
1

An On-line Repository for Embedded Software
I-Ling Yen, Latifur Khan,

Balakrishnan Prabhakaran, Farokh B. Bastani
Dept. of Computer Science, Univ. of Texas at Dallas

{ilyen, lkhan, praba, bastani}@utdallas.edu

John Linn
Texas Instrument, Inc.

linn@ti.com

Abstract
The use of off-the-shelf components (COTS) can

significantly reduce the time and cost of developing large-
scale software systems. However, there are some difficult
problems with the component-based approach. First, the
developers have to be able to effectively retrieve components.
This requires the developers to have an extensive knowledge
of available components and how to retrieve them. After
identifying the components, the developers also face a steep
learning curve to master the use of these components. We are
developing an On-line Repository for Embedded Software
(ORES) to facilitate component management and retrieval.

In this paper, we address the issues of designing software
repository systems to assist users in obtaining appropriate
components and learning to understand and use the
components efficiently. We use an ontology to construct an
abstract view of the organization of the components in ORES.
The ontology structure facilitates repository browsing and
effective sea rch. We also develop a set of tools to assist with
component comprehension, including a tutorial manager and
a component explorer.

1 Introduction

Software technology is rapidly shifting away from low-
level programming issues to automated code generation and
integration of systems from components. The component-
based approach can significantly reduce the cost and time for
software development. However, it also has some difficult
problems. First, the developers have to be able to effectively
retrieve related components. The retrieval process involves
matching the desired functionality and making sure that the
component satisfies required properties such as timing and
resource constraints. Thus, the developers need to have in-
depth knowledge of the available components and their
properties. After identifying the components, the developers
also face a steep learning curve to master the use of them.

Effective component retrieval technique is crucial to the
success of component-based approach. Over the past decade,
component retrieval has been studied extensively [1,8].
Desirable retrieval techniques should yield high precision and
recall [5]. Let I be the set of components that should be
returned for a retrieval query, and let R be the set of
components actually returned. Precision can be defined as
||R∩I|| / ||R||, i.e., requires the retrieval algorithm to return
only the relevant components. Recall can be defined as
||R∩I|| / ||I||, i.e., requires the retrieval algorithm not to miss
any relevant components [5].

Formal methods have been used [7,8] to achieve better
precision and recall in component retrieval. There are two
major approaches along this direction. In syntax-based
retrieval, component selection is based on matching the
signatures of the operations, such as input/output parameter
types [5,8]. Since it does not provide a complete behavior
description, it is not suitable for partially specified retrievals.
Semantics-based approach specifies a component by its
behavior. Generally, formal methods are used for behavior
specification [1,8]. Theorem proving or rule-based reasoning
techniques can be used to infer equivalence or similarity of
component behaviors [9]. These are elegant solutions;
however, they require the component developers and users to
have extensive knowledge of formal specification techniques
and are difficult to use due to the low-level granularity of
formal specification.

Several web-based component repositories have been
constructed [2,3,6,12] to facilitate access to reusable
components. Some use a taxonomy to structure components
to facilitate retrieval [2, 11, 12]. This taxonomy provides an
effective way of locating generic components (domain-
independent) that are well-known to programmers and
corresponds well with their intuition. However, when a user
is uncertain of the repository taxonomy, simple keyword-
based search provided in these systems is not sufficient.
Approaches that use structural information to assist with the
search have been proposed. In [11], taxonomic hierarchies are
used to speed up keyword search. Faceted classification [10]
offers a different structuring mechanism. It defines attribute
clauses that can be instantiated with different terms. Users
search for components by specifying a term for each of the
facets. The faceted approach divides the information space to
make it easier to specify individual terms to represent
components. But it is often hard for a user to find the right
terms or the right combinations that will accurately describe
the component to be retrieved. In enumerated classification,
information is divided into categories, and then
subcategories, to form a structured hierarchy.

In our approach, we use an ontology to organize the
components in the repository. Ontology is a collection of
nodes and their relationships, which collectively provide an
abstract view of a certain application domain. It has a similar
structure as that in enumerated classification and, thus,
facilitates effective browsing. Also, we use ontology-based
search, so that the search scheme fully exploits the meta-
information offered in the ontology and improves the level of
precision and recall.

2

Most component retrieval researches focus on
functionality match. However, for some applications, such as
embedded software systems, component retrieval generally
involves nonfunctional requirements (NFR), such as time
limit, memory constraints, security requirements, etc. Thus,
the design of component repository and the retrieval
techniques should also consider the satisfaction of NFR.
Little work has been done along this direction. In [14], an
NFR-Assistant tool is presented which assists with the
exploration of design alternatives through a graphical
interface. In [13], the real-time requirement is addressed and
tools are provided for selection of components satisfying real-
time constraint. However, both systems use exhaustive search
to identify components which incurs intensive computation.

In this paper, we discuss the design and development of
an On-line Repository for Embedded Software (ORES). Our
design principles include:
(a) The system should support effective component retrieval.

We consider retrieval by browsing and by searching. We
use an ontology-based repository structure [4] to capture
various types of relations in software components and,
subsequently, to facilitate effective component retrieval.

(b) The system should facilitate component retrieval for
satisfying a set of nonfunctional requirements.
Nonfunctional attributes for each component should be
captured in the repository and mechanisms for efficient
component selection should be provided.

(c) To allow easy understanding and use of the components,
the repository also maintains tutorials for the
components. The tutorial can be assembled flexibly upon
request to satisfy different user needs, such as different
levels of abstraction. Tools that facilitate the exploration
of the components will also be provided.
The rest of the paper is organized as follows: In the next

section, we discuss the major design concepts for ORES,
focusing on the ontology design that facilitate browsing and
search. In Section 3, the ontology-based search scheme is
discussed. In Section 4, we discuss two sets of tools
associated with the ontology for component comprehension.
Section 5 states the conclusion of the paper.

2 Repository Ontology

2.1 Repository Ontology and Browsing
Repository ontology is crucial for effective component

retrieval. However, existing techniques may not be directly
applicable for software repository systems. First, software
components hold additional relations beyond semantic nodes,
which is due to the boundary of packages. For example, in a
voice over IP system, the sender needs to encode the voice
stream and the receiver needs to decode the stream. Nodeual-
based ontology may capture the relation between different
versions of “encoder” or “decoder” functions, but not the
“syntactical” correlation between a specific pair of “encoder”
and “decoder” functions from the same package that have to

be invoked in pairs. A consequence of this issue is the
necessity of providing multiple views in the ontology, for
example, one hierarchy is based on the classification of
functionality of components and another retains the
boundaries of software packages. However, due to the
complex structure, an ontology with multiple hierarchies is
not suitable for browsing. In our approach, we use an echoing
technique to merge the multiple views into a single hierarchy
during browsing while still retaining the characteristics of
multiple views.

We first consider a major repository hierarchy that
retains software package boundaries. Each node in the
repository ontology has a type, which can be domain,
subdomain, package, abstraction group, abstraction, function
group, or function. At the highest level, we have a repository
root node. In the hierarchy, software packages are considered
as the intermediate units. Under the root, we build the
repository ontology by classifying packages according to
their functions and application domains. This process is
similar to conventional ontology construction. At this level, a
node in the ontology represents a domain or a subdomain. A
domain is a major software area, for example, embedded
system, operating systems, etc. A subdomain further divides a
domain into finer categories. Within a subdomain (or even a
domain), there are various software packages. In general, a
software package consists of a number of abstractions,
where each abstraction is a program unit that encapsulates
certain abstract concepts or behaviors together with some
state information that is accessible within the abstraction. A
group of functions is implemented in an abstraction to access
the encapsulated state information and/or achieve certain
goals of the abstraction. In a large package, there may be
hundreds of abstractions. We use abstraction groups to
structure abstractions in a package into a hierarchy. Similarly,
a large abstraction can have a large number of functions. To
allow easy retrieval of the functions, we use function groups
to structure functions in an abstraction.

java.net

DatagramPacket DatagramSocket ServerSocket SocketInetAddress …

constructor methods

→ getInetAddress
→ getPort
→ getLocalPort
→ getLocalAddress

→

Multicas tSocket

→ DatagramSocket
1

→ DatagramSocket
2

→ DatagramSocket
3

→ connect
→ disconnect
→ close
→ send
→ receive

 Figure 1. The hierarchy in package java.net.

Here, we use Java Networking package as an example to
illustrate the ontology construction and discuss the echoing
scheme in ORES. In Figure 1, we show the original program
hierarchy in java.net. The java.net package contains several
classes. Each class contains a set of constructors and a set of
methods. Note that only a part of the package hierarchy is

3

illustrated. In ORES, the classes in java.net are abstractions.
We further classify these abstractions into abstraction groups.
Here, a sensible way to classify the classes is to have
“reliable-communication”, “unreliable-communication”, and
“multicast-communication”. Within each class group, we
further identify two sub class groups, “packet” and “socket”.
Under “unreliable-communication.packet”, we have the
actual class “DatagramPacket” and under “unreliable-
communication.socket”, we have the actual class
“DatagramSocket”. Within each class, we group functions
into function groups. In the class DatagramSocket, we have
function groups “constructors”, “get/set-socket-address-
information”, “channel-establishment-functions”, and
“message-passing-functions”. The ontology in ORES for the
java.net package is shown in Figure 2.

java.net

IOStream

InetAddress

…

constructor
get/set address

→ getInetAddress
→ getPort
→ getLocalPort
→ gtetLocalAddress

reliable co mu.

Packet

Socket

Socket

DatagramPacket

unreliable co mu.

Packet

DatagramSocket

Socket

ServerSocket

mu lticast comu.

Packet

MulticastSocket

Socket

message passing

channel establ.

→ connect
→ disconnect
→ close

→ send
→ receive

constructor

get/set
address

message
passing

channel
establisher

Inheritance
relation

Use relation

channel listener
channel
listener

constructor

get/set
address

message
passing

channel
establisher

channel
listener

→ accept
→ implAccept

→ getInetAddress
→ getLocalPort

…

null

…

null

→ close

…

…

…

…

…

…

…

null

Figure 2. The ontology of Java.net package in ORES.

Another issue in software repository ontology is that
software components may have their own hierarchy due to
inclusion or inheritance. In Figure 2, we can see the
inheritance and use relations. In a large repository, a
subsystem consisting of components from the repository can
also be a component in the repository. In conventional
information hierarchy, the actual object can only be a leaf
node. In software component hierarchy, components can be
associated with nodes at any level in the ontology.

In Figure 2, nodes that belong to echoed hierarchies are
shaded. The echoing scheme is used to build the same
ontology for a group of nodes with similar behavior. To avoid
information loss, echoed ontologies are constructed by taking
the “union” of the individual ontologies being echoed. In
java.net, the abstractions ServerSocket, DatagramSocket, and
MulticastSocket have similar concepts. If we consider
component semantics instead of package boundary, then a
different hierarchy will be constructed. This hierarchy forms
a second view of the ontology. The ontology with multiple
hierarchies is presented in Figure 3. When multiple
hierarchies of the ontology are displayed in a single view,

browsing the ontology can be very confusing. Thus, we
define a single hierarchy that includes all nodes in the three
abstractions. As shown in Figure 2, we add message-passing
group in ServerSocket and message-listener group in
DatagrameSocket and MulticastSocket abstractions. The
added nodes will be empty and their purpose is to relate
similar units in a uniform way. So, all socket classes have the
same ontology and the nodes in these echoed ontologies are
correlated. A pointer “echoed-node” is used to link the root
nodes of echoed ontologies together.

get/set address message passing channel establisher channel listener

ServerSocket

reliable
get/set addrs

reliable
channel est.

reliable
channel listen.

DatagramSocket

datagram
get/set addrs

datagram
msg passing

datagram
channel est.

MulticastSocket

multicast
get/set addrs

multicast
msg passing

multicast
channel est.

Figure 3. Multiple views in the ontology for Java.net

As we can see, ORES ontology provides a better
structure for browsing. With the categorization within the
packages and classes, relations among components are better
captured. With the echo technique, users can easily
understand the relations among various categories and
compare them conveniently. Also, once users understand one
group of components, it is easy to extend the knowledge to
other echoed groups.

2.2 Components Description
Many information attributes are required to describe a

component and different components may require different
attributes to explicitly describe their characteristics. Thus, we
use a flexible approach to dynamically define the attributes
for each component. In ORES, DTD (document type
definition) is used for information attributes definition. At the
repository root node, we define a basic set of information
attributes that are inherited by all nodes in the repository. A
child node inherits the information attributes defined by its
parent node and it can modify the definition by adding
additional attributes or removing some of them. The DTD for
the repository root node is as follows.

<!ELEMENT Information-Attributes
(General, Pointers, Specification, Properties)>

<!ELEMENT General (node-id, node-type, keywords,
short-description)>

<!ELEMENT Pointers (source-code-pointer, executable-pointer,
tutorial-pointer, document-pointer, additional-links)>

<!ELEMENT Properties (#PCDATA)>
<!ELEMENT Specification (#PCDATA)>.

The information attributes include four categories, the
general information, information pointers, node specification,
and properties. In “general information”, node-id is defined
by the path name of the node, which concatenates the names
from the root node all the way to the current node. Node-type
has been defined in the previous subsection. Keywords field

4

is maintained to facilitate search. In thecategory “pointers”, a
set of pointers is defined to link to external information files,
such as code, tutorial, documentation for the component.

Specification attributes describe the characteristics of a
node and they are node-type dependent. For function nodes,
the API specification (input, output, exceptions) should be
provided. For abstraction nodes, the abstraction API, such as
interface functions and exceptions, and inheritable or
externally accessible variables can be provided. For a
package node, the package version number, new release
information, licensing information, price information, vendor,
etc. can be provided. The execution environment
requirements, such as OS, processor speed, memory and disk
size, devices, etc., should also be specified. Some package-
wide glossary definitions can also be provided.

The property field for each node is domain-dependent.
We consider some “non-functional properties” for embedded
software components, including timing information, memory
footprint, etc. Users can search for components that satisfy a
given timing constraint and/or memory size limitation, etc.
Reliability related information, such as component reliability,
operational profile, test data, test coverage, etc., can be
included. Informal review information, such as problem and
bug reports, user reviews, product limitations, usage
experience report, etc. can be given. We are currently
designing the tools to facilitate automated collection and easy
entry of component property data.

3 Repository Search

A user may browse the ontology to locate a node, but
frequently, the user may not have extensive knowledge of the
ontology and has to make use of the search operation. Each
node in ORES is described by a concept, which is further
defined by a set of keywords. These keywords are used for
search. The keywords for each component are obtained by
analyzing the component documents and source code. The
frequency of keywords appearing in these documents is used
to assign weights for the keywords. Ontology hierarchy
relations are used to further direct the keyword weight
assignment. A high-weight keyword for a node may be
propagated to its parent and children nodes. An inverted list
is maintained in memory to keep track of the keywords and
their relations to the components to allow efficient search.

A problem with search is the potential of having a large
number of search results. Various methods have been
developed to prune search results. For example, we can prune
search results based on a certain ranking mechanism. The
nodes with ranks lower than a threshold are removed. This
approach has the potential of reducing the recall level.
Instead, we use a search result clustering approach to direct
the user to go along the correct direction to get the desired
search results. For example, consider searching for the term
“agent”. A huge number of matches in very diverse areas
may come up in a general knowledge base. There may be
“agent” in real-estate, in chemistry, and in computer science.

Within computer science, there may be many different types
of agents, such as AI, E-commerce, or networking domains.
Instead of pruning the results automatically, our approach
clusters the search results, identifies and presents the domain
nodes that represent a group of search results, and lets the
user make the choices for further exploration. This approach
can lead the user to prune the irrelevant search results in a
much more effective way and yields higher recall level.

Consider the repository as a tree (the main structure of
the ontology is defined as a tree) and let T denote this tree.
Also, let S0 denote the set of search results and N the number
of search results, where N = |S0|. Also, let Sf denote the set of
nodes that are selected to represent their descendants in S0

and to be presented to the users for choices for further
exploration. We first choose a bound BN. If N ≤ BN, then the
number of search results is reasonably small and clustering is
not needed. BN can be determined by the user. A reasonable
choice can be a number between 30 and 50. When N > BN, we
start the clustering computation and the algorithm for
computing Sf is discussed below.

The algorithm consists of two phases. In the first phase,
we start from nodes in S0, traverse up R, and mark the
traversed nodes. We bound the levels to traverse up in R to L
levels. Let T(p, l) denote the set of nodes that are in in S0 and
within the l-level subtree of p and p itself. Also, let N(p, l) =
|T(p, l)|. In the second phase, we compute N(p, l) for some l <
L and for all p, where p is marked. Note that the N(p, l) value
for node p is not computed and not propagated up to its
parent till all N(q, lq) from all q, where q is the child nodes of
p, have been computed. The users can choose the bounds M1,
which is the minimum number of nodes that can form a
group, and M2, which is the maximum number of nodes that
should form a group. The clustering decisions are made based
on the chosen M1 and M2 values. M1 and M2 should be
properly selected to achieve the best effect. If M2 is too small,
then there may be too many representative nodes to be
presented. If M2 is too large, then the user may have to go
through too many screens before reaching the desired nodes.
If only one bound M1 or M2 is used, the results may not be
desirable either. If we only use M1, then in a dense area, there
may be too many groups. If we only use M2, then in a sparse
area it is hard to form groups. A reasonable way to view
clustered groups is to present 15-30 groups at a time
(depending on the value N). Let g denote the number of
groups to be presented. Each group is thus of size N/g. So, a
sensible choice for M1 and M2 can be N/2g and 2N/g,
respectively. It is also important to choose a proper L value.
If L is too large, then a group may include nodes that are far
apart from its representative node and not being properly
represented. If L is too small, then it is either hard to form
groups or the group size is too small. Some more scenarios
about the use of M1 and M2 are analyzed.
1. When N(p, l) ≥ M2, then even if l < L, p should be

selected to represent its descendants. Consider the case in
Figure 4(a). For nodes p1, p2, and p3, we have N(p1, l) =
24, N(p2, l) = 11, and N(p3, l) = 12. Assume that M1 = 3,

5

M2 = 10, and L = 4. As we can see, p1 can be selected to
represent the matched nodes in the entire subtree, but
there are too many nodes in the subtree, instead, p2 and
p3 are included in Sf, where N(p2, l) and N(p3, l) are
greater than M2. Node p1, in this case, is considered with
its ancestors to form another potential group.

2. Figure 4(b) presents a case that the nodes in S0 are spread
sparsely over a subtree rooted at node p5. After the
computation, node p6 will have N(p6, 9) > M2; however,
p6 is too far from some of its descendant it represents,
such as p8. Thus, the computation should end at a
bounded level, which is L. Assume that L = 5 and M2 =
5. Therefore, nodes p5 with N(p5, l) = 6 > M1 and p7 with
N(p7, l) = 6 > M1 will be included in Sf.

12 3

4

5

7

node in S0

node not in S0

(a)

(b)
6

8

Figure 4. Two case.

The algorithm for computing Sf is given as follows. In
the first phase, we traverse up R for L levels from the nodes
in S0 and mark all the nodes traversed (by setting q.mark to
1). For each node q, where q is marked, we compute q.num
that is the number of q’s immediate child nodes that are
marked plus 1 (for q itself). Also, we use a queue Si to keep
track of nodes that need to be traversed at the i-th level.

loop i = 0 to i = L−1 do
for-each q∈ Si do

set q.num to q.num + 1;
if (q.mark = 0) then q.mark = 1; p = q’s parent; put p in Si+1; endif;

endfor;
endloop;
for-each q∈ SL do set q.num to q.num + 1; q.mark = 1; endfor;

Once all the nodes are marked, we traverse R again
starting from S0. This time, nodes are clustered and the
selected representative nodes are placed in Sf. During
traversal, a node is not processed till all its child nodes are
processed. Note that q.sum is N(q, l). When node q is
processed, we check whether it should be selected as the
group representative. If N(q, l) > M2, for some l < L or N(q, L)
> M1, then we put q in Sf and q’s parent p will not consider q
as a marked child. Otherwise, the traversal proceeds upward.

If the traversal exceeds L levels and comes to a node q,
while N(q, L) < M1, then we execute the recollect function to
recompute N(q, l) with a small l value (< L) in the attempt to
cluster some nodes in the subtree of q with q’s ancestors.
Various algorithms can be used for recollection and the value
l for recollection should be determined to minimize the
potential of repetitive recollection.

loop i, from i = 0, till Si = empty do
for-each q∈ Si do

set q.num to q.num − 1;
if (q.num = 0) then // if q.num > 0, q should wait

if (q.sum ≥ M2) then
put q in Sf,; p = q’s parent; put p in Si+1;

else if (q.level ≥ L) // should not traverse up any further
if (q.sum > M1) then put q in Sf;
else if (q ∈ S0) then

sum = 1; level = 1; recollect (q, sum , level);
p = q’s parent; p.sum = p.sum + sum ; put p ∈ Si+1;
if (level + 1 > p.level) then p.level = level +1; endif;

else discard (q);
endif;

else // traverse up as normal case
p = q’s parent; p.sum = p.sum + q.sum; put p ∈ Si+1;
if (q.level + 1 > p.level) then p.level = q.level + 1; endif;

endif;
endif;

endfor;
endloop;

4 Component Exploration

After identifying the components to be used, learning
how to use them and how to integrate them is still a major
challenge. Also, most components provided in large-scale
libraries contain a rich collection of methods with many
possible and complicated calling sequences. They provide
generality and flexibility for various applications, but at the
cost of being hard to use. Thus, tools that help with the
comprehension of components should be provided. Here, we
consider two sets of tools that facilitate component
exploration: the tutorial manger and the component explorer.

4.1 Tutorial for a Component

4.1.1 Multimedia Tutorial Specification
ORES supports multimedia tutorial construction for the

components to illustrate how each component works or how
it should be used. We use an XML (eXtensible Markup
Language) control file to specify the multimedia objects that
need to be delivered as part of the tutorial as well as the
timing relationships among the media objects that need to be
maintained for achieving visual and aural synchronization
during presentation. We use HTML+TIME to specify the
temporal relationships for the tutorial presentation.
HTML+TIME extends SMIL (Synchronized Multimedia
Integration Language) where a set of extensions is added to
allow additional timing, interaction, and media delivery
capabilities. Using the timing extensions, any HTML
element can be set to appear at a given time, to last for a

6

specified duration, and to repeat (i.e. loop). Media tags are
also introduced in SMIL to easily integrate time-based media
(movies, audio and animation content). SMIL also introduces
some very powerful elements that support conditional
delivery of content, specifically to support differing client
platform multimedia capabilities and preference settings. For
added support for integration of timing and synchronization
markup with other languages, we will use the Timesheets
approach. Timesheets is a new concept under development. It
separates timing from the content document's structure and
provides a solution where time can be brought to any XML
document regardless of its syntax and semantics.

4.1.2 Automatic Tutorial Assembly
Tutorial presentation may either be a description of the

functionality of the selected component generically or a
collective description of the sub-components that compose
the selected component. For instance, consider the ontology
given in Section 2.1. The tutorial for DatagramSocket may be
composed of tutorials of its subcomponents constructor,
channel listener, channel establisher, and message passing
functions. Each of the subcomponent tutorial may in-turn be
composed of the tutorials for each of the methods in the
category. In ORES, we provide a mechanism for automatic
tutorial assembly based on ontology. A user can use a variant
XML file to specify a tutorial template. This template can be
reused by nodes in the echoed ontology by replacing the
variables defined in the file. For example, to assemble a
tutorial for node DatagrameSocket, we can construct the
following XML file:

<variables>class-name, constructor-file, listener-file, … </varialbes>
<content>

The class #class-name, consists of functions for socket construction,
channel listening, connection establishment, and message passing.

</content>
<htmlFile>#constructor-file.html</htmlFile>
<playFile>#constructor-file.wav</playFile>
<include>child 1</include>
<htmlFile>#listener-file.html</htmlFile>
<playFile>#listener-file.wav</playFile>
<include>child 2</include>
……

Each node using this template should define the
variables. The variables are replaced by their defined values
when the XML template is accessed. The <include> tag
triggers an operation that fetches the tutorial of the designated
child node. This template can be used by all socket classes
such as Socket, ServerSocket, DatagramSocket, and
MulticastSocket for dynamic tutorial assembly.

4.1.3 Tutorial Delivery

Parser Presentation Controller
Media Player

User

…
Media Player

Figure 5. Modules in TutPre.

Tutorial presentation is carried out by the TutPre
module. TutPre is developed using Java and the media
objects comprising a tutorial are delivered using Java Media
Framework (JMF). TutPre parses the XML control file of a
tutorial and identifies the different media objects that are to
be delivered for that tutorial. These media objects are then
retrieved from the server and presented to the user,
maintaining the timing relationships specified in the XML
control file. TutPre has the structure shown in Figure 5. The
parser module reads the XML control file and identifies the
media objects and their timing relationships. This information
(media objects and their timing relationships) is passed onto
the Presentation Controller. The Presentation Controller
creates an instance of a media player for each media type and
synchronizes the delivery of media objects. It also interacts
with the user to help him/her to skip, fast forward, or rewind
during a tutorial presentation.

4.2 Component Explorer
Often, it is most effective to learn the characteristics and

behavior of a component by hands-on exploration. In ORES,
we develop tools to assist users who do not have much
knowledge of the component to do effective exploration. To
maximize the effectiveness, we first divide the component
space into categories that are meaningful to users and allow
them to explore each type of components in a specific way.
The exploration tools need information regarding the
behavior of the components. To allow the specification of
the behaviors at a higher level of abstraction, we associate
additional attributes with each component. These attributes
denote high-level behaviors that are well defined and are
incorporated into the tools that operate on the repository. The
attributes are defined by partitioning the repository
components into abstract data type, stream, functional, and
system components. Components in the abstract data type
(ADT) category encapsulate some state information and have
methods that modify the state and other methods that return
the value of some aspect of the state. ADTs can be specified
using algebraic equations and can be further divided into
terminal, container, mapping, and other categories as
needed. Similarly, streams operate on a series of inputs that
could be either signal (audio, video, etc.) or other information
and perform filtering operations such as compression,
encryption, routing, etc. Streams can be further divided into
data, audio, video, and other groups, as well as tertiary
attributes that specify the bandwidth and real-time response
requirements of the streams. Functional components do not
have any state, so the output depends only on the values of
the input parameters. Examples include mathematical
functions, sorting, searching, etc. System components are
generic applications such as operating systems, databases,
compilers, editors, etc., that are used in developing domain-
specific applications. Based on this categorization, we will
develop specific tools that will allow independent invocation
of a component or a set of components to allow component
comprehension, testing, or simulation. These tools can also

7

be used to assess the component and obtain some of the
property information (P) for the component.

Abstract data type object. The tool provides a capability
for the user to specify the values of some aspect of the state
of an ADT object instance and then automatically bring the
object to the specified state. When a method is invoked on
the object, the system will construct the input values (by
querying the user, searching through the object space, random
generation, etc.), invoke the operation, display the outputs
and exceptions, and highlight all other methods that have
been impacted. It also allows undoing a method invocation.
These features can be used to facilitate component behavior
observation, testing, stress evaluation, etc.

Stream object. The tool provides graphical interface to
allow the connection of sources and sinks across one or more
nodes. It also generates instructions to create, sustain, and
delete streams. Based on the properties of the stream, it will
generate or obtain values for the stream and enforce timing
and reliability requirements.

Function object. The tool generates or obtains values for the
inputs and creates new object instances to hold the result.
Goal-oriented input data generator will also be provided for
automated data generation.

5 ORES Implementation

5.1 Repository Implementation
The server site maintains the ontology in memory as well

as in a database. When the server program starts, it
reconstructs the repository ontology in memory from the
database. A hash table is maintained to keep track of all the
keywords that define the components in the repository. For
each keyword entry, a list of pointers is maintained to point to
the components that are associated with the keyword.

For persistent storage, an object-oriented database
system is frequently the choice for ontology storage.
However, the object-oriented database is suited for situations
in which the behavior of the object is as important as the state
of the object (attribute). In our case we are concerned mainly
with the state of the object. On the other hand, a relational
database has the shortcomings that it supports only a flat file
structure, and not a nested or hierarchical structure. Thus, it is
necessary to know the full set of attributes during the design
of the database schema. However, as we can see (from
Section 2.2), some information fields in ORES nodes are
node-specific and cannot be determined a priori. The
alternative choice we made is to use an object-relational
database to represent the ORES ontology. One of the features
of an object-relational database system is that it can be used
to support multi-valued attributes or a set of values for a
particular attribute. Thus, we can map the node-specific
information to multi-valued attributes. The database system
we use is Oracle8i, which is an object-relational database
management system.

In order to map ontology nodes into the database, we
create a table named SampleTable. It has the basic node
attributes: NodeId, NodeType, Keywords, SpecificFeatures,
ForwardLinks, BackwardLink, and Pointers. NodeId is the
primary key. Each node is mapped as a tuple or a row in the
table. Attributes Keywords, SpecifcFeatures, ForwardLinks,
and Pointers are multi-valued attributes. ForwardLinks for a
node contain a set of children node ids. BackwardLink for a
node contains parent node-id. The SpecificFeatures attribute
for a node possesses a set of self-descriptive domain
dependent tags, along with values. Thus, not only the value,
but also its tag, is stored as one of the values of
SpecificFeatures, which circumvents the problem associated
with a fixed set of attributes during the schema design.

5.2 User Functions
A user can browse through or edit the ontology, view or

edit individual nodes, and search for components. For
ontology browsing or components viewing, a partial ontology
and part of the components information is maintained at the
client site for efficient accesses. If the browsing range is out
of the locally maintained ontology or some component
information is not stored locally, then the client applet sends
a request to the server to get the additional information. To
add a partial ontology to the repository, the user can specify
the partial ontology using an XML file and the file is
transferred to the server to be processed. To add a
component, the user needs to supply the required component
information and the parent node-id. Functions for deleting
nodes and links in the ontology are also provided.

5.3 Search and Browsing
A user can submit a set of keywords to search for the

desired components. These keywords are identified from the
hash table and the components associated with them are
selected. When the number of search results exceeds a
threshold, the clustering algorithm discussed in Section 3 will
be activated. A set of domain nodes will be presented to the
user. The user, at this point, can choose to browse the
ontology following the selected domain nodes or perform
further search under a selected domain node. The system also
allows the users to confine the search in a certain domain.
The user can browse the ontology and select a node to start
the search. In this case, the search will be limited to the
ascendants of the node.

From a list of search results, a user can select a node
from the search results to retrieve its node information if the
node is the desired one or to start exploration if the potential
match may be the node’s ascendants or descendants.

5.4 Component Comprehension
We implemented the tutorial presentation system that

provides multimedia presentation using Java JMF. For each
component, an XML control file specifying the tutorial
presentation media objects and synchronization information
is provided. When user accesses a component and submits a

8

tutorial presentation request, the presentation is activated. A
presentation screen shots is given in Figure 6.

Figure 6. Sample tutorial presentation window.

A prototype class tester for Java has also been
developed. It uses introspection and reflection to determine
the constructors and methods in the class and to facilitate
invocation of the methods and monitoring of the outputs. It
has been used successfully to evaluate existing and new Java
classes that are ADTs. The class tester can be used
effectively for exploration, such as component testing,
understanding specific behavior of the component, and
collect timing information for the components.

6 Conclusion

We have discussed the design of a software repository
system ORES. Ontology is the framework for ORES that
keeps all components in an organized structure to facilitate
browsing and search. ORES also provides tools to facilitate
tutorial generation and component exploration. Our
contributions include:
1. We developed a systematic approach for ontology

construction in ORES. The echoing scheme is used to
retain the software components’ boundaries and
facilitates concepts categorization and association. Based
on the ontology, it is easy to browse the repository to
locate desired components.

2. We developed a search engine to locate components via
ontology-based keyword search. We also developed an
ontology-based search results clustering scheme to allow
user-navigated, more effective search.

3. We developed the tools to assist component
comprehension, including the tutorial manager and the
component explorer. In the tutorial manager, we also
introduce an automated tutorial assembly scheme to
automatically compose tutorial of a parent node from the
tutorials of its ascendants.

4. We implemented a prototype repository system.
Currently, it uses basic algorithms to achieve ontology
construction, search, tutorial management, and
component exploration. In the future, a complete system
will be implemented based on the concepts discussed in
the paper.

7 Acknowledgement

This research was supported in part by the National Science
Foundation under Grant No. CCR-9900922, by the Texas
ATP under Grant No. 009741-0143-1999, and by Alcatel
USA and Texas Instruments, Inc.

Bibliography

[1] P.S. Chen, R. Hennicker, and M. Jarke, “On the

retrieval of reusable software components,” Proc. 2nd

Intl. Workshop on Software Reusability, Italy, March
1993, pp. 99-108.

[2] Component Source,
http://www.componentsource.com/CS/Default.asp.

[3] EVB Software Engineering, “Ruse Library Toolset,”,
http://www.metronet.com/1/newprod/by-
vendor/E/evb_software_e/

[4] L. Khan, “Structuring and Querying Personalized Audio
using Ontologies,” Proc. of ACM Multimedia, Volume
2, Orlando, FL, Nov 1999.

[5] Luqi and J. Guo, “Toward automated retrieval for a
software component respository,” Proc. IEEE Conf.
And Workshop on Engineering of Computer-Based
Systems, March 1999.

[6] Microsoft, “Microsoft Repository”,
www.microsoft.com/repository.

[7] A. Mili, R. Mili, and R. Mittermeir, “Sotring and
retrieving software components: A refinement based
system,” Proc. Intl. Conf. Software Engineering, May
1994, pp. 91-100.

[8] Moormann-Zaremski and J.M. Wing, “Specification
matching of software components,” ACM Trans.
Software Engineering and Methodology, Vol. 6, No. 4,
1997, pp. 333-369.

[9] E. Ostertag, J. Hendler, R. Prieto-Diaz, and C. Braun,
“Computing Similarity in a Reuse Library System: an
AI-based Approach,” ACM Transactions on Software
Engineering and Methodology, vol. 1, no. 3, July 1992,
pp. 205-228.

[10] R. Prieto-Diaz and P. Freeman, “Classifying Software
for Reusability,” IEEE Software, vol. 4, no. 1, pp.6-16,
1987.

[11] W. Rossak and R.T. Mittermeir, “A DBMS based

repository for reusable software components,” Proc. 2nd

Intl. Workshop on Software Engineering and its
Applications, France, 1989, pp. 501-518.

[12] Sun Microsystems, “The source for Java technology,”
http://java.sun.com.

[13] R.A. Steigerwald, “Reusable component retrieval for
real-time applications,” Proc. IEEE Workshop on Real-
Time Applications, May 1993, pp. 118-120.

[14] Q. Tran and L. Chung, “NFR-Assistant: Tool support
for achieving quality,” IEEE Symp. Application-Specific
Systems and Software Engineering and Technology,
Texas, March 1999, pp. 284-289.

