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Abstract

This paper studies partially identified structures defined by a finite number of moment
inequalities. When the moment function is misspecified, it becomes difficult to interpret
the conventional identified set. Even more seriously, this can be an empty set. We de-
fine a pseudo-true identified set whose elements can be interpreted as the least-squares
projections of the moment functions that are observationally equivalent to the true mo-
ment function. We then construct a set estimator for the pseudo-true identified set and
establish its Op(n−1/2) rate of convergence.

1 Introduction

This paper develops a new approach to estimating structures defined by moment inequal-

ities. Moment inequalities often arise as optimality conditions in discrete choice problems

or in structures where economic variables are subject to some type of censoring. Typically,

parametric models are used to estimate such structures. For example, in their analysis of an

entry game in the airline markets, Ciliberto and Tamer (2009) use a linear specification for

airlines’ profit functions and assume that unobserved heterogeneity in the profit functions

can be captured by independent normal random variables. In asset pricing theory with short

sales prohibited, Luttmer (1996) specifies the functional form of the pricing kernel as a power

function of consumption growth, based on the assumption that the investor’s utility function

is additively separable and isoelastic.

Any conclusions drawn from such methods rely on the validity of the model specification.

Although commonly used estimation and inference methods for moment inequality models

are robust to potential lack of identification, typically they are not robust to misspecification.

Compared to cases where the parameter of interest is point identified, much less is known

about the consequences of misspecified moment inequalities. As we will discuss, these can be

serious. In general, misspecification makes it hard to interpret the estimated set of parameter

values; an even more serious possibility is that the identified set could be an empty set. If

the identified set is empty, every nonempty estimator sequence is inconsistent. Furthermore,

it is often hard to see if the estimator is converging to some object that can be given any

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357222403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


meaningful interpretation. An exception is the estimation method developed by Panomareva

and Tamer (2010), which focuses on estimating a regression function with interval censored

outcome variables.

This paper develops a new estimation method that is robust to potential parametric

misspecification in general moment inequality models. Our contributions are three-fold. First,

we define a pseudo-true identified set that is non-empty under mild assumptions and that

can be interpreted as the projection of the set of function-valued parameters identified by

the moment inequalities. Second, we construct a set estimator using a two-stage estimation

procedure, and we show that the estimator is consistent for the pseudo-true identified set in

Hausdorff metric. Third, we give conditions under which the proposed estimator converges

to the pseudo-true identified set at the n−1/2-rate.

The first stage is a nonparametric estimator of the true moment function. Given this,

why perform a parametric second-stage estimation? After all, the nonparametric first stage

estimates the same object of interest, without the possibility of parametric misspecifica-

tion. There are a variety of reasons a researcher may nevertheless prefer to implement the

parametric second stage: first is the undeniably appealing interpretability of the parametric

specification; second is the much more precise estimation and inference afforded by using a

parametric specification; and third, the second term of the second-stage objective function

may offer a potentially useful model specification diagnostic. Future research may permit

deriving the asymptotic distribution of this term under the null of correct parametric spec-

ification to provide a formal test. The two-stage procedure proposed here delivers these

benefits, while avoiding the more serious adverse consequences of potential misspecification.

The paper is organized as follows. Section 2 describes the data generating process and

gives examples that fall within the scope of this paper. We also introduce our definition of

the pseudo-true identified set. Section 3 defines our estimator and presents our main results.

We conclude in Section 4. We collect all proofs into the appendix.

2 The Data Generating Process and the Model

Our first assumption describes the data generating process (DGP).

Assumption 2.1: Let (Ω,F,P0) be a complete probability space. Let k, ` ∈ N. Let X :

Ω → Rk be a Borel measurable map, let X ⊆ Rk be the support of X, and let P0 be the

probability measure induced by X on X . Let ρ0 : X → R` be an unknown measurable function

such that E[ρ0(X)] exists and

E[ρ0(X)] ≤ 0, (2.1)

where the expectation is taken with respect to P0.

In what follows, we call ρ0 the true moment function. The moment inequalities (2.1) often
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arise as an optimality condition in game-theoretic models (Bajari, Benkard, and Levin, 2007;

Ciliberto and Tamer, 2009) or models that involve variables that are subject to some kind of

censoring (Manski and Tamer, 2002). In empirical studies of such models, it is common to

specify a parametric model for ρ0.

Assumption 2.2: Let p ∈ N and let Θ be a subset of Rp with nonempty interior. Let

m : X ×Θ→ R` be such that m(·, θ) is measurable for each θ ∈ Θ and m(x, ·) is continuous

on Θ, a.e.− P0. For each θ ∈ Θ, m(·, θ) ∈ L2
` := {f : X → R` : E[f(X)′f(X)] <∞}.

Throughout, we call m(·, ·) the parametric moment function.

Definition 2.1: Let mθ(·) := m(·, θ). Define MΘ := {mθ ∈ L2
` : θ ∈ Θ}. MΘ is

correctly specified (-P0) if there exists θ0 ∈ Θ such that

P0[ρ0(X) = m(X, θ0)] = 1.

Otherwise, the model is misspecified.

If the model is correctly specified, we may define the set of parameter values that can be

identified by the inequalities in (2.1):

ΘI := {θ ∈ Θ : E[m(X, θ)] ≤ 0}.

We call ΘI the conventional identified set. This set collects all parameter values that yield

parametric moment functions that are observationally equivalent to ρ0.

It becomes difficult to interpret ΘI when the model is misspecified, as pointed out by

Panomareva and Tamer (2010) for a regression model with an interval-valued outcome vari-

able. Suppose first that the model is misspecified but ΘI is nonempty. The set is still a

collection of parameter values that are observationally equivalent to each other, but since

there is no θ in ΘI that corresponds to the true moment function, further structure is re-

quired to unambiguously interpret ΘI as a collection of “pseudo-true parameter(s)”. Further,

ΘI may be empty, especially if MΘ is a small class of functions. This makes the interpre-

tation of ΘI even more difficult. In fact, interpretation is impossible, as there is nothing to

interpret.

Often, the economics of a given problem impose further structure on the DGP. To specify

this, we let 0 < L ≤ `, and for measurable s : X → RL, let ‖s‖L := E[s(X)′s(X)]1/2. Let

L2
L := {s : X → RL, ‖s‖L <∞}, and let S ⊆ L2

L.

Assumption 2.3: There exists ϕ : X × S → R` such that for each x ∈ X , ϕ(x, ·) is

continuous on S and for each s ∈ S, ϕ(·, s) is measurable. Further, there exists s0 ∈ S such

that

ρ0(x) = ϕ(x, s0), ∀x ∈ X .
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When ρ0 ∈ L2
` and there is no further structure on ρ0 available, we let L = `, S = L2

` ,

and take ϕ to be the evaluation functional e : X × S → R`:

ϕ(x, s) = e(x, s) ≡ s(x),

as then ϕ(x, ρ0) = e(x, ρ0) ≡ ρ0(x) and s0 = ρ0. In this case, it is not necessary to explicitly

introduce ϕ. Often, however, further structure on the form of ρ0 is available. Typically, this

is reflected in s depending non-trivially only on a strict subvector of X, say X1. In such cases,

we may write S ⊆ L2
X1

for clarity. We give several examples below.

When Assumption 2.3 holds, we typically parametrize the unknown function s0. For

example, it is common to specify s0 as a linear function of some of the components of x. As

we will see in the examples, a common modeling assumption is

Assumption 2.4: There exists r : X ×Θ→ RL such that with rθ := r(·, θ),

m(x, θ) = ϕ(x, rθ), ∀(x, θ) ∈ X ×Θ.

Thus, misspecification occurs when there is no θ0 in Θ such that s0 = rθ0 .

More generally, misspecification can occur because the researcher mistakenly imposes

Assumption 2.3, in which case s0 fails to exist and there is again no θ0 in Θ such that

ρ0(x) = ϕ(x, rθ0). As s0 is an element of an infinite-dimensional space, we may refer to

this as “nonparametric” misspecification. To proceed, we assume that, as is often plausible,

the researcher is sufficiently able to specify the structure of interest that nonparametric

misspecification is not an issue, either because correct ϕ restrictions are imposed or no ϕ

restrictions are imposed. We thus focus on the case of parametric misspecification, where s0

exists but there is no θ0 in Θ such that s0 = rθ0 .

2.1 Examples

In this section, we present several motivating examples and also give commonly used para-

metric specifications in these examples. For any vector x, we use x(j) to denote the j-th

component of the vector. Similarly, for a vector valued function f(x), we use f (j)(x) to

denote the j-th component of f(x).

Example 2.1 (Interval censored outcome): Let Z : Ω→ RdZ be a regressor with support

Z. Let Y : Ω→ R be an outcome variable that is generated as:

Y = s0(Z) + ε, (2.2)

where s0 ∈ S := L2
Z , say, and ε satisfies E[ε|Z] = 0. We let Y denote the support of Y .

Suppose Y is unobservable, but there exist (YL, YU )′ : Ω → Y × Y such that YL ≤ Y ≤ YU
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almost surely. Then, (YL, YU , Z)′ satisfies the following inequalities almost surely:

E[YL|Z]− s0(Z) ≤ 0 (2.3)

s0(Z)− E[YU |Z] ≤ 0. (2.4)

Let x = (yL, yU , z)
′ ∈ X := Y ×Y ×Z. Given a collection {A1, · · · , AK} of Borel subsets of

Z, the inequalities in (2.3)-(2.4) imply that the moment inequalities in (2.1) hold with

ρ0(x) = ϕ(x, s0) :=

(
yL − s0(z)

s0(z)− yU

)
⊗ 1A(z), (2.5)

where 1A(z) := (1{z ∈ A1}, · · · , 1{z ∈ AK})′.1 For each x ∈ X and s ∈ S, the functional

ϕ evaluates vertical distances of r(z) from yL and yU and multiplies them by the indicator

function evaluated at z. Additional information on ρ0 available in this example is that the

moment functions are based on the vertical distances.

A common specification for s0 is s0(z) = rθ0(z) = z′θ0 for some θ0 ∈ Θ ⊆ RdZ . The

parametric moment function is then given for each x ∈ X by m(x, θ) = ϕ(x, rθ). Therefore,

this example satisfies Assumption 2.4.

Example 2.2: Tamer (2003) considers a simultaneous game of complete information.

For each j = 1, 2, let Zj : Ω → RdZ and εj : Ω → R be firm j’s characteristics that are

observable to the firms. The econometrician observes the Z’s but not the ε’s. For each j, let

gj : Z × {0, 1} → R. These functions are known to the firms but not to the econometrician.

Suppose that each firm’s payoff is given by

πj(Zj , Yj , Y−j) = (εj − gj(Zj , Y−j))Yj , j = 1, 2,

where Yj ∈ Y := {0, 1} is firm j’s entry decision, and Y−j ∈ Y is the other firm’s entry

decision. The econometrician observes these decisions. Given (z1, z2), the firms’ payoffs can

be summarized in Table 1.

Y1 \ Y2 0 1

0 (0, 0) (0, ε2 − g2(z2, 0))

1 (ε1 − g1(z1, 0), 0) (ε1 − g1(z1, 1), ε2 − g2(z2, 1))

Table 1: The Entry Game Payoff Matrix

Suppose the firms and the econometrician know that g(z, 1) ≥ g(z, 0) for any value of z.

1Here, we take the indicators (or instruments) 1A(z) as given. The indicators 1A(z) could be replaced by
any finite vector of measurable non-negative functions of z. Andrews and Shi (2011) give examples of such
functions.
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This means that, other things equal, the opponent’s entry would reduce the firm’s own profit.

In this setting, there are several possible equilibrium outcomes depending on the realization

of (ε1, ε2). If ε1 > g1(z1, 1) and ε2 > g2(z2, 1), then (1, 1) is the unique Nash equilibrium (NE)

outcome. Similarly if ε1 > g1(z1, 1) and ε2 < g2(z2, 1), (1, 0) is the unique NE outcome, and if

ε1 < g1(z1, 1) and ε2 > g2(z2, 1), (0, 1) is the unique NE outcome. Now, if ε1 < g1(z1, 1) and

ε2 < g2(z2, 1), there are two Nash equilibria, and they give the outcomes (1, 0) and (0, 1). Let

Fj , j = 1, 2 be the unknown CDFs of ε1 and ε2.2 Without any assumptions on the equilibrium

selection mechanism, the model predicts the following set of inequalities:

P (Y1 = 1, Y2 = 1|Z1 = z1, Z2 = z2) = (1− F1(g1(z1, 1)))(1− F2(g2(z2, 1))) (2.6)

P (Y1 = 1, Y2 = 0|Z1 = z1, Z2 = z2) ≥ (1− F1(g1(z1, 1)))F2(g2(z2, 1)) (2.7)

P (Y1 = 1, Y2 = 0|Z1 = z1, Z2 = z2) ≤ F2(g2(z2, 1)). (2.8)

Let x := (y1, y2, z1, z2)′ ∈ X := Y × Y × Z × Z. Let s0 ∈ S := {s ∈ L2
Z×Z : s(z1, z2) ∈

[0, 1]2,∀(z1, z2) ∈ Z × Z} be defined by

s
(1)
0 (z1, z2) := F1(g1(z1, 1))

s
(2)
0 (z1, z2) := F2(g2(z2, 1)).

Here, s
(j)
0 (z1, z2) is the conditional probability that firm j’s profit upon entry is negative

given z1 and z2. Given a collection {Aj , j = 1, · · · ,K} of Borel subsets of Z × Z, let

1A(z) := (1{(z1, z2) ∈ A1}, · · · , 1{(z1, z2) ∈ AK})′. The inequalities (2.6)-(2.8) imply the

moment inequalities in (2.1) hold with

ρ0(x) = ϕ(x, s0) =


1{y1 = 1, y2 = 1} − (1− s(1)

0 (z1, z2))(1− s(2)
0 (z1, z2))

(1− s(1)
0 (z1, z2))(1− s(2)

0 (z1, z2))− 1{y1 = 1, y2 = 1}
(1− s(1)

0 (z1, z2))s
(2)
0 (z1, z2)− 1{y1 = 1, y2 = 0}

1{y1 = 1, y2 = 0} − s(2)
0 (z1, z2)

⊗ 1A(z).

The additional information on ρ0 is that it is based on the differences between some combi-

nations of the conditional probabilities s0(z1, z2) and indicators for specific events.

A common parametric specification for gj is gj(zj , y−j) = z′jγ0 − y−jβj,0 for some βj,0 ∈
B ⊆ R+ and γ0 ∈ Γ ⊆ RdZ . It is also common to assume that Fj , j = 1, 2 belong to a known

parametric class {F (·;α), α ∈ A} of distributions. Then the parametric moment function can

be defined for each x by m(x, θ) := ϕ(x, rθ), where θ := (α1, α2, β1, β2, γ)′ and

r
(1)
θ (z1, z2) = F (z′1γ − β1;α1) (2.9)

r
(2)
θ (z1, z2) = F (z′2γ − β2;α2). (2.10)

2The players do not need to know the F ’s, but these are important to the econometrician.
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This example also satisfies Assumption 2.4.

Example 2.3 (Discrete choice): Suppose an agent chooses Z ∈ RdZ from a set Z :=

{z1, . . . , zK} in order to maximize her expected payoff E[s0(Y, Z) | I], where Y is a vector

of observable random variables, s0 ∈ R := L2
Y×Z is the payoff function, and I is the agent’s

information set. The optimality condition for the agent’s choice is given by:

E[s0(Y, zj)− s0(Y,Z) | I] ≤ 0, j = 1, · · · ,K. (2.11)

Let x := (y, z)′ ∈ X := Y × Z. The optimality conditions in (2.11) imply that the uncondi-

tional moment inequalities in (2.1) hold with

ρ0(x) = ϕ(x, s0) =




s0(y, z1)− s0(y, z1)

...

s0(y, zK)− s0(y, z1)

× 1{z = z1}

...
s0(y, z1)− s0(y, zK)

...

s0(y, zK)− s0(y, zK)

× 1{z = zK}


.

For given y, the functional ϕ evaluates the profit differences between a given choice z (e.g.,

z1) and every other possible choice. The additional information on ρ0 is that it is based on

the profit differences.

A common specification for s0 is s0(y, z) = rθ0(y, z) = ψ(y, z;α0) + z′β0 + εz for some

known function ψ, unknown (α0, β0) ∈ Θ ⊂ Rdα+dβ , and an unobservable choice-dependent

error εz. For simplicity, we assume that εz satisfies E[εzi − εzj | I] = 0 for any i, j; see Pakes,

Porter, Ho, and Ishii (2006) and Pakes (2011) for detailed discussions. The parametric

moment function is then given for each x ∈ X by m(x, θ) = ϕ(x, rθ). This example satisfies

Assumption 2.4.

Example 2.4 (Pricing kernel): Let Z : Ω→ RdZ be the payoffs of dZ securities that are

traded at a price of P ∈ P ⊆ RdZ . If short sales are not allowed for any securities, then the

feasible set of portfolio weights is restricted to RdZ+ and the standard Euler equation does not

hold. Instead, the following Euler inequalities hold (see Luttmer, 1996):

E[s0(Y )Z − P ] ≤ 0,

where Y : Ω → Y is a state variable, e.g. consumption growth, and s0 ∈ S := {s ∈ L2
Y :

s(y) ≥ 0, ∀y ∈ Y} is the pricing kernel function. The moment inequalities thus hold with the

[7]



true moment function:

ρ0(x) = ϕ(x, s0) = s0(y)z − p,

where x := (y, z, p)′ ∈ Y × Z × P. This functional evaluates the pricing kernel r at y and

computes a vector of pricing errors. The additional information on ρ0 is that it is based on

the pricing errors.

A common specification for s0 is s0(y) = rθ0(y) = β0y
−γ0 , where β0 ∈ B ⊆ [0, 1] is the

investor’s subjective discount factor and γ0 ∈ Γ ⊆ R+ is the relative risk aversion coefficient.

Let θ := (β, γ)′. The parametric moment function is then given for each x ∈ X by m(x, θ) =

ϕ(x, rθ), satisfying Assumption 2.4.

2.2 Projection

The inequality restrictions E[ϕ(X, s0)] ≤ 0 may not uniquely identify s0. Define

S0 := {s ∈ S : E[ϕ(X, s)] ≤ 0}.

We define a pseudo-true identified set of parameters as a collection of projections of elements

in S0. Let W be a given non-random finite L × L symmetric positive-definite matrix. For

each s ∈ S, define the norm ‖s‖W := E[s(X)′Ws(X)]1/2. For each s ∈ S and A ⊆ S, the

projection map ΠA : S → A is the map such that

‖s−ΠAs‖W = inf
a∈A
‖s− a‖W .

Let RΘ := {rθ ∈ S : θ ∈ Θ}. Given Assumption 2.4, we can define

Θ∗ := {θ ∈ Θ : rθ = ΠRΘ
s, s ∈ S0}.

When ϕ is the evaluation map e, Θ∗ is simply Θ∗ := {θ ∈ Θ : mθ = ΠMΘ
s, s ∈ S0}.

Θ∗ can be interpreted as the set of parameters that correspond to the elements mθ in

the RΘ -projection of S0. This set is non-empty (under some regularity conditions), and

each element can be interpreted as a projection of s inducing a functional ϕ(·, s) that is

observationally equivalent to ρ0. In this sense, each element in Θ∗ has an interpretation as a

pseudo-true value. Thus, we call Θ∗ the pseudo-true identified set. (White (1982) uses θ∗ to

denote the unique pseudo-true value in the fully identified case.)

We illustrate the relationship between ΘI and Θ∗ with an example. Consider Example

2.1. Let Θ ⊆ RdZ . The conventional identified set is given by

ΘI = {θ ∈ Θ : E[(YL − Z ′θ)1{Z ∈ Aj}] ≤ 0,

and E[(Z ′θ − YU )1{Z ∈ Aj}] ≤ 0, j = 1, · · · ,K}. (2.12)
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The pseudo-true identified set is given by

Θ∗ = {θ ∈ Θ : θ = E[ZZ ′]−1E[Zs(Z)], s ∈ S0}. (2.13)

Let D be a dZ × K matrix whose j-th column is E[Z 1{Z ∈ Aj}]. For this example, the

following result holds.

Proposition 2.1: Let the conditions of Example 2.1 hold, and let Θ∗ be given as in

(2.13). Let ΘI be given as in (2.12). Then ΘI ⊆ Θ∗. Suppose further that MΘ is correctly

specified, that E[YU |Z] = E[YL|Z] = Z ′θ0 a.s, and that dZ ≤ rank(D). Then ΘI = Θ∗ =

{θ0}.

As this example shows, unless there is some information that helps restrict S0 very tightly,

ΘI is often a proper subset of Θ∗. This is because without such information, S0 is typically

a much richer class of functions than RΘ. Another important point to note is that, although

Θ∗ is well-defined generally, ΘI can be empty quite easily. In particular, for any x, x′ ∈ X ,

let xλ := λx + (1 − λ)x′, 0 ≤ λ ≤ 1. ΘI is empty if there exists (x, x′) and λ ∈ [0, 1] such

that (i) xλ ∈ X and (E[YL|xλ]− E[YU |x])/‖xλ − x‖ > (E[YU |x′]− E[YU |x])/‖x′ − x‖ or (ii)

xλ ∈ X and (E[YU |xλ]−E[YL|x])/‖xλ−x‖ < (E[YL|x′]−E[YL|x])/‖x′−x‖3. Figure 1, which

is similar to Figure 1 in Panomareva and Tamer (2010), illustrates an example that satisfies

condition (i) for the one dimensional case.

In this example, each element in Θ∗ solves the following moment restrictions:

E[Z(Z ′θ − Y )] = E[Zu(X)], (2.14)

with u(x) = s(z) − y for some s ∈ S0. This can be viewed as a special case of incomplete

linear moment restrictions studied in Bontemps, Magnac, and Maurin (forthcoming) (BMM,

henceforth).4 BMM show that the set of parameters that solve incomplete linear moment

restrictions is necessarily convex and develop an inference method that exploits this property.

We here note that this connection to BMM’s work only occurs when the parametric class

is of the form: RΘ = {rθ : rθ(z) = z′θ, θ ∈ Θ}. The elements of Θ∗, however, do not

generally solve incomplete linear moment restrictions when RΘ includes nonlinear functions

of θ. Therefore, BMM’s inference method is only applicable when rθ is linear. Our estimation

procedure is more flexible than theirs in the following two respects. First, one may allow

projection to a more general class of parametric functions that includes nonlinear functions

of θ. Second, as a consequence of the first point, we do not require Θ∗ to be convex. We,

3For this example, ΘI is never empty as long as the number (2K) of moment inequalities equals the number
of parameters (`).

4We are indebted to an anonymous referee for pointing out a relationship between BMM’s framework and
ours. General incomplete linear moment restrictions are given by E[V (Z′θ − Y )] = E[V u(V )], where V is a
vector of random variables, and u is an unknown bounded function. See BMM for details.

[9]



however, pay a price for achieving this generality. We require s to satisfy suitable smoothness

conditions, which are not required by BMM. We discuss these conditions in detail in the next

section.

E[YL|X]

E[YU |X]

x = 0 xλ x′ X

Figure 1:

3 Estimation

3.1 Set estimator

For W as above and each (θ, s) ∈ Θ× S, let the population criterion function be defined by

Q(θ, s) = E[(s(Xi)− rθ(Xi))
′W (s(Xi)− rθ(Xi))]

− inf
ϑ∈Θ

E[(s(Xi)− rϑ(Xi))
′W (s(Xi)− rϑ(Xi))]. (3.1)

Using the population criterion function, the “pseudo-true” identified set Θ∗ can be equiva-

lently written as

Θ∗ = {θ : Q(θ, s) = 0, s ∈ S0}.

[10]



Given a sample {X1, · · · , Xn} of observations, let the sample criterion function be defined

for each (θ, s) ∈ Θ× S by

Qn(θ, s) :=
1

n

n∑
i=1

(s(Xi)− rθ(Xi))
′W (s(Xi)− rθ(Xi))

− inf
ϑ∈Θ

1

n

n∑
i=1

(s(Xi)− rϑ(Xi))
′W (s(Xi)− rϑ(Xi)). (3.2)

Ideally, we would like to estimate Θ∗ by Θ̃n, say, where Θ̃n := {θ : Qn(θ, s) ≤ cn, s ∈ S0}. But

S0 is unknown, so we must estimate it. Thus, we employ a two-stage procedure, similar to

that studied in Kaido and White (2010). Section 3.3 discusses how to construct a first-stage

estimator of S0. For now, we suppose that such an estimator exists. For this, let F(A) be

the set of closed subsets of a set A. See Kaido and White (2010) for background, including

discussion of Effros measurability.

Assumption 3.1 (First-Stage estimator): For each n, let Sn ⊆ S. Ŝn : Ω → F(Sn) is

(Effros-) measurable.

Given a first-stage estimator, we define a set estimator for the pseudo-true identified set.

Let {cn} be a sequence of non-negative constants. The set estimator for Θ∗ is defined by

Θ̂n := {θ ∈ Θ : Qn(θ, s) ≤ cn, s ∈ Ŝn}. (3.3)

We establish our consistency results using the Hausdorff metric. Let || · || denote the

Euclidean norm, and for any closed subsets A and B of a finite-dimensional Euclidean space

(e.g., containing θ), and let

dH(A,B) := max{~dH(A,B), ~dH(B,A)}, ~dH(A,B) := sup
a∈A

inf
b∈B
‖a− b‖, (3.4)

where dH and ~dH are the Hausdorff metric and directed Hausdorff distance respectively.

Before stating our assumptions, we introduce some additional notation. Let Dα
θ denote

the differential operator ∂α/∂θα1
1 · · · ∂θ

αp
p with |α| :=

∑p
j=1 αj . Similarly, we let Dβ

x denote

the differential operator ∂β/∂xβ1
1 · · · ∂x

βk
k with |β| :=

∑k
j=1 βj . For a function f : X → R and

γ > 0, let γ be the smallest integer smaller than γ and define

‖f‖γ := max
|β|≤γ

sup
x∈X
|Dβ

xf(x)|+ max
|β|=γ

sup
x,y∈X

|Dβ
xf(x)−Dβ

xf(x)|
‖x− y‖γ−γ

.

Let CγM (X ) be the set of all continuous functions f : X → R such that ‖f‖γ ≤ M . Let

CγM,L(X ) := {f : X → RL : f (j) ∈ CγM (X ), j = 1, · · · , L}. Finally, for any η > 0, let

Sη0 := {s ∈ S : infs′∈S0 ‖s− s′‖W < η}.
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Our first assumption places conditions on the parameter spaces Θ and S. We let int(Θ)

denote the interior of Θ.

Assumption 3.2: (i) Θ is compact; (ii) S is a compact convex set with nonempty interior;

(iii) there exists γ > k/2 such that S ⊆ CγM,L(X ); (iv) RΘ is a convex subset of S; (v)

Θ∗ ⊆ int(Θ).

Assumption 3.2 (i) is standard in the literature of extremum estimation and also ensures

the compactness of the pseudo-true identified set. Assumption 3.2 (iii) imposes a smoothness

requirement on each component of s ∈ S. Together with Assumption (ii), this implies that

S is compact under the uniform norm, which will be also used for establishing the Hausdorff

consistency of Ŝn in the next section. For the Hausdorff-consistency of Θ̂n, the requirement

that γ > k/2 can be relaxed to γ > 0, and it also suffices that the smoothness requirement

holds for functions in neighborhoods of S0. The stronger requirement given here, however,

will be useful for deriving the rates of convergence of Θ̂n and Ŝn.

For ease of analysis, we assume below that the observations are from a sample of IID

random vectors.

Assumption 3.3: The observations {Xi, i = 1, · · · , n} are independently and identically

distributed.

The following two assumptions impose regularity conditions on rθ.

Assumption 3.4: (i) r(x, ·) is twice continuously differentiable on the interior of Θ a.e.−
P0, and for any j, x, and |α| ≤ 2, there exists a measurable bounded function C : X → R
such that |Dα

θ r
(j)
θ (x) − Dα

θ r
(j)
θ′ (x)| ≤ C(x)‖θ − θ′‖; (ii) There exists a measurable bounded

function R : X → R such that

max
j=1,··· ,l
|α|≤2

sup
θ∈Θ
|Dα

θ r
(j)
θ (x)| ≤ R(x).

For each x, let ∇θrθ(x) be a L × p matrix whose j-th row is the gradient vector of r
(j)
θ

with respect to θ. For each x ∈ X and i, j ∈ {1, · · · , L}, let ∂2/∂θi∂θjrθ(x) be a L× 1 vector

whose k-th component is given by ∂2/∂θi∂θjr
(k)
θ (x). For each θ ∈ Θ, s ∈ S, and x ∈ X , let

HW (θ, s, x) be a p× p matrix whose (i, j)-th component is given by

H
(i,j)
W (θ, s, x) = 2

(
∂2

∂θi∂θj
rθ(x)

)′
W (rθ(x)− s(x)). (3.5)

Let η > 0. For each s ∈ Sη0 and ε > 0, let V ε(s) be the neighborhood of θ∗(s) defined by

V ε(s) := {θ ∈ Θ : ‖θ − θ∗(s)‖ ≤ ε}.
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Let Nε,η := {(θ, s) : θ ∈ V ε(s), s ∈ Sη0} be the graph of the correspondence V ε on Sη0 .

Assumption 3.5: There exist ε̄ > 0 and η̄ > 0 such that the Hessian matrix ∇2
θQ(θ, s) :=

E[HW (θ, s,Xi) + 2∇θrθ(Xi)
′W∇θrθ(Xi)] is positive definite uniformly over Nε̄,η̄.

Assumption 3.4 imposes a smoothness requirement on rθ as a function of θ, enabling us to

expand the first order condition for minimization, as is standard in the literature. Assumption

3.5 requires that Hessian of Q(θ, s) with respect to θ to be positive definite uniformly on a

suitable neighborhood of Θ∗ × S0. For the consistency of Θ̂n, it suffices to assume that

the Hessian is uniformly non-singular over Nε̄,η̄, but a stronger condition given here will be

useful to ensure a quadratic approximation of the criterion function, which is crucial for the
√
n-consistency of Θ̂n.

Further, we assume that Ŝn is consistent for S0 in a suitable Hausdorff metric. Specifically,

for subsets A,B of S, let

dH,W (A,B) := max{sup
a∈A

inf
b∈B
‖a− b‖W , sup

b∈B
inf
a∈A
‖a− b‖W }.

Assumption 3.6: dH,W (Ŝn,S0) = op(1).

Theorem 3.1 is our first main result, which establishes the consistency of the set estima-

tor defined in (3.3) with cn set to 0. This result is established by extending the standard

consistency proof for extremum estimators to the current setting. Note that, under As-

sumption 3.2 (iv), the projection θ∗(s) := ΠRΘ
s of each point s ∈ S to RΘ exists and is

uniquely determined. In other words, for each s ∈ S, θ∗(s) is point identified. By setting

cn = 0, the set estimator is then asymptotically equivalent to the collection of minimizers

θ̂n(s) := argminθ′∈ΘQn(θ, s) of the sample criterion function. The main challenge for es-

tablishing Hausdorff consistency is to show that θ̂n(s) − θ∗(s) vanishes in probability over

a sufficiently large neighborhood of S0. The proof of the theorem in the appendix formally

establishes this and gives the desired result.

Theorem 3.1: Suppose Assumptions 2.1-2.4 and 3.1-3.6 hold. Let Θ̂n be defined as in

(3.3) with cn = 0 for all n. Then dH(Θ̂n,Θ∗) = op(1).

The result of Theorem 3.1 is similar to that of Theorem 3.2 in Chernozhukov, Hong, and

Tamer (2007), who establish the Hausdorff consistency of a level-set estimator with cn = 0

when Qn degenerates on a neighborhood of the identified set.5 When Assumption 3.2 (iv)

fails to hold, this estimator may not be consistent. We, however, conjecture that it would be

possible to construct a Hausdorff consistent estimator of Θ∗ even in such a setting by choosing

5Their framework does not consider misspecification. Their object of interest is therefore the conventional
identified set ΘI . In our setting, the sample criterion function degenerates, i.e. Qn(θ, s) = 0, on a neighborhood
of Θ∗ × S0 under Assumption 3.2 (iv).
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a positive sequence {cn} of levels that tends to 0 as n → ∞ and by exploiting the fact that

Ŝn converges to S0 in a suitable Hausdorff metric. In fact, Kaido and White (2011) establish

the Hausdorff consistency of their two-stage set estimator using this argument, but in their

analysis, the first-stage parameter (s in our setting) must be finite dimensional. Extending

Theorem 3.1 to a more general one that allows non-convex parametric classes is definitely of

interest, but to keep our tight focus here, we leave this as a future work.

3.2 The rate of convergence

Theorem 3.1 uses the fact that dH(Θ̂n,Θ∗) can be bounded by dH,W (Ŝn,S0). Although Ŝn
does not converge at a parametric rate generally, the convergence rate of Θ̂n can be improved

when Ŝn converges to S0 at a rate op(n
−1/4).

Assumption 3.7: dH,W (Ŝn,S0) = op(n
−1/4).

Theorem 3.2: Suppose the conditions of Theorem 3.1 hold. Suppose in addition As-

sumption 3.7 holds. Let Θ̂n be defined as in (3.3) with cn = 0 for all n. Then, dH(Θ̂n,Θ∗) =

Op(n
−1/2).

For this, setting cn to 0 is crucial for achieving the Op(n
−1/2) rate. We here note that

Theorem 3.2 builds on Lemma A.2 in the appendix, which establishes the convergence rate (in

directed Hausdorff distance) of Θ̂n in (3.3) with a possibly non-zero level cn. This lemma does

not require Assumption 3.2 (iv) but assumes the Hausdorff consistency of Θ̂n as a high-level

condition. This is why Theorem 3.2 is stated for Θ̂n with cn = 0. As previously discussed,

however, if Theorem 3.1 is extended to allow non-convex parametric classes, this lemma can

be used to characterize the estimator’s convergence rate under a more general setting.

3.3 The first-stage estimator

This section discusses how to construct a first-stage set estimator. A challenge is that the

object of interest S0 is a subset of an infinite-dimensional space. This requires us to use a

nonparametric estimation technique for estimating S0. This type of estimation problem was

recently analyzed in Santos (2011), who studies estimation of linear functionals of function-

valued parameters in nonparametric instrumental variable problems. We rely on his results

on consistency and the rate of convergence, which extend Chernozhukov, Hong, and Tamer’s

(2007) analysis to a nonparametric setting. Specifically, for each s ∈ S, let

Qn(s) :=

l∑
j=1

(
1

n

n∑
i=1

ϕ(j)(Xi, s))
2
+. (3.6)
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This is a sample criterion function defined on S. For instance, Qn for Example 2.1 is given

by

Qn(s) =
K∑
j=1

(
1

n

n∑
i=1

(YL,i − s(Zi))1Aj (Zi))2
+ +

K∑
j=1

(
1

n

n∑
i=1

(s(Zi)− YU,i)1Aj (Zi))2
+.

Our first-stage set estimator is a level set of Qn over a sieve Sn ⊆ S. Given a sequence of

non-negative constants {an} and {bn}, define

Ŝn := {s ∈ Sn : Qn(s) ≤ bn/an}. (3.7)

We add regularity conditions on ϕ, {Sn}, and {(an, bn)} to ensure the Hausdorff consistency

of Ŝn and derive its convergence rate. The following two assumptions impose smoothness

requirements on the map ϕ.

Assumption 3.8: For each j, there is a function Bj : X → R+ such that

|ϕ(j)(x, s)− ϕ(j)(x, s′)| ≤ Bj(x)ρ(s, s′), ∀s, s′ ∈ S,

where ρ(s, s′) := supx∈S maxj=1,··· ,l |s(j)(x)− s′(j)(x)|.

For each s ∈ S, let I(s) := {j ∈ {1, · · · , l} : E[ϕ(j)(Xi, s)] > 0}. I(s) is the set

of indexes whose associated moments violate the inequality restrictions. For each j, let

ϕ̄(j) := E[ϕ(j)(Xi, s)].

Assumption 3.9: (i) For each s ∈ S and j, ϕ̄(j) : S → R is continuously Fréchet

differentiable with the Fréchet derivative ϕ̇
(j)
s : S → R, and for each s ∈ S, the operator norm

‖ϕ̇(j)
s ‖op of ϕ̇

(j)
s is bounded away from 0 for some j ∈ {1, · · · , l}; (ii) For each s /∈ S0, there

exist j ∈ I(s) and Cj > 0 such that E[ϕ(j)(Xi, s)] ≥ Cj‖s− s0‖W for some s0 ∈ S0.

We also add regularity conditions on Sn, which can be satisfied by commonly used sieves

including polynomials, splines, wavelets, and certain artificial neural network sieves.

Assumption 3.10: (i) For each n, Sn ⊆ S, and both Sn and S are closed with respect to

ρ; (ii) For every s ∈ S, there is Πns ∈ Sn such that sups∈S ‖s − Πns‖W = O(δn) for some

sequence {δn} of non-negative constants such that δn → 0.

Theorem 3.3: Suppose Assumptions 2.1-2.3, 3.2 (i)-(iii), 3.3, 3.8, 3.9 (i), and 3.10

hold. Let an = O(max{n−1, δ2
n}−1) and bn →∞ with bn = o(an). Then

dH,W (Ŝn,S0) = op(1).
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In addition, suppose that Assumption 3.9 (ii) holds. Then

dH,W (Ŝn,S0) = Op(
√
bn/an).

Theorem 3.3 can be used to establish Assumptions 3.6 and 3.7, which are imposed in Theorem

3.1 and 3.2. These conditions are satisfied for Example 2.1 with a single regressor.

In what follows, for any two sequences of positive constants {cn}, {dn}, let cn � dn mean

there exist constants 0 < C1 < C2 <∞ such that C1 ≤ |cn/dn| ≤ C2 for all n.

Corollary 3.1: In Example 2.1, suppose that Z is a compact convex subset of the real

line and rθ(z) = θ(1) + θ(2)z, where θ ∈ Θ ⊆ R2. Suppose that Θ is compact and convex.

Suppose further that {(YL,i, YU,i, Zi)}i=1,··· ,n is a random sample from P0 and that P0(Z ∈
Ak) > 0 for all k and V ar(Z) > 0. Let S := {s ∈ L2

Z,1 : Z → R : ‖s‖∞ ≤M, |s(z)− s(z′)| ≤
M‖z − z′‖,∀z, z′ ∈ Z} for some M > 0. Let {rq(·)}Jnq=1 be splines of order two with Jn knots

on Z. Define Sn := {s : s(z) =
∑Jn

q=1 βqrq(z)} with Jn � nc1 , c1 > 1/3. Let Ŝn be defined

as in (3.7) with an � nc2, where 2/3 < c2 < 1 and bn � lnn. Then: (i) Ŝn is (Effros-)

measurable; (ii) dH,W (Ŝn,S0) = op(1); (iii) dH,W (Ŝn,S0) = op(n
−1/4).

Given these results, we further show that the estimator of the pseudo-true identified set

is consistent and converges at a n−1/2-rate.

Corollary 3.2: Suppose that the conditions of Corollary 3.1 hold. Let Q be defined as

in (3.1) with W = 1. Let Qn be defined as in (3.2) and Θ̂n be defined as in (3.3) with cn = 0

and Ŝn as in Corollary 3.1. Then dH(Θ̂n,Θ∗) = Op(n
−1/2).

4 Concluding remarks

Moment inequalities are widely used to estimate discrete choice problems and structures that

involve censored variables. In many empirical applications, potentially misspecified para-

metric models are used to estimate such structures. This paper studies a novel estimation

procedure that is robust to misspecification of moment inequalities. To overcome the chal-

lenge that the conventional identified set may be empty under misspecification, we defined a

pseudo-true identified set as the least squares projection of the set of functions at which the

moment inequalities are satisfied. This set is non-empty under mild assumptions. We also

proposed a two-stage set estimator for estimating the pseudo-true identified set. Our esti-

mator first estimates the identified set of function-valued parameters by a level-set estimator

over a suitable sieve. The pseudo-true identified set can then be estimated by projecting

the first-stage estimator to a finite dimensional parameter space. We give conditions, under

which the estimator is consistent for the pseudo-true identified set in the Hausdorff metric

and converges at a rate Op(n
−1/2). Developing inference procedures based on the proposed
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estimator would be an interesting future work. Another interesting extension would be to

study the optimal choice of the weighting matrix. In this paper, we maintained the assump-

tion that W is fixed and does not depend on (θ, s). Given the form of the criterion function,

the most natural choice of W would be the inverse matrix of the variance covariance matrix

of s(Xi)− rθ(Xi). This matrix is generally unknown but can be consistently estimated by its

sample analog: Ŵn(θ, s) := ( 1
n

∑n
i=1(s(Xi)− rθ(Xi))(s(Xi)− rθ(Xi))

′)−1. Defining a sample

criterion function using Ŵn(θ, s) as a weighting matrix would lead to a three-step procedure.

Such a procedure may result in more efficient estimation of Θ∗.
6 Yet, another interesting

direction would be to develop a specification test for the moment inequality models based on

the current framework. This direction would extend the results of Guggenberger, Hahn, and

Kim (2008), which studies a testing procedure that tests the non-emptiness of the identified

set.

6We are indebted to an anonymous referee for this point.

[17]



A Mathematical proofs

A.1 Notation

Throughout the appendix, let ‖ · ‖ denote the usual Euclidean norm. For each s, s′ ∈ S, let

ρ(s, s′) := supx∈S maxj=1,··· ,l |s(j)(x)−s′(j)(x)|. For each a× b matrix A, let ‖A‖op := min{c :

‖Av‖ ≤ c‖v‖, v ∈ Rb} be the operator norm. For any symmetric matrix A, let ξ(A) denote

the smallest eigenvalue of A.

For a given pseudometric space (T, ρ), let N(ε, T, ρ) be the covering number, i.e., the

minimal number of ε-balls needed to cover T . For each measurable function f : X → R
and 1 ≤ p < ∞, let ‖f‖Lp := E[|f(X)|p]1/p provided that the integral exists. Similarly,

let ‖f‖∞ := inf{c : P (|f(X)| > c) = 0}. For a given function space G equipped with

a norm ‖ · ‖G and l, u ∈ G, let [l, u] := {f ∈ G : l ≤ f ≤ u}. For each f ∈ G, let

Bε,f := {[l, u] : l ≤ f ≤ u, ‖l − u‖G < ε} be the ε-bracket of f . The bracketing number

N[ ](ε,G, ‖ ·‖G) is the minimum number of ε-brackets needed to cover G. An envelope function

G of a function class G is a measurable function such that g(x) ≤ G(x) for all g ∈ G.

For each δ > 0, the bracketing integral of G with an envelope function G is defined as

J[](δ,G, ‖ · ‖G) :=
∫ δ

0

√
1 + lnN[](ε‖G‖G ,G, ‖ · ‖G)dε.

A.2 Projection

Proof of Proposition 2.1. Note that under the conditions of Example 2.1, Assumption 2.3

holds. This ensures S0 is nonempty. By Eq. (2.13), Θ∗ is nonempty. Furthermore, let

θ ∈ ΘI , and for each z ∈ Z, let rθ(z) := z′θ. Note that rθ ∈ S0. Thus, (2.13) holds with

s = rθ, which ensures the first claim.

For the second claim, note that the condition E[YU |Z] = E[YL|Z] = Z ′θ0 a.s implies that

any θ ∈ ΘI must satisfy

E[Z1{Z ∈ Aj}]′(θ0 − θ) = 0, j = 1, 2, · · · ,K. (A.1)

By the rank condition on D, the unique solution to (A.1) is θ0 − θ = 0. Thus, {θ0} = ΘI .

Since {θ0} ⊆ Θ∗ by the first claim, it suffices to show that θ0 is the unique element of Θ∗.

For this, note that under our assumptions, S0 = {s0} with s0(z) = z′θ0. Thus, Θ∗ = {θ0}.
This completes the proof.

A.3 Consistency of the parametric part

For each s ∈ S, let θ∗(s) := arg minθ∈ΘQ(θ, s) and θ̂n(s) := arg minθ∈ΘQn(θ, s).

Lemma A.1: Suppose that Assumptions 3.4 and 3.2 (iv) hold. Then, (i) for each x ∈ X
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and any s, s′ ∈ S, there exists a function C1 : X → R+ such that

‖rθ∗(s)(x)− rθ∗(s′)(x)‖ ≤ C1(x)ρ(s, s′); (A.2)

(ii) For each x ∈ X , j = 1, · · · , L, and any s, s′ ∈ S, there exists a function C2 : X → R+

such that

‖∇(j)
θ rθ∗(s)(x)−∇(j)

θ rθ∗(s′)(x)‖ ≤ C2(x)ρ(s, s′). (A.3)

Proof of Lemma A.1. Assumption 3.4 ensures that

‖rθ∗(s)(x)− rθ∗(s′)(x)‖ ≤ L1/2C(x)‖θ∗(s)− θ∗(s′)‖. (A.4)

Assumption 3.2 (iv) ensures that for each s ∈ L2
S,L, θ∗(s) = ΠRΘ

s is uniquely determined,

where ΠRΘ
is the projection mapping from the Hilbert space L2

S,L to the closed convex subset

RΘ. Furthermore, Lemma 6.54 (d) in Alibrantis and Border (2006) and the fact that ρ is

stronger than ‖ · ‖W imply

‖θ∗(s)− θ∗(s′)‖ ≤ ‖s− s′‖W ≤ cρ(s, s′), (A.5)

for some c > 0. Combining A.4 and A.5 ensures (i). Similarly, Assumption 3.4 ensures that

for each x ∈ X

‖∇(j)
θ rθ∗(s)(x)−∇(j)

θ rθ∗(s′)(x)‖ ≤ J1/2C(x)‖θ∗(s)− θ∗(s′)‖. (A.6)

Combining A.5 and A.6 ensures (ii).

Proof of Theorem 3.1. Step 1: Let s ∈ S be given. For each θ ∈ Θ, let Qs(θ) := Q(θ, s)

and Qn,s(θ) := Qn(θ, s). By Assumption 3.2 (iv) and Theorem 6.53 in Aliprantis and Bor-

der (2006), Qs is uniquely minimized at θ∗(s). By Assumption 3.2 (i), Θ is compact. By

Assumption 3.4, Q(θ) is continuous. Furthermore, Assumption 3.4 ensures the applicability

of the uniform law of large numbers. Thus, supθ∈Θ |Qn,s(θ) − Qs(θ)| = op(1). Hence, by

Theorem 2.1 in Newey and McFadden (1994), θ̂n(s)− θ∗(s) = op(1).

By Assumptions 3.2 (v), 3.4 (ii), and the fact that θ̂n(s) is consistent for θ∗(s), θ̂n(s)

solves the first order condition:

∇θQn(θ, s) =
1

n

n∑
i=1

∇θrθ(Xi)
′W (s(Xi)− rθ(Xi)) = 0, (A.7)

with probability approaching one. Expanding this condition at θ∗(s) using the mean-value
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theorem applied to each element of ∇θQn(θ, s) yields

∇2
θQn(θ̄n(s), s)(θ̂n(s)− θ∗(s)) =

1

n

n∑
i=1

∇θrθ∗(s)(Xi)
′W (s(Xi)− rθ∗(s)(Xi)), (A.8)

where θ̄n(s) lies on the line segment that connects θ̂n(s) and θ∗(s)
7. For each s ∈ S η̄0 , let

ψs(x) := ∇θrθ∗(s)(x)′W (s(x)− rθ∗(s)(x)). (A.9)

Below, we show that the function class Ψ := {fs : fs = ψ
(j)
s , s ∈ S η̄0 , j = 1, 2, · · · , J} is a

Glivenko-Cantelli class.

By Assumption 3.4 (ii), Lemma A.1, the triangle inequality, and the Cauchy-Schwarz

inequality, for any s, s′ ∈ S,

|ψ(j)
s (x)− ψ(j)

s′ (x)| ≤ ‖(∇(j)
θ rθ∗(s)(x)−∇(j)

θ rθ∗(s′)(x))′W‖ × ‖s(x)− rθ∗(s)(x)‖

+ ‖∇(j)
θ rθ∗(s′)(x)′W‖ × ‖[s(x)− s′(x)] + [rθ∗(s′)(x)− rθ∗(s)(x)]‖

≤ (C2(x)‖W‖op(M +R(x)) + (1 + C1(x))‖W‖opR(x))× sup
x∈S
‖s(x)− s′(x)‖

≤ F (x)ρ(s, s′), (A.10)

where F (x) := (C2(x)‖W‖op(M +R(x)) + (1 + C1(x))‖W‖opR(x))×
√
L. For any ε > 0, let

u := ε/2‖F‖L1 . By, Theorem 2.7.11 in van der Vaart and Wellner (1996) and Assumption

3.2 (ii), we obtain

N[](ε,Ψ, ‖ · ‖L1) = N[](2u‖F‖L1 ,Ψ, ‖ · ‖L1)

≤ N(u,S η̄0 , ρ). (A.11)

For each j = 1, · · · , L, let S η̄,(j)0 := {s(j) : s ∈ S η̄0}. For each j, g ∈ S η̄,(j)0 , and ε > 0, let

B
(j)
ε (g) := {f ∈ S η̄,(j)0 : ‖f − g‖∞ < ε}. Similarly, for each s ∈ S η̄0 , let Bu,ρ(s) := {f ∈ S η̄,(j)0 :

ρ(f, s) < ε}. As we will show below, Nj := N(u,S η̄,(j)0 , ‖·‖∞) is finite for all j. Thus, for each

j there exist f1,j , · · · , fNj ,j ∈ S
η̄,(j)
0 such that S η̄,(j)0 ⊆

⋃Nj
l=1B

(j)
u (fl,j). We can then obtain

a grid of distinct points f1, · · · , fN ∈ S η̄0 such that f
(j)
i = fl,j for some 1 ≤ l ≤ Nj , where

N =
∏L
j=1Nj . Then, by the definition of ρ, S η̄0 ⊆

⋃N
i=1Bu,ρ(fi). Thus,

N(u,S η̄0 , ρ) ≤
L∏
j=1

N(u,S η̄,(j)0 , ‖ · ‖∞) ≤ N(u, CγM (X ), ‖ · ‖∞)L <∞, (A.12)

7Since the mean value theorem only applies element by element to the vector in (A.8), the mean value θ̄n
differs across the elements. For notational simplicity, we use θ̄n in what follows, but the fact that they differ
element to element should be understood implicitly. For the measurability of these mean values, see Jennrich
(1969) for example.
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where the last inequality follows from Assumption 3.2 (ii)-(iii) and Theorem 2.7.1 in van der

Vaart and Wellnder (1996). By Theorem 2.4.1 in van der Vaart and Wellnder (1996), Ψ is a

Glivenko-Cantelli class.

Note that, by Assumptions 3.2 (v) and 3.4, θ∗(s) solves the population analog of (A.7).

Thus,

E[∇θrθ∗(s)(Xi)
′W (s(Xi)− rθ∗(s)(Xi))] = E[ψs(x)] = 0. (A.13)

These results together with the strong law of large numbers whose applicability is ensured

by Assumption 3.3 and 3.4 (ii) imply

sup
s∈S η̄0

∣∣∣∣∣ 1n
n∑
i=1

ψ(j)
s (Xi)

∣∣∣∣∣ = op(1), j = 1, · · · , J. (A.14)

Step 2: In this step, we show that the Hessian ∇2
θQn(θ, s) is invertible with probability

approaching 1 uniformly over Nε̄,η̄. Let H := {hθ,s : X → R : hθ,s(x) = H
(i,j)
W (θ, s, x) +

2∇θr
(i)
θ (x)′W∇θr

(j)
θ (x), 1 ≤ i, j ≤ p, θ ∈ Θ, s ∈ S η̄0}. Note that hθ,s takes the form:

hθ,s(x) = 2

L∑
k=1

L∑
h=1

∂2r
(h)
θ (x)

∂θi∂θj
W (h,k)(s(k)(x)− r(k)

θ (x)) +
L∑
k=1

L∑
h=1

∂r
(h)
θ (x)

∂θi
W (h,k)∂r

(k)
θ (x)

∂θj

for some 1 ≤ i, j ≤ p, θ ∈ Θ, and s ∈ S η̄0 . Consider the function classes F1 := {Dα
θ r

(k)
θ :

θ ∈ Θ, |α| ≤ 2, k = 1, · · · , L} and F2 := {s(k) : s ∈ S η̄0 , k = 1, · · · , L}. Assumptions 3.2

(i) 3.4, and Theorem 2.7.11 in van der Vaart and Wellner (1996) ensure N[](ε,F1, ‖ · ‖L2) ≤
N(u,Θ, ‖ · ‖) < ∞ with u := ε/2‖C‖L2 . Assumption 3.2 (ii)-(iii) and Corollary 2.7.2 in

van der Vaart and Wellner (1996) ensure N[](ε,F2, ‖ · ‖L2) ≤ N[](ε, C
γ
M (X ), ‖ · ‖L2) < ∞.

Since H can be obtained by combining functions in F1 and F2 by additions and pointwise

multiplications, Theorem 6 in Andrews (1994) implies N[](ε,H, ‖ · ‖L2) <∞. This bracketing

number is given in terms of the L2-norm, but we can also obtain a bracketing number in

terms of the L1-norm. For this, let h1, · · · , hp be the centers of ‖ · ‖L2-balls that cover H.

Then, the brackets [hi − ε, hi + ε], i = 1, · · · , p cover H, and each bracket has length at most

2ε in ‖ · ‖L1 . Thus, N[](ε,H, ‖ · ‖L1) < ∞. By Theorem 2.7.1 in van der Vaart and Wellner

(1996), H is a Glivenko-Cantelli class. Hence, uniformly over Θ× S η̄0 ,

∇2
θQn(θ, s) =

1

n

n∑
i=1

HW (θ, s,Xi) + 2∇θrθ(Xi)
′W∇θrθ(Xi)

p→ E[HW (θ, s,Xi) + 2∇θrθ(Xi)
′W∇θrθ(Xi)]. (A.15)

Note that dH,W (Ŝn,S0) = op(1) by Assumption 3.6. Thus, (θ̄n(s), s) ∈ Nε̄,η̄ with probability

approaching one. By Assumption 3.5 and (A.15), there exists δ > 0 such that∇2
θQn(θ̄n(s), s)’s
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smallest eigenvalue is above δ uniformly over Nε̄,η̄. Thus, the Hessian ∇2
θQn(θ̄n(s), s) in (A.8)

is invertible with probability approaching 1.

Step 3: Steps 1-2 imply that, uniformly over S η̄0 ,

‖θ∗(s)− θ̂n(s′)‖ = ‖θ∗(s)− θ∗(s′) + θ∗(s
′)− θ̂n(s′)‖

≤ ‖θ∗(s)− θ∗(s′)‖+ 2δ−1 sup
s∈S η̄0

∥∥∥∥∥ 1

n

n∑
i=1

ψs(Xi)

∥∥∥∥∥
≤ ‖s− s′‖W + op(1), (A.16)

where we used the fact that ‖θ∗(s) − θ∗(s′)‖ ≤ ‖s − s′‖W by Lemma 6.54 (d) in Aliprantis

and Border (2006).

Step 4: Finally, note that by Step 3,

~dH(Θ∗, Θ̂n) = sup
θ∈Θ∗

inf
θ′∈Θ̂n

‖θ − θ′‖ = sup
s∈S0

inf
s′∈Ŝn

‖θ∗(s)− θ̂n(s′)‖ ≤ sup
s∈S0

inf
s′∈Ŝn

‖s− s′‖W + op(1)

(A.17)

~dH(Θ̂n,Θ∗) = sup
θ′∈Θ̂n

inf
θ∈Θ∗

‖θ − θ′‖ = sup
s′∈Ŝn

inf
s∈S0

‖θ∗(s)− θ̂n(s′)‖ ≤ sup
s′∈Ŝn

inf
s∈S0

‖s− s′‖W + op(1).

(A.18)

Eq. (3.4) and Assumption 3.6 then ensure the desired result.

A.4 Convergence rate

The following lemma controls the rate at which Θ̂n covers Θ∗. Given a sequence {ηn} such

that ηn → 0, we let V δ1n(s) := {θ′ : ‖θ′ − θ(s)‖ ≤ en, en = Op(ηn)} and let Nηn,0 := {(θ, s) :

θ ∈ V ηn(s), s ∈ S0}.

Lemma A.2: Suppose Assumptions 2.1-2.3, 3.1-3.2, and 3.6 hold. Let {δ1n} and {εn}
be sequences of non-negative numbers converging to 0 as n → ∞. Let G : Θ × S → R+

be a function such that G is jointly measurable and lower semicontinuous. For each n,

let Gn : Ω × Θ × S → R be a function such that for each ω ∈ Ω, Gn(ω, ·, ·) is jointly

measurable and lower semicontinuous, and for each (θ, s) ∈ Θ× S, Gn(·, θ, s) is measurable.

Let Θ∗ := {G(θ, s) = 0, s ∈ S0} and Θ̂n := {θ ∈ Θ : Gn(θ, s) ≤ infθ∈ΘGn(θ, s) + cn, s ∈ Ŝn}.
Suppose that dH(Θ̂n,Θ∗) = Op(δ1n). Suppose further that there exists a positive constant κ

and a neighborhood V (s) of θ∗(s) such that

G(θ, s) ≥ κ‖θ − θ∗(s)‖2 (A.19)

[22]



for all θ ∈ V (s), s ∈ S0. Suppose that uniformly over Nδ1n,0,

Gn(θ, s) = G(θ, s) +Op(‖θ − θ∗(s)‖/
√
n) + op(‖θ − θ∗(s)‖2) +Op(εn). (A.20)

Then
~dH(Θ∗, Θ̂n) = Op(max{c1/2

n , ε1/2n , 1/
√
n}).

Proof. The proof of this Lemma is similar to Theorem 1 in Sherman (1993). By (A.19),

(A.20), and the Hausdorff consistency of Θ̂n, it follows that, uniformly over Nδ1n,0,

cn ≥ κ‖θ − θ∗(s)‖2 +Op(‖θ − θ∗(s)‖/
√
n) + op(‖θ − θ∗(s)‖2) +Op(εn), (A.21)

with probability approaching 1. As in Theorem 1 in Sherman (1993), write Kn‖θ− θ(s)‖ for

the Op(‖θ − θ∗(s)‖/
√
n) term, where Kn = Op(1/

√
n) and also note that op(‖θ − θ∗(s)‖2) is

bounded from below by −κ
2‖θ − θ

∗(s)‖2 with probability approaching 1. Thus, we obtain

κ

2
‖θ − θ∗(s)‖2 +Kn‖θ − θ∗(s)‖ ≤ cn +Op(εn). (A.22)

Completing the square, we obtain

1

2
κ(‖θ − θ∗(s)‖ −Kn/κ)2 ≤ cn +Op(εn) +

1

2
K2
n/κ = cn +Op(εn) +Op(1/n). (A.23)

Taking square roots gives

‖θ − θ∗(s)‖ ≤ (2/κ)1/2c1/2
n +Kn/κ+Op(ε

1/2
n ) +Op(1/

√
n) (A.24)

= Op(c
1/2
n ) +Op(ε

1/2
n ) +Op(1/

√
n). (A.25)

Thus,

~dH(Θ∗, Θ̂n) = sup
s∈S0

inf
θ∈Θ̂n

‖θ − θ∗(s)‖ (A.26)

≤ sup
s∈S0

inf
θ∈V δ1n (s)

‖θ − θ∗(s)‖ ≤ Op(c1/2
n ) +Op(ε

1/2
n ) +Op(1/

√
n). (A.27)

This completes the proof.

The following lemma controls the rate at which Θ̂n is contracted in to a neighborhood of

Θ∗. Given s ∈ S and a sequence {δn} such that δn → 0, let U δn(s) := {θ ∈ Θ : ‖θ− θ∗(s)‖ ≥
δn}.

Lemma A.3: Suppose Assumptions 2.1-2.3, 3.1-3.2, and 3.6 hold. Let Gn be defined as

in Lemma A.2. Suppose that there exist positive constants (k, κ2) and a sequence {δ1n} such
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that

Gn(θ, s) ≥ κ2‖θ − θ∗(s)‖2 (A.28)

with probability approaching 1 for all θ ∈ U δn(s) with δn := (kδ1n/
√
n)1/2 and s ∈ S η̄0 . Then,

~dH(Θ̂n,Θ∗) = Op(δ
1/2
1n /n

1/4) +Op(c
1/2
n ).

Proof. Note first that Ŝn is in S η̄0 with probability approaching 1 by Assumption 3.6. Let

c̃n :=
√
ncn and c̄n := max{κ2kδ1n, c̃n}. Let εn := (c̄n/κ2

√
n)1/2. Then, uniformly over S η̄0 ,

inf
Θ∩Uεn (s)

√
nGn(θ, s) ≥ κ2

√
nε2n ≥ c̄n. (A.29)

Since
√
nGn(θ̂n(s), s) ≤ c̃n for all s ∈ Ŝn, the results above ensure

~dH(Θ̂n,Θ∗) = sup
s∈Ŝn

inf
θ∈Θ∗

‖θ̂n(s)− θ‖

≤ sup
s∈Ŝn
‖θ̂n(s)− θ∗(s)‖ ≤ εn = Op(δ

1/2
1n /n

1/4) +Op(c̃
1/2
n /n1/4).

This ensures the claim of the Lemma.

Proof of Theorem 3.2. We first show (A.19) holds with G(θ, s) = Q(θ, s). For this, we use

the second-order Taylor expansion of Q(θ, s). For θ ∈ V δ1n(s), it holds by Assumptions 3.2

(v) and 3.4 that

Q(θ, s) = Q(θ∗(s), s) +∇θQ(θ∗(s), s)
′(θ − θ∗(s))

+
1

2
(θ − θ∗(s))′∇2

θQ(θ̄(s), s)(θ − θ∗(s)), (A.30)

where θ̄(s) is on the line segment that connects θ and θ∗(s). By (3.1), Q(θ∗(s), s) = 0, and

by the first order condition of the optimality, ∇θQ(θ∗(s), s) = 0. Thus, it follows that

Q(θ, s) =
1

2
(θ − θ∗(s))′∇2

θQ(θ̄(s), s)(θ − θ∗(s)) ≥ κ‖θ − θ∗(s)‖2, (A.31)

where κ := infθ∈Θ,s∈S0 ξ(∇2
θQ(θ, s))/2, and κ > 0 by Assumption 3.5.

We next show that (A.20) holds for

Gn(θ, s) =
1

n

n∑
i=1

(s(Xi)− rθ(Xi))
′W (s(Xi)− rθ(Xi))

− 1

n

n∑
i=1

(s(Xi)− rθ∗(s)(Xi))
′W (s(Xi)− rθ∗(s)(Xi)). (A.32)

In what follows, let Ên denote the expectation with respect to the empirical distribution.
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Using the Taylor expansion of Gn and G with respect to θ at θ∗(s), we may write

Gn(θ, s)−G(θ, s) = S1,n(θ, s) + S2,n(θ, s), (A.33)

where

S1n(θ, s) := −2(θ − θ∗(s))′(Ên − E)[∇θrθ∗(s)(x)′W (s(x)− rθ∗(x))] + op(‖θ − θ∗(s)‖2)

(A.34)

S2n(θ, s) := (θ − θ∗(s))′(Ên − E)[∇θrθ∗(s)(x)′W∇θrθ∗(s)(x)](θ − θ∗(s)). (A.35)

Thus, for (A.20) to hold, it suffices to show that S1n(θ, s) = Op(‖θ − θ∗(s)‖/
√
n) + op(‖θ −

θ∗(s)‖2) and S2n(θ, s) = Op(εn) for some εn → 0. For S1n, note that our assumptions suffice

for the conditions of Lemma A.4. Thus, Φ is a P0-Donsker class. This ensures S1n(θ, s) =

Op(‖θ − θ∗(s)‖/
√
n) + op(‖θ − θ∗(s)‖2). We now consider S2n. For each s ∈ S0 and x ∈ X ,

let φs(x) := ∇θrθ∗(s)(x)′W∇θrθ∗(s)(x). Note that

E

[
sup

(θ,s)∈Nδ1n,0
|S2n(θ, s)|

]
≤ δ2

1nn
−1/2E

[
sup
s∈S0

|Gnφs|
]

≤ n−1/2δ2
1nCJ[](1,S0, ‖ · ‖L2)

∥∥∥∥sup
s∈S0

|φs|
∥∥∥∥
L2

, (A.36)

where the last inequality follows from Lemma B.1 of Ichimura and Lee (2010). Now, Markov’s

inequality, Lemma A.4, and Assumption 3.4 (ii) ensure that S2n = Op(εn), where εn =

n−1/2δ2
1n.

We further set cn = 0. Note that the estimator defined in (3.3) with cn = 0 equals

the set estimator Θ̂n = {θ : Gn(θ, s) ≤ infθ∈ΘGn(θ, s)}. By Assumption 3.7 and Step 4

of the proof of Theorem 3.1, we may take δ1n = Op(n
−1/4) as an initial rate. Lemma A.2

then implies that ~dH(Θ∗, Θ̂n) = Op(ε
1/2
n ), where εn = Op(n

−1/2δ2
1n) = Op(n

−1). Thus,
~dH(Θ∗, Θ̂n) = Op(n

−1/2).

Now we consider ~dH(Θ̂n,Θ∗). We show that (A.28) holds for Gn. For each θ and s, let

Ln(θ, s) := 1
n

∑n
i=1(s(Xi) − rθ(Xi))

′W (s(Xi) − rθ(Xi)). Let s ∈ S η̄0 and θ ∈ U δ1n(s). A

second-order Taylor expansion of Gn(θ, s) = Ln(θ, s)−Ln(θ∗(s), s) with respect to θ at θ∗(s)

gives

Gn(θ, s) = ∇θLn(θ∗(s), s)
′(θ − θ∗(s)) +

1

2
(θ − θ∗(s))′∇2

θLn(θ̄n(s), s)(θ − θ∗(s))

= op(1) +
1

2
(θ − θ∗(s))′∇2

θLn(θ̄n(s), s)(θ − θ∗(s))

≥ κ2‖θ − θ∗(s)‖2, (A.37)

with probability approaching 1 for some κ2 > 0, where θ̄n(s) is a point on the line segment
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that connects θ and θ∗(s). The last inequality follows from Step 3 of the proof of Theorem

3.1 and Assumption 3.5.

Set c̃n = 0. Then, Lemma A.3 implies ~dH(Θ̂n,Θ∗) = Op(δ
1/2
1n /n

1/4). Setting δ1n =

Op(n
−1/4) refines this rate to Op(n

−3/8). Repeated applications of Lemma A.3 then implies
~dH(Θ̂n,Θ∗) = Op(n

−1/2). As both of the directed Hausdorff distances converge to 0 at the

stochastic order of n−1/2, the claim of the theorem follows.

Lemma A.4: Suppose Assumptions 3.2 and 3.4 hold. Then Φ is a P0-Donsker class.

Proof. The proof of Theorem 3.1 shows that each fs ∈ Φ is Lipschitz in s. For any ε > 0,

Assumption 3.2 (ii)-(iii), Theorems 2.7.11 and 2.7.2 in van der Vaart and Wellner (1996), and

(A.12) imply

lnN[](ε‖F‖L2 ,Ψ, ‖ · ‖L2) ≤ lnN(ε/2,Sδ20 , ρ)L ≤ C(1/ε)k/γ , (A.38)

where C is a constant that depends only on k, γ, L, and diam(X ). Thus, for any δ > 0,

J[](δ,Φ, ‖ · ‖L2) ≤
∫ δ

0

√
1 + C(1/ε)k/γdε <∞. (A.39)

Example 2.14.4 in van der Vaart and Wellner (1996) ensures that Ψ is P0-Donsker.

A.5 First stage estimation

In the following, we work with the following population criterion function. For each s ∈ S,

let Q be defined by

Q(s) :=
l∑

j=1

E[ϕ(j)(Xi, s)]
2
+. (A.40)

Lemma A.5: Suppose that Assumption 3.9 (i) holds. Let the criterion function be given

as in (A.40). Then, there exists a positive constant C2 such that

Q(s) ≤ inf
s0∈S0

C2‖s− s0‖2W .

Proof of Lemma A.5. Let s ∈ S be arbitrary. For any s0 ∈ S, E[ϕ(j)(X, s0)] ≤ 0 for j =

1, · · · l. Let V be an open set that contains s and s0. Assumption 3.9 (i) and Theorem 1.7 in
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Lindenstrauss, Preiss, Tiser (2007), it holds that

Q(s) ≤
l∑

j=1

(E[ϕ(j)(Xi, s)]− E[ϕ(j)(Xi, s0)])2
+

≤ (

l∑
j=1

‖ sup
g∈Ṽj

ϕ̇(j)
g ‖2op)‖s− s0‖2W , (A.41)

where Ṽj := {g ∈ V : ϕ̇
(j)
g exists}. Let C2 :=

∑l
j=1 ‖ supg∈S ϕ̇

(j)
g ‖2op. It holds that 0 < C2 <∞

by the hypothesis. We thus obtain

Q(s) ≤ C2‖s− s0‖2W (A.42)

for all s0 ∈ S0. Note that s0 7→ ‖s−s0‖W is continuous and S0 is compact by Assumption 3.2

(ii)-(iii) and Assumption 3.10 (i). Taking infimum over S0 then ensures the desired result.

Lemma A.6: Suppose Assumption 3.9 (ii) holds. Let the criterion function be given as

in (A.40). Then there exists a positive constant C such that

Q(s) ≥ inf
s0∈S0

C3‖s− s0‖2W .

Proof of Lemma A.6. If s ∈ S0, the conclusion is immediate. Suppose that s /∈ S0. By

Assumption 3.9 (ii), there exists s0 ∈ S0

Q(s) =
∑
j∈I(s)

(E[ϕ(j)(Xi, s)])
2 ≥ Cj‖s− s0‖2W . (A.43)

Let C3 := Cj . Thus, the claim of the lemma follows.

In the following, let G := {g : g(x) = ϕ
(j)
s (x), s ∈ S, j = 1, · · · , l}.

Lemma A.7: Suppose Assumptions 3.2, 3.4, and 3.8 hold. Then G is a P0-Donsker class.

Proof. By Assumption 3.8, ϕ
(j)
s is Lipschitz in s. The rest of the proof is the same as that of

Lemma A.4.

Proof of Theorem 3.3. We establish the claims of the theorem by applying Theorem B.1 in

Santos (2011). Note first that Assumption 3.2 (ii)-(iii) and Assumption 3.10 (i) ensure that

S is compact. This ensures the condition (i) of Theorem B.1 in Santos (2011). Condition (ii)

of Theorem B.1 in Santos (2011) is ensured by Assumption 3.10. Lemma A.7 ensures that

uniformly over Θn

Qn(s) = Q(s) +Op(n
−1). (A.44)
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Thus, condition (iii) of Theorem B.1 in Santos (2011) hold with C1 = 1 and c2n = n−1.

Lemma A.5 ensures that Q(s) ≤ infs0∈S0 C2‖s− s0‖2W for some C2 > 0. Thus, condition (iv)

of Theorem B.1 in Santos (2011) hold with κ1 = 2. Now, the first claim of Theorem B.1. in

Santos (2011) establishes

dH,W (Ŝn,S0) = op(1). (A.45)

Furthermore, Lemma A.6 ensures Q(s) ≥ infs0∈S0 C3‖s − s0‖2 for some C3 > 0. This

ensures condition (v) of Theorem B.1 in Santos (2011) with κ2 = 2. Now, the second claim

of Theorem B.1. in Santos (2011) ensures

dH,W (Ŝn,S0) = Op(max{(bn/an)1/2, δn}). (A.46)

Since (bn/an)1/2/δn →∞, the claim of the theorem follows.

Proof of Corollary 3.1. In what follows, we explicitly show Qn’s dependence on ω ∈ Ω. Let

Qn : Ω× S → R be defined by Qn(ω, s) =
∑l

j=1( 1
n

∑n
i=1 ϕ(Xi(ω), s))2

+. By Assumption 2.3,

ϕ is continuous in s for every x and measurable for every s. Also note that Xi is measurable

for every i. Thus, by Lemma 4.51 in Aliprantis and Border (2006), Qn is jointly measurable

in (ω, s) and lower semicontinuous in s for every ω. Note that S is compact by Assumptions

3.2 (ii)-(iii) and 3.10 (i), which implies S is locally compact. Since S is a metric space, it is a

Hausdorff space. Thus, by Proposition 5.3.6 in Molchanov (2005), Qn is a normal integrand

defined on a locally compact Hausdorff space. Proposition 5.3.10 in Molchanov (2005) then

ensures the first claim.

Now we show the second claim using Theorem 3.3 (i). Assumptions 2.1-2.3 hold with

ϕ defined in (2.5). Assumption 3.2 holds by our hypothesis with γ = 1. Assumption 3.3

is also satisfied by the hypothesis. Note that for each j, ϕ(j)(x, s) = (yL − s(z))1Ak(z) or

ϕ(j)(x, s) = (s(z) − yU )1Ak(z) for some k ∈ {1, · · · ,K}. Without loss of generality, let j be

an index for which ϕ(j)(x, s) = (yL − s(z))1Ak(z) for some Borel set Ak. For any s, s′ ∈ S,

|ϕ(j)(x, s)− ϕ(j)(x, s′)| = |(s′(z)− s(z))1Ak(z)| ≤ ρ(s, s′). (A.47)

It is straightforward to show the same result for other indexes. Thus, Assumption 3.8 is

satisfied.

Now for j such that ϕ(j)(x, s) = (yL − s(z))1Ak(z), note that

|ϕ̄(j)(s+ h)− ϕ̄(j)(s)− E[h(Z)(−1Ak(Z))]| = 0. (A.48)

Thus, the Fréchet derivative is given by ϕ̇
(j)
s (h) = E[h(Z)(−1Ak(Z))]. By Proposition 6.13 in

Folland (1999), the norm of the operator is given by ‖ϕ̇(j)
s ‖op = E[| − 1Ak(Z)|2]1/2 = P0(Z ∈

Ak) > 0, which ensures the boundedness (continuity) of the operator. It is straightforward
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to show the same result for other indexes. Hence, Assumption 3.9 (i) is satisfied. By con-

struction, Assumption 3.10 (i) is satisfied, and Assumption 3.10 (ii) holds with δn � J−1
n

(See Chen, 2007). These ensure the conditions of Theorem 3.3 (i). Thus, the second claim

follows.

For the third claim, let s ∈ S \ S0. Then, there exists j such that E[ϕ(j)(Xi, s)] > 0.

Without loss of generality, suppose that E[ϕ(j)(Xi, s)] = E[(YL,i − s(Zi))1Ak(Zi)] ≥ δ > 0.

Let s0 ∈ S0 be such that

E[(YL,i − s0(Zi))1Ak(Zi)] = 0. (A.49)

Such s0 always exists by the intermediate value theorem. Then, for j with which ϕ(j)(x, s) =

(yL − s(z))1Ak(z), it follows that

E[ϕ(j)(Xi, s)] = E[(YL,i − s(Zi))1Ak(Zi)]− E[(YL,i − s0(Zi))1Ak(Zi)]

= E[(s0(Zi)− s(Zi))1Ak(Zi)] > 0 (A.50)

Thus, we have

E[ϕ(j)(Xi, s)] ≥ C‖s0 − s‖W , (A.51)

where C := infq∈E E[q(Zi)1Ak(Zi)] and E := {q ∈ S : ‖q‖W = 1, E[q(Zi)1Ak(Zi)] > 0}. Since

C is the minimum value of a linear function over a convex set, it is finite. Furthermore, by the

construction of E, it holds that C > 0. Thus Assumption 3.9 (ii) holds. Thus, by Theorem

3.3 (ii), the third claim follows.

Proof of Corollary 3.2. We show the claim of the corollary using Theorem 3.2. Note that we

have shown, in the proof of Corollary 3.1, that Assumptions 2.1-2.3, 3.2 (i)-(iii), and 3.3 hold.

Thus, to apply Theorem 3.2, it remains to show Assumptions 2.4, 3.2 (iv), and 3.4-3.7.

Assumption 2.4 is satisfied by the parameterization rθ(z) = θ(1) + θ(2)z. For Assumption

3.2 (iv), note that RΘ is given by

RΘ = {rθ : rθ = θ(1) + θ(2)z, θ ∈ Θ}.

Since Θ is convex, for any λ ∈ [0, 1], it holds that λrθ + (1− λ)rθ′ = rλθ+(1−λ)θ′ ∈ RΘ. Thus,

Assumption 3.2 (iv) is satisfied. For Assumption 3.4, note first that rθ is twice continuously

differentiable on the interior of Θ. Because rθ is linear, max|α|≤2 |Dα
θ rθ(z) − Dα

θ rθ′(z)| =

(1+z2)1/2‖θ−θ′‖ by the Cauchy-Schwartz inequality. By the compactness of Z, C(z) := (1+

z2)1/2 is bounded. Thus, Assumption 3.4 (i) is satisfied. Similarly, max|α|≤2 supθ∈Θ |Dα
θ rθ| ≤

max{1, |z|, C(1 + z2)1/2} =: R(z), where C := supθ∈Θ ‖θ‖. By the compactness of Z and Θ,

R is bounded. Thus, Assumption 3.4 (ii) is satisfied. Note that the Hessian of Q(θ, s) with

respect to θ is given by 2E[(1, z)(1, z)′], which does not depend on θ nor s and is positive
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definite by the assumption that V ar(Z) > 0. Thus, Assumption 3.5 is satisfied. Assumptions

3.6 and 3.7 are ensured by Corollary 3.1. Now the conditions of Theorem 3.2 are satisfied.

Thus, the claim of the Corollary follows.
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