6. If E1, E2 ⊂ Ω, then

CB̃Vp(·)(E1 ∪ E2) + CB̃Vp(·)(E1 ∩ E2) ≤ CB̃Vp(·)(E1) + CB̃Vp(·)(E2).

Proof. We can assume that CB̃Vp(·)(E1) + CB̃Vp(·)(E2) < ∞. Let ε > 0 and
u1 ∈ AB̃Vp(·)(E1) and u2 ∈ AB̃Vp(·)(E2) be such that

%p(·)(u1) + %B̃Vp(·)(u1) < CB̃Vp(·)(E1) +
ε

2
,

%p(·)(u2) + %B̃Vp(·)(u2) < CB̃Vp(·)(E2) +
ε

2
.

We see that

max{u1, u2} ∈ AB̃Vp(·)(E1 ∪ E2),

min{u1, u2} ∈ AB̃Vp(·)(E1 ∩ E2).
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Therefore, by Theorem 4.6, we obtain

CB̃Vp(·)(E1 ∪ E2) + CB̃Vp(·)(E1 ∩ E2)

≤ %p(·)(max{u1, u2}) + %p(·)(min{u1, u2})

+ %B̃Vp(·)(max{u1, u2}) + %B̃Vp(·)(min{u1, u2})

≤ %p(·)(u1) + %B̃Vp(·)(u1) + %p(·)(u2) + %B̃Vp(·)(u2)

≤ CB̃Vp(·)(E1) + CB̃Vp(·)(E2) + ε.

Letting ε→ 0, we obtain the claim.

By Theorems 5.3, 5.4, and 5.5, the mixed capacity is a Choquet capac-
ity. An important feature is that now the capacity of a Borel set E can be
estimated ”from the inside” by a compact set, and ”from the outside” by an
open set:

CB̃Vp(·)(E) = sup
{
CB̃Vp(·)(K) : K ⊂ E, K compact

}
= inf

{
CB̃Vp(·)(U) : E ⊂ U, U open

}
.

For the original paper on abstract capacity by Choquet, see [6].

6 Mixed capacity and Sobolev capacity

In this section we study the relations between B̃Vp(·)-capacity defined in the
previous section and the p(·)-Sobolev capacity, see [15]. Let E ⊂ Rn and
denote

Sp(·)(E) :=
{
u ∈ W 1,p(·)(Rn) : u ≥ 1 in an open set containing E

}
.

The p(·)-capacity of E ⊂ Rn is defined as

Cp(·)(E) := inf

∫
Rn
|u|p(x) + |∇u|p(x) dx,

in other words
Cp(·)(E) = inf %1,p(·)(u).
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The infimum is taken over functions u ∈ Sp(·)(E). It is easy to see that
restricting the admissible functions to the case 0 ≤ u ≤ 1 yields the same
infimum. In this case, it is obviously possible to drop the absolute value from
|u|.

The capacity Cp(·)(·) has many favourable properties: it is monotone, it
is an outer capacity, it is finitely strongly subadditive, it has the compact
set intersection property, it is subadditive for null sets. See [15, Theorem
3.1, Lemma 3.5]. The Sobolev capacity has some open issues as well. In
the case p− = 1, it is not known whether the Sobolev capacity is in general
subadditive or whether it has the increasing set union property. Note that
we have been able to solve these for the mixed capacity in Theorems 5.2, 5.3.

The next theorem shows that Cp(·)(·) and CB̃Vp(·)(·) have the same null
sets, if the variable exponent p(·) is bounded and log-Hölder continuous.

Theorem 6.1. Let p be a log-Hölder continuous variable exponent with p+ <

∞ and let E ⊂ Rn. Then Cp(·)(E) = 0 if and only if CB̃Vp(·)(E) = 0.

Proof. Since CB̃Vp(·)(·) is an outer measure and Cp(·)(·) is monotone and sub-
additive for null sets, we may assume that E is bounded. Assume first that
CB̃Vp(·)(E) = 0. Let 0 < ε < 1 and take u ∈ AB̃Vp(·)(E) such that∫

Rn
up(x)dx+ %B̃Vp(·)(Rn)(u) < εp

+

.

Denote Bρ = B(0, ρ) and let ρ > 0 be such that E ⊂ Bρ. Let η be a Lipschitz
function such that 0 ≤ η ≤ 1, |∇η| ≤ 1, η = 1 in Bρ and η = 0 in Rn \Bρ+1.
Denote v := ηu. Now v ∈ B̃Vp(·)(Bρ+2) and∫

Bρ+2

vp(x)dx+ %B̃Vp(·)(Bρ+2)(v) < Cεp
+

.

We may now assume that Cεp+ < 1 by choosing a new, smaller ε if necessary.
Theorem 4.7 together with its proof and and Hölder’s inequality implies that
v ∈ BVp(·)(Bρ+2) and∫

Bρ+2

v dx+ ‖Dv‖(Bρ+2) ≤ Cε+ Cε ≤ Cε,
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where the constant C depends only on ρ and p+. From the Cavalieri principle
[31, Lemma 1.5.1] and coarea formula for BV-functions [31, Theorem 5.4.4]
we deduce that

|{v > t0} ∩Bρ+2|+ P ({v > t0} , Bρ+2) ≤
∫
Bρ+2

v dx+ ‖Dv‖(Bρ+2),

for some 0 < t0 < 1. Denote Et0 := {v > t0} ∩ Bρ+2. Since Et0 ⊂⊂ Bρ+2 we
have that P (Et0 , Bρ+2) = P (Et0 ,Rn); see [12, Remark 1.7]. Denote the set
of Lebesgue density points

E∗t0 :=

{
x ∈ Et0 : lim

r→0

|B(x, r) ∩ Et0|
|B(x, r)|

= 1

}
.

It is known that almost every point of a measurable set is a Lebesgue density
point. We apply the modified Boxing inequality [13, Lemma 4.2] for the
radius R = 1 to obtain a covering for E∗t0 . We shall have

E∗t0 ⊂
∞⋃
i=1

B(xi, 5ri)

and ∑
i∈I1

|B(xi, 5ri)|+
∑
i∈I2

|B(xi, 5ri)|
5ri

≤ C (|Et0|+ P (Et0 ,Rn)) .

Denote by I3 indices i ∈ I1 ∪ I2 such that p−10Bi
> 1 where Bi = B(xi, ri).

If we have some ball B, we futher denote by κB the cocentric ball with the
radius of the original ball B scaled by some constant κ > 0. For indices
i ∈ (I1 ∪ I2) \ I3 define

ϕi(x) :=

(
1− dist(x,B(xi, 5ri))

5ri

)+

.

For indices i ∈ I3 we choose function ui ∈ AB̃Vp(·)(E) such that

1

rp
+

i

∫
B(xi,10ri)

u
p(x)
i + |∇ui|p(x)dx < 2−iε,

here the assumption p−10Bi
> 1 ensures that ui ∈ W 1,p(·)(10Bi). For i ∈ I3 let

ϕi := ηiui,
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where ηi is 1/5ri-Lipschitz function such that 0 ≤ ηi ≤ 1, ηi = 1 in B(xi, 5ri)

and ηi = 0 in Rn \B(xi, 10ri).
We have now defined ϕi for all indices i. Let

ϕ := sup
1≤i<∞

ϕi

and
gϕ := sup

1≤i<∞
|∇ϕi|.

We now have∫
Rn
gp(x)
ϕ dx ≤

∞∑
i=1

∫
10Bi

|∇ϕi|p(x)dx

=
∑

i∈(I1∪I2)\I3

∫
10Bi

|∇ϕi|p(x)dx+
∑
i∈I3

∫
10Bi

|∇ϕi|p(x)dx.

Since p−10Bi
= 1 for every i ∈ (I1 ∪ I2) \ I3, we write∑

i∈(I1∪I2)\I3

∫
10Bi

|∇ϕi|p(x)dx ≤
∑

i∈(I1∪I2)\I3

∫
10Bi

(
1

5ri

)p(x)

dx

=
∑

i∈(I1∪I2)\I3

∫
10Bi

(5ri)
−(p(x)−1) 1

5ri
dx

≤ C
∑

i∈(I1∪I2)\I3

∫
10Bi

1

5ri
dx.

Here we used the property of log-Hölder continuous exponent p:

r−(p(x)−1) ≤ C.

Note that always p(x) ≤ p+
10Bi

and now p−10Bi
= 1. We then see that

C
∑

i∈(I1∪I2)\I3

∫
10Bi

1

5ri
dx ≤ C

∑
i∈(I1∪I2)\I3

|5Bi|
5ri

≤ C
∑

i∈I1\I3

|5Bi|
5ri

+ C
∑

i∈I2\I3

|5Bi|
5ri

≤ C
∑

i∈I1\I3

|5Bi|+ C
∑

i∈I2\I3

|5Bi|
5ri

≤ C (|Et0 |+ P (Et0 ,Rn))

< Cε.
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Here we used the fact that ri ≥ 1/2 for i ∈ I1 \ I3. The constant C depends
only on ρ, p+, n and the constant in the log-Hölder continuity condition. On
the other hand, for I3 we have∑

i∈I3

∫
10Bi

|∇ϕi|p(x)dx ≤ 2p
+
∑
i∈I3

∫
10Bi

|∇ui|p(x) +
( ui

5ri

)p(x)

dx

≤ C
∑
i∈I3

1

rp
+

i

∫
10Bi

u
p(x)
i + |∇ui|p(x)dx

≤ C
∑
i∈I3

2−iε < Cε.

Thus ∫
Rn
gp(x)
ϕ dx < Cε.

Now ϕ is compactly supported bounded function, so ϕ ∈ L1(Rn) ∩ L∞(Rn).
By Hölder’s inequality, also gϕ ∈ L1(Rn). By [10, Chapter 4.7.1, Lemma 2,
iii.] ϕ now has a weak gradient in L1(Rn) and |∇ϕ| ≤ gϕ almost everywhere.
Thus ϕ ∈ W 1,p(·)(Rn) with ∫

Rn
|∇ϕ|p(x)dx < Cε.

Furthermore∫
Rn
ϕp(x)dx ≤

∞∑
i=1

∫
10Bi

ϕ
p(x)
i dx

≤
∑

i∈(I1∪I2)\I3

∫
10Bi

ϕ
p(x)
i dx+

∑
i∈I3

∫
10Bi

ϕ
p(x)
i dx

≤ C
∑

i∈(I1∪I2)\I3

|5Bi|
5ri

+
∑
i∈I3

∫
10Bi

u
p(x)
i dx.

Arguing similarly as earlier, we have that∑
i∈(I1∪I2)\I3

|5Bi|
5ri

< Cε.

This combined with the fact that∑
i∈I3

∫
10Bi

u
p(x)
i dx < ε
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implies ∫
Rn
ϕp(x)dx < Cε.

Clearly E ⊂ int{u = 1} ∩ Bρ ⊂ E∗t0 ⊂
∞⋃
i=1

B(xi, 5ri). For indices i ∈ (I1 ∪

I2) \ I3 we have that ϕ = 1 in 5Bi. On the other hand, for indices i ∈ I3 we
have that

E ∩ 5Bi ⊂ int{ui = 1} ∩ 5Bi

= int{ϕi = 1} ∩ 5Bi

⊂ int{ϕ = 1} ∩ 5Bi.

Thus E ⊂ int{ϕ = 1} and

Cp(·)(E) ≤
∫

Rn
ϕp(x) + |∇ϕ|p(x)dx < Cε.

The claim now follows by letting ε→ 0.
Assume then that Cp(·)(E) = 0. This converse proof is much simpler.

Since the smooth functions are dense in W 1,p(·)(Rn) we have that Sp(·)(E) ⊂
AB̃Vp(·)(E). By [15, Lemma 2.6],

%B̃Vp(·)(u) ≤ %p(·)(∇u)

for Sobolev functions. Thus CB̃Vp(·)(E) ≤ Cp(·)(E) and CB̃Vp(·)(E) = 0.

In the above proof, we made use of [10, Chapter 4.7.1, Lemma 2, iii.]
when showing that the function ϕ is a Sobolev function. We would like to
mention that the same result can be shown using 1-weak upper gradients,
which are familiar to people working on analysis on metric measure spaces.
One might argue that this route is more direct and shorter. However, in that
case some additional care needs to be taken when distinguishing between
functions and their precise representatives, between the Sobolev space and
the Newtonian space. See [4, 27].
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