
A Bounded Error, Anytime, Parallel Algorithm for
Exact Bayesian Network Structure Learning

Brandon Malone1,3 and Changhe Yuan2,3

1Department of Computer Science, University of Helsinki, Helsinki Institute for Information Technology
2Department of Computer Science, Queens College/City University of New York
3Department of Computer Science and Engineering, Mississippi State University

brandon.malone@cs.helsinki.fi, changhe.yuan@qc.cuny.edu

Abstract

Bayesian network structure learning is NP-hard. Several anytime structure learning algorithms

have been proposed which guarantee to learn optimal networks if given enough resources. In this

paper, we describe a general purpose, anytime search algorithm with bounded error that also guar-

antees optimality. We give an efficient, sparse representation of a key data structure for structure

learning. Empirical results show our algorithm often finds better networks more quickly than state

of the art methods. They also highlight accepting a small, bounded amount of suboptimality can

reduce the memory and runtime requirements of structure learning by several orders of magnitude.

1 Introduction

Bayesian networks are a type of graphical model

that are frequently used to capture relationships

among variables in a domain. When a struc-

ture is unknown, we must learn it from data. In

score-based structure learning, a scoring function

measures the goodness of fit of a network to the

data (Cooper and Herskovits, 1992; Heckerman et

al., 1995). The goal is to find the structure with

the optimal score. This problem is NP-hard (Chick-

ering, 1996), so early worked focused on approx-

imation algorithms (Chickering, 2002; Moore and

Wong, 2003; Teyssier and Koller, 2005). These al-

gorithms cannot guarantee the quality of the learned

structure, but they do have good anytime behavior.

An anytime algorithm quickly finds a solution and

improves its quality throughout the search.

Recently, dynamic programming (DP) algo-

rithms (Koivisto and Sood, 2004; Ott et al., 2004;

Singh and Moore, 2005; Silander and Myllymaki,

2006) with optimality guarantees have been devel-

oped. These algorithms learn optimal small subnet-

works and grow them one leaf at a time until hav-

ing the optimal network over all of the variables.

Naively, though, DP algorithms store an exponential

number of subnetworks. Several DP variants (Parvi-

ainen and Koivisto, 2009; Malone et al., 2011a)

have reduced the memory requirement. None of

these algorithms have anytime behavior.

Tamada et al. (2011) developed a parallel DP al-

gorithm. The intuition is to group subnetworks with

many overlapping computations on the same pro-

cessor. They propose an indexing function which

partitions variables in such a manner that provably

maximizes that overlap. Consequently, it also min-

imizes the communication overhead. As with other

DP algorithms, this algorithm does not have any-

time behavior. The authors also note that, for large

networks, despite minimizing communication, their

MPI communication time still accounted for over

80% of the runtime.

De Campos and Ji (2011) proposed a branch and

bound (BB) algorithm which searches in the space

of cyclic structures to find optimal networks. They

begin with a (cyclic) structure in which all vari-

ables have their optimal parents, and use a best-

first search to break cycles until finding the opti-

mal structure. To add anytime behavior, they use

an approximation algorithm to initialize the search

with a suboptimal network as an upper bound and

sometimes vary their search strategy. As the search

explores structures, it provably increases a lower

bound. When the upper and lower bounds agree,

the current best structure is optimal.



Several authors (Jaakkola et al., 2010; Cussens,

2011) have also developed mathematical program-

ming (MP) algorithms to learn optimal networks.

They use a series of MPs to search through a poly-

tope with exponentially many facets to find the op-

timal network. These algorithms also have anytime

behavior; the solution to the primal problem gives

a lower bound on the score of the optimal network,

and the solution to the dual can be used to decode a

valid network which gives an upper bound.

Yuan et al. (2011) gave a shortest-path formula-

tion of the problem. A* and breadth-first branch

and bound (Malone et al., 2011b) algorithms were

developed to leverage that formulation. These algo-

rithms also lack anytime behavior.

In this paper, we take advantage of the shortest-

path formulation and dovetailing (Valenzano et al.,

2010) to develop a parallel algorithm that has any-

time behavior and bounds the error of learned so-

lutions. An efficient, sparse representation for cal-

culating search information is a key ingredient of

the algorithm. Experimentally, we show that our

algorithm often exhibits better anytime behavior

than BB and sequential anytime search techniques.

It also reveals that accepting a small, bounded

amount of suboptimality in the network can reduce

the memory and runtime requirements of structure

learning by several orders of magnitude.

The remainder of this paper is structured as fol-

lows. Section 2 gives an overview of Bayesian net-

work structure learning and the shortest-path formu-

lation. Section 3 details our new algorithm. Sec-

tion 4 gives experimental results in which we com-

pare it to other state of the art algorithms.

2 Background

This section reviews score-based structure learning

and the shortest-path formulation.

2.1 Learning Bayesian Network Structures

A Bayesian network is a directed acyclic graph

whose vertices correspond to a set of random vari-

ables V = {X1, ...,Xn}, and the arcs describe de-

pendence relationships among the variables. The

parents ofXi are called PAi. The parameters of the

network give a conditional probability distribution,

P (Xi|PAi), for each Xi.

Given a dataset D = {D1, ...,DN}, where each
Di is a complete instantiation of V, and a scoring

function, the structure learning problem is to find a

network structure which optimizes the scoring func-

tion for that dataset (Heckerman, 1996). We as-

sume the use of a decomposable (Heckerman, 1996)

scoring function, such as MDL (Lam and Bacchus,

1994) or BDe (Heckerman et al., 1995). We assume

that local scores, score(Xi|PAi), are calculated at

the beginning of the algorithm.

2.2 A* Heuristic Search

A* (Hart et al., 1968) is a state space search al-

gorithm which guarantees to find a shortest path

from a start node to a goal node. The algorithm

uses an evaluation function f to measure the qual-

ity of search nodes. For a search node U, the value

of f is the sum of the cost from the start node to

U, denoted as g(U), and an estimate of the cost

from U to a goal node, denoted as h(U). That is,

f(U) = g(U) + h(U), and f gives an estimate on

the cost of the shortest path from the start to the goal

which passes through U.

The search algorithm uses a min priority queue

called open list to organize the search frontier. The

nodes on open are sorted according to their f val-

ues. Initially, open contains only the start node. At

each search step, the top node U is removed from

the priority queue and expanded by generating its

successors; the expanded node is placed in a hash

table called closed. The g cost of each successor S

is equal to g(U) plus the cost from U to S.

This process continues until a goal node, G, is

expanded. The cost of the shortest path from start

toG is g(G).

An admissible heuristic ensures that h(U) is al-
ways optimistic. That is, it always underestimates

the distance from U to goal. When h is also con-

sistent, the shortest path to a node is found the first

time it is expanded. Therefore, if a successor is in

closed, it is discarded. Otherwise, S is added to

open; duplicates on open are merged and the best

cost is f is retained.

2.3 Shortest-path Structure Learning

Formulation

Yuan et al. (2011) formulated the learning problem

as a shortest-path finding problem. Figure 1 shows



an implicit state space search graph for four vari-

ables. The start node is the top node with the empty

variable set. The goal node is the bottom node with

the full variables set. Successors are shown by arcs

in the figure. An arc fromU toU∪{X} represents
adding X as a leaf to a subnetwork U; the cost of

the arc is equal to the score of the optimal parent set

for X out of U, i.e.,

BestScore(X,U) = min
PAX⊆U

score(X|PAX ).

The g cost of a node U is equal to the sum of the

arc costs from start to U, and g(U) corresponds to
the score of the optimal subnetwork over U.

In this formulation, a path from start to goal

induces an order on the variables, so this graph is

called the order graph. Because each variable se-

lects optimal parents from the existing subset when

it is added, the best structure over that ordering is

found by combining all of the parent sets. The short-

est path corresponds to the global optimal network.

In contrast to most other structure learning algo-

rithms (Silander and Myllymaki, 2006; Jaakkola et

al., 2010; de Campos and Ji, 2011; Cussens, 2011),

etc., this formulation searches for the structure with

the minimum score. Multiplying local scores by −1
can transform between maximization and minimiza-

tion.

The BestScore(·) values are calculated with

parent graphs. The parent graph for X contains all

subsets ofV\{X}. A parent graph containing local

scores for X1 is shown in Figure 2(a). Figure 2(b)

shows that, by propagating BestScore(·) from sub-

sets to supersets, the same score can be used for

many nodes. NodeU in the parent graph ofX gives

the cost from U toU ∪ {X} in the order graph.

A consistent heuristic was also given which esti-

mates a lower bound on the cost from a node U to

goal. The distance from start toU is g(U), and the
estimated cost to goal is h(U). The f value, which

is f(U) = g(U)+h(U), always gives an optimistic

estimate on the cost of a path through U.

An A* algorithm (Yuan et al., 2011) was shown

to be an order of magnitude faster than DP; how-

ever, it requires both the parent and order graphs in

RAM. Malone et al. (2011b) developed a breadth-

first branch and bound (BFBnB) algorithm to search

Figure 1: The order graph.

the graph layer by layer. This strategy allowed most

data structures to be stored on disk and efficiently

read into RAM when needed. BFBnB ran as fast

as A* and scaled to datasets with more variables.

An improved heuristic function was recently pro-

posed (Yuan and Malone, 2012) which further im-

proved the A* and BFBnB search algorithms.

3 A Bounded Error, Anytime Parallel

Algorithm

The structure learning algorithms described in Sec-

tion 2.3 do not have anytime behavior. They also

do not take advantage of modern, multi-core archi-

tectures. In this section, we present a bounded er-

ror, anytime parallel search algorithm (BEAP) that

has anytime behavior and bounded error for all solu-

tions. Given enough resources, it guarantees to find

the optimal network structure. It greatly improves

the scalability compared to A* and BFBnB.

We give details of the algorithm in the following

subsections. Section 3.1 describes a new sparse rep-

resentation for the parent graphs and integration of

those into A*. Section 3.2 presents our new parallel

algorithm based on weighted A* and dovetailing to

give bounded error and anytime behavior.

3.1 Sparse Parent Graph Representation

Existing formulations of the parent graphs for each

variable X explicitly store BestScore(X,U) for

all subsets V \ {X}. More efficient representa-

tions (Malone et al., 2011a; Malone et al., 2011b)

store O(C(n − 1, n
2
)) scores for each variable at

each layer of the search. In many cases, though, the



following theorem guarantees that far fewer parent

sets could be optimal (Teyssier and Koller, 2005).

Theorem 1. Let U ⊂ T. If score(X|U) <

score(X|T), T is not the optimal parent set for X.

We adopt a different approach to leverage the

pruning offered by Theorem 1. After pruning,

we sort the remaining parent scores for each vari-

able X in a list called scoresX in increaseing

(worsening) order of scores; we store the as-

sociated parent sets in an analogous list called

parentsX . Because of its sorted order, the first item

in scoresX givesBestScore(X,V\{X}). To find
BestScore(X,U), we scan the list from the be-

ginning; the first parent set which is a subset of U

corresponds to BestScore(X,U). Yuan and Mal-

one (2012) describe an efficient scanning technique.

In effect, this data structure allows us to efficiently

operate on the pruned parent graph shown in Fig-

ure 2(c).

3.2 Bounded Error, Anytime, Parallel Search

In this section, we develop a bounded error, any-

time, parallel search algorithm (BEAP). This algo-

rithm is an example of parallel dovetailing (Valen-

zano et al., 2010) using Weighted A* (Pohl, 1970;

Pearl, 1984).

The bounded error aspect of our algorithm results

from using Weighted A* (WA*) (Pohl, 1970; Pearl,

1984), which is a variant of A* which weights the

heuristic function by a factor ǫ. That is, f(U) =
g(U) + ǫ × h(U). By weighting the heuristic, it

is no longer admissible, so the f value for U may

over-estimate the cost of a path to the goal through

U. However, upon expanding a goal node, its cost

is guaranteed to be no more than a factor of ǫ greater

than the globally optimal solution (Pearl, 1984). For

example, if ǫ = 1.05, and we expand a goal node

with cost f , then the globally optimal solution is

guaranteed to be no more than 5% better than f .

WA* never re-expands any nodes.

We add the anytime and parallel behavior to our

algorithm by adapting parallel dovetailing (Valen-

zano et al., 2010). Valenzano et al. (2010) observed

that many search algorithms require some sort of

parameter configuration. For example, WA* is pa-

rameterized by the weight ǫ. Parallel dovetailing

begins by selecting a variety of parameter config-

urations and running each configuration in parallel

processes. All configurations run until any process

finds a solution, regardless of its optimality. At that

point, all processes receive a message that a solu-

tion has been found, and the search stops. Because

of this behavior, the version of parallel dovetailing

presented is a suboptimal search strategy.

BEAP blends the advantages of WA* and paral-

lel dovetailing. In this algorithm we select a range

of ǫ values and run one WA* process for each value

in parallel. Unlike previous versions of dovetailing,

we do not stop after finding a solution; instead, each

process continues until completion. We adapt the

A* search algorithm (Yuan et al., 2011) into WA*

by passing ǫi as an input to the algorithm in process

i. The only algorithmic change is that, when calcu-

lating the heuristic value h, we multiply by ǫi, so the

f value for a node is f(U) = g(U) + ǫi × h(U).
The processes do not communicate, so they expand

some of the same nodes.

The anytime behavior of the parallel algorithm re-

sults because, as the WA* instances complete, their

solutions give an upper bound on the optimal score.

Typically, processes with large ǫi values finish very

quickly, but the scores of the learned network are

high (always bounded by ǫi, though). Processes

with lower ǫi values finish more slowly, but have

better scores. Therefore, as the search progresses

and WA* instances complete, the upper bound im-

proves. A process in which ǫ = 1, denoted as ǫ1,

corresponds to the unweighted, exact A* algorithm.

Therefore, the completion of that process guaran-

tees to give the globally optimal network.

As each WA* process completes, the quality of

the solution is bounded by ǫi of that process. As

more processes complete, the provable bound be-

tween the optimal network and the best learned net-

work decreases. Running ǫ1 offers another way to

bound the error. Because ǫ1 does not weight the

heuristic, no optimal network could possibly have a

score better than the f value of the most recently ex-

panded node of ǫ1, so that serves as a lower bound

on the optimal network score. That lower bound is

guaranteed to increase (or stay the same) with each

node expanded in ǫ1 because of the best-first ex-

pansion. Therefore, the ratio between the score of

the best learned network and the lower bound of the



Figure 2: A sample parent graph for variable X1. (a) The local scores, score(X1, ·) for all the parent sets.
(b) The optimal scores, BestScore(X1, ·), for each candidate parent set. (c) The unique optimal parent sets

and their scores. Pruned parent sets are in gray. A parent set is pruned if any predecessors has a better score.

most recently expanded node of ǫ1 also bounds the

solution quality. As shown in Section 4, the ratio

bound is often tighter than the bound guaranteed by

ǫi of the other WA* processes.

4 Experimental Results

We compared BEAP to BB and another serial any-

time search algorithm, Anytime WA*.

4.1 Experimental Design

Anytime WA* (AWA*) (Hansen and Zhou, 2007)

begins as the normal WA* algorithm; however,

rather than stopping the search as soon as a solu-

tion is found, AWA* continues to expand nodes. As

better paths to a goal are found, the best solution

is updated, which gives the algorithm its anytime

behavior. Eventually, unless interrupted, the search

expands or prunes all nodes in the search space and

terminates with the optimal solution. Because of the

weighted heuristic, AWA* may find a better path to

a closed node. To guarantee optimality of the final

solution, AWA* must re-expand those nodes.

We evaluated BEAP on a set of benchmark

datasets from the UCI repository (Frank and Asun-

cion, 2010). For all datasets, we removed records

with missing values and discretized all variables

into two states. The experiments were performed

on a PC with 3.07 GHz Intel i7 processor and 16 GB

of RAM. We compared BEAP to BB and a custom

implementation of AWA*. The AWA* implemen-

tation is a straight-forward adaptation of the exist-

ing A* algorithm (Yuan et al., 2011). Even though

they are anytime algorithms, we did not compare to

any local search algorithms because they do not give

an error bound. For BEAP, we used four different

values of ǫ: 1.2, 1.08, 1.04 and 1. We empirically

determined that ǫ > 1.2 did not improve learning.

We allowed all algorithms a total execution time of

30 minutes, not including local score calculations.

BB and AWA* are sequential, so we gave them 30

minutes of wall clock time. Since BEAP used four

processes (one for each value of ǫ), we gave it 7.5

minutes of wall clock time, so its total time was also

30 minutes. Each BEAP process had 4 GB of RAM.

4.2 Node Expansion

We first evaluated the number of nodes expanded by

BEAP for each value of ǫ. The results in Figure 3

show that the algorithm typically found high quality

solutions quickly. The figure also sheds insight into

several characteristics of the search algorithm.

First, the searches with high ǫ usually expand a

very small number of nodes. For example, on five

of the datasets, the process with ǫ = 1.2 expands the
minimum number of nodes possible to find a solu-

tion (n + 1). This takes only a fraction of a second;

that processor is idle for the rest of the search. A

more sophisticated scheme could be used to more

fully utilize the available resources.

Second, the figure suggests that, like other com-

binatorial optimization problems, Bayesian network

structure learning has a critical point (Zhang and

Pemberton, 1994). A critical point for a problem is

a point at which the problem difficulty undergoes

a major change. Based on Figure 3, the critical

point for structure learning appears to be between



�������

�������

�������

�������

�������

������	

������


�������

�
�
�
�
��
�
�
	


�
�
�
�

�����������	
���������������	������

���� ����� ����� ��

Figure 3: The number of order graph nodes ex-

panded for each dataset and value of ǫ by BEAP.

An “X” indicates that the search did not complete

within the resource restrictions.

8% and 4% of optimal. Nearly all of the instances

for ǫ = 1.08 complete quickly; however, over half

fail for ǫ = 1.04. These results indicate that finding
a network that is 8% of optimal is much easier than

finding one that is 4% of optimal.

4.3 Comparison of Anytime Behavior

We next compared the convergence and anytime be-

havior of BEAP to BB. As the convergence curves

in Figure 4 show, BEAP finds provably high qual-

ity solutions very quickly on all of the datasets. For

both Flag and SPECTF , within 2 seconds of wall

clock time (8 seconds of CPU time), BEAP found

networks with scores provably within 2.5% of opti-

mal. The curves demonstrate that BEAP and BB

improve error bounds differently. BB never im-

proves its initial solution, but spends the entire 30

minutes improving its lower bound. As BEAP pro-

cesses complete and ǫ1 expands nodes, both upper

and lower bounds improve.

4.4 Comparison of Solution Quality

Finally, we compared the solution quality of BEAP

to AWA* and BB by comparing their upper and

lower bounds. As Figure 5 shows, BEAP almost

always finds a solution with a tighter error bound

than the other algorithms. BEAP is the only al-

gorithm which finds and proves the optimal struc-

ture on any of the datasets. It found tighter solu-

tions than AWA* because BEAP never re-expands

nodes within the same process; AWA* must re-

��

��

��

��

��

��

��

	�


�

��

���

�
�
��
�
��
�
�
�
�

�����������	
���������������	������

��� �� ����

Figure 5: The error bound calculated by BEAP,

AWA* and BB. An “O” indicates that BEAP found

and proved the optimal network.

expand a node each time it finds a better path to

it. BB searches in the space of cyclic graphs, so

these results suggest that the heuristic search for-

mulation more effectively guides the algorithm to

higher quality solutions than breaking cycles.

The bounds for BEAP are always better than the

best ǫi that was solved (shown in Figure 3). This

shows that the bound given by the ratio between ǫ1
and the best solution is always tighter.

For all algorithms, these results compare very

favorably to those for parallel DP (Tamada et al.,

2011). That algorithm took 483,874 seconds to find

the optimal network for a 32 variable dataset. Of

that time, 392,186 seconds were spent in MPI com-

munication. Their algorithm also required 836.1

GB of RAM. In contrast, our algorithm used at most

16 GB, and typically less than 8 GB, which is an im-

provement of nearly two orders of magnitude.

5 Discussion

BEAP has several advantages compared to other

parallel Bayesian network structure learning algo-

rithms. First, it has very little communication over-

head because each WA* process uses a different

ǫ; the processes do not communicate. The limited

communication ensures that runtime is not wasted

passing messages or waiting for synchronization,

which plagued the parallel DP algorithm (Tamada

et al., 2011). Second, a proper range of ǫis gives the

parallel algorithm very good anytime behavior. The

parallel DP algorithm (Tamada et al., 2011) does not

have anytime behavior at all.



����

����

����

����

����

����

����

�
��

�
�� �
�

�
�
�

�
�
�

�
�
	



�
�

	
�
�

�
�
�

�
�
�

�
�
	

�
�
�
�

�
�


�

�
�
	
�

�
�
	
�

�
�
�
	

�


�
�

�
	
�
�

�
�
�
�

�
�
�
��
�
�
�
	

�����������	�
��

���������	�
�����

��	
���������� ��	
�����������

������������ �������������

����

����

����

����

����

����

����

����

��	�

��
�

����

�
��

�
��

�
�� �

�
�
�

�
	
�

�
�
�

	
�
�

�
�
�



�
�

�
	
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
	
	
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��
�
�
�
	

�����������	�
��

��������	
���������

��������������� ���������������

�������������� ��������������

Figure 4: Convergence behavior of BEAP and BB. A black bar indicates a change in time scale. The running

time is CPU, not wall clock, time. An “O” indicates that BEAP found and proved the optimal network. An

“X” indicates that BEAP exceeded the RAM constraints. BB ran for the entire 30 mintues for both datasets.

BEAP also has some similarites to, and advan-

tages over, several serial anytime search algorithms,

including AWA* (Hansen and Zhou, 2007) and

Anytime Repairing A*(ARA*) (Likhachev et al.,

2003). All three algorithms use a weighted heuristic

to provably bound the error of solutions. BEAP of-

fers advantages over these serial anytime search al-

gorithms, though. First, BEAP re-expands nodes in

parallel rather than serially. Second, in order to cal-

culate a tighter bound than that given by ǫ, AWA*

and ARA* must search through the open list and

calculate the true f value of each node. In constrast,

BEAP simply uses the f value of the most recently

expanded node of ǫ1. Third, unlike ARA*, BEAP

does not require any data structures other than those

normally required by A*. Like AWA* and ARA*,

though, BEAP is a general purpose search algorithm

that could be applied to any heuristic search prob-

lem, not just structure learning.

6 Conclusions

In this paper, we have presented a general pur-

pose bounded error, anytime, parallel search algo-

rithm based on weighted A* and applied it to the

Bayesian network structure learning problem. We

described a sparse, efficient representation to cal-

culate BestScore(·). Experimentally, we showed

that our algorithm scales to many more variables

than existing dynamic programming and shortest-

path structure learning algorithms. We also showed

that our algorithm often finds better solutions more

quickly than existing error bounded, anytime algo-

rithms. In the future, we would like to investi-

gate other pruning techniques to examine the critical

point behavior of the structure learning problem.

Acknowledgments

This work was supported by NSF CAREER grant

IIS-0953723 and EPSCoR grant EPS-0903787.

References

David Maxwell Chickering. 1996. Learning Bayesian net-
works is NP-complete. In Learning from Data: Artificial In-
telligence and Statistics V, pages 121–130. Springer-Verlag.

David Maxwell Chickering. 2002. Learning equivalence
classes of Bayesian-network structures. J. Mach. Learn.
Res., 2:445–498.

Gregory F. Cooper and Edward Herskovits. 1992. A bayesian
method for the induction of probabilistic networks from
data. Mach. Learn., 9:309–347, October.

James Cussens. 2011. Bayesian network learning with cutting
planes. In Proceedings of the Twenty-Seventh Conference
Annual Conference on Uncertainty in Artificial Intelligence
(UAI-11), pages 153–160, Corvallis, Oregon. AUAI Press.

Cassio P. de Campos and Qiang Ji. 2011. Efficient learning
of bayesian networks using constraints. Journal of Machine
Learning Research, 12:663–689.

A. Frank and A. Asuncion. 2010. UCI machine learning repos-
itory.

Eric A. Hansen and Rong Zhou. 2007. Anytime heuristic
search. Journal of Artificial Intelligence Research, 28:267–
297.

P E Hart, N J Nilsson, and B Raphael. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Transactions On Systems Science And Cybernetics,
4(2):100–107.



David Heckerman, Dan Geiger, and David M. Chickering.
1995. Learning Bayesian networks: The combination of
knowledge and statistical data. 20:197–243.

David Heckerman. 1996. A tutorial on learning with Bayesian
networks. Technical report, Learning in Graphical Models.

Tommi Jaakkola, David Sontag, Amir Globerson, and Marina
Meila. 2010. Learning Bayesian network structure using
LP relaxations. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics (AIS-
TATS).

Mikko Koivisto and Kismat Sood. 2004. Exact Bayesian struc-
ture discovery in Bayesian networks. Journal of Machine
Learning Research, pages 549–573.

Wai Lam and Fahiem Bacchus. 1994. Learning Bayesian be-
lief networks: An approach based on the MDL principle.
Computational Intelligence, 10:269–293.

M. Likhachev, G. Gordon, and S. Thrun. 2003. ARA*: Any-
time A* search with provable bounds on sub-optimality. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Proceedings
of Conference on Neural Information Processing Systems
(NIPS). MIT Press.

Brandon Malone, Changhe Yuan, and Eric Hansen. 2011a.
Memory-efficient dynamic programming for learning opti-
mal Bayesian networks. In Proceedings of the 25th national
conference on Artifical intelligence.

Brandon Malone, Changhe Yuan, Eric Hansen, and Susan
Bridges. 2011b. Improving the scalability of optimal
Bayesian network learning with external-memory frontier
breadth-first branch and bound search. In Proceedings of
the Twenty-Seventh Conference Annual Conference on Un-
certainty in Artificial Intelligence (UAI-11), pages 479–488,
Corvallis, Oregon. AUAI Press.

Andrew Moore and Weng-Keen Wong. 2003. Optimal reinser-
tion: A new search operator for accelerated and more accu-
rate Bayesian network structure learning. In Intl. Conf. on
Machine Learning, pages 552–559.

S. Ott, S. Imoto, and S. Miyano. 2004. Finding optimal models
for small gene networks. In Pac. Symp. Biocomput, pages
557–567.

Pekka Parviainen and Mikko Koivisto. 2009. Exact structure
discovery in Bayesian networks with less space. InProceed-
ings of the Twenty-Fifth Conference on Uncertainty in Arti-
ficial Intelligence, Montreal, Quebec, Canada. AUAI Press.

Judea Pearl. 1984. Heuristics: intelligent search strategies
for computer problem solving. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Ira Pohl. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence, 1(3-4):193 – 204.

Tomi Silander and Petri Myllymaki. 2006. A simple ap-
proach for finding the globally optimal Bayesian network
structure. In Proceedings of the 22nd Annual Conference
on Uncertainty in Artificial Intelligence (UAI-06), Arling-
ton, Virginia. AUAI Press.

Ajit Singh and Andrew Moore. 2005. Finding optimal
Bayesian networks by dynamic programming. Technical re-
port, Carnegie Mellon University, June.

Yoshinori Tamada, Seiya Imoto, and Satoru Miyano. 2011.
Parallel algorithm for learening optimal bayesian network
structure. Journal of Machine Learning Research, 12:2437–
2459.

Marc Teyssier and Daphne Koller. 2005. Ordering-based
search: A simple and effective algorithm for learning
Bayesian networks. In Proceedings of the Twenty-First
Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-05), pages 584–590, Arlington, Virginia.
AUAI Press.

Richard Valenzano, Nathan Sturtevant, Jonathan Schaeffer,
Karen Buro, and Akihiro Kishimoto. 2010. Simultaneously
searching with multiple settings: An alternative to param-
eter tuning for suboptimal single-agient search algorithms.
In Proceedings of the Twentieth International Conference
on Automated Planning and Scheduling (ICAPS 2010).

Changhe Yuan and Brandon Malone. 2012. An improved
admissible heuristic for finding optimal bayesian networks.
In Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence (UAI-12). AUAI Press.

Changhe Yuan, Brandon Malone, and Xiojian Wu. 2011.
Learning optimal Bayesian networks using A* search. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence.

Weixiong Zhang and Joseph C. Pemberton. 1994. Epsilon-
transformation: exploiting phase transitions to solve com-
binatorial optimization problemsinitial results. In Proceed-
ings of the twelfth national conference on Artificial intelli-
gence (vol. 2), AAAI’94, pages 895–900, Menlo Park, CA,
USA. American Association for Artificial Intelligence.


