
 

 

Bayesian Bot Detection Based on DNS Traffic Similarity 
Ricardo Villamarín-Salomón and José Carlos Brustoloni 

Department of Computer Science 
University of Pittsburgh 

210 S. Bouquet St. #6135, Pittsburgh, PA, 15260, USA 
(rvillsal, jcb)@cs.pitt.edu 

 
ABSTRACT 
Bots often are detected by their communication with a command 
and control (C&C) infrastructure. To evade detection, botmasters 
are increasingly obfuscating C&C communications, e.g., by using 
fastflux or peer-to-peer protocols. However, commands tend to 
elicit similar actions in bots of a same botnet. We propose and 
evaluate a Bayesian approach for detecting bots based on the 
similarity of their DNS traffic to that of known bots. 
Experimental results and sensitivity analysis suggest that the 
proposed method is effective and robust. 

Categories and Subject Descriptors 
C.2.3 [Computer Communication Networks]: Network 
Operations – Network monitoring; D.4.6 [Operating Systems]: 
Security and Protection – Invasive software (e.g. viruses, worms, 
Trojan horses). 

General Terms 
Security 

Keywords 
Bot, botnet, Bayesian method, DNS, Intrusion detection 

1. INTRODUCTION 
Bots are forms of malware that combine characteristics of worms, 
viruses, and Trojan horses. Their main distinguishing feature is 
that they continue to receive commands from a botmaster 
throughout their life cycle.  
Many botnets have centralized command and control (C&C) 
servers. These servers may have fixed IP addresses or, more 
commonly, domain names that botmasters can map to IP 
addresses dynamically using DNS. In such botnets, bots can be 
detected by their communication with hosts whose IP address or 
domain name is that of a known C&C server. 
To evade detection, botmasters are increasingly obfuscating C&C 
communication, e.g., using fastflux or peer-to-peer (P2P) 
protocols. Fastflux consists in modifying proactively at a fast rate 
the addresses associated with C&C servers’ domain names (single 
flux). For added resilience, addresses of the name servers of the 
C&C zone may also be proactively modified at a fast rate (double 
flux). The domain names used may also vary. These frequent 
changes may frustrate detection based on known addresses or 
names. In P2P botnets, bots receive commands from peers, 

similarly making detection more difficult.  
Regardless of obfuscation, commands tend to cause similar 
activities in bots belonging to a same botnet.  This paper evaluates 
the hypothesis that bots in a same botnet have similar DNS traffic, 
through which they can be distinguished from other hosts.  
We assume that at least one bot in a botnet is known. Using a 
Bayesian approach, we then find other hosts with similar DNS 
traffic. Experimental results suggest that the method is effective 
and robust. 
The rest of this paper is organized as follows. Section 2 describes 
the Bayesian method in greater detail. Section 3 explains our 
methodology, and Section 4 presents our experimental results. 
These results are discussed in Section 5 and compared to related 
work in Section 6. Finally, Section 7 concludes. 

2. BAYESIAN METHOD 
Let Q be the set of DNS queries made during a specific time 
period, D be the domain names queried during that period, and H 
be a set of hosts that have made at least one query q∈Q. Every 
host h∈H has an associated set Qh of DNS queries. The objective 
of the Bayesian approach is to calculate, given Qh, the probability 
that host h is infected by a bot: 

Pr(host h is infected | Qh) 
Let B (blacklist) be a set containing domain names of known C&C 
servers. We include in a set Hbl any host h that queried a 
blacklisted name during a specified period: 

Hbl = { h∈H : h queried b∈B  } 
Let DI and DN be respectively the sets of all domain names 
queried by hosts in Hbl and in H-Hbl. Note that DI may contain 
names that are not blacklisted. Furthermore, let DBL=DI ∩ B and 
DU=(DI \ DBL). These sets are illustrated in Figure 1.  

 
Figure 1. DNS names sets according to the hosts that queried 

them during the monitoring period. 
Let QU be the set of queries for domains in DU. A name dk∈DU 
could be (1) a legitimate name that h’s user queried during the 
monitoring period, (2) a legitimate name that the bot infecting a 
host h∈Hbl queried to confuse detection tools, or (3) the name of 
an unknown C&C server.  

 

 

B DN DI 

DU 
DBL 



 

 

The problem is then to partition the set H-Hbl into two, namely, 
Hu, the set of uninfected hosts, and Hsq, the set of hosts that are 
infected but not in Hbl (e.g., because of C&C obfuscation by 
fastflux or other method). We achieve this partitioning in two 
steps. 
First, we assign a score to every q∈Q indicating a probability that 
a host making it is infected. The higher the score, the most likely 
is that the query is made by bot-infected hosts. We call suspicious 
the highest scored queries for names not in B. The set of such 
queries is QS. Likewise, we define the set QL of queries with the 
lowest scores.  
Second, we assign to each host a score that combines the scores of 
all the queries it made. Finally, we assign each host to sets Hsq and 
Hu depending on the score received. If a host h1∈Hsq is in the 
same botnet as host h2∈Hbl, h1 and h2 receive the same commands 
and therefore issue overlapping DNS queries. Then the set 
Qh1∩QS is expected to be larger than Qh1∩QL∩QU. In the 
remainder of this section we give details about how to perform 
this partitioning, including the criteria to consider a query or host 
score as high. 
Let Ihi denote whether a host hi is infected and |S| give the number 
of elements of a set S. Then: 

 𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 1� =
�ℎ𝑖𝑖 ∈ 𝐻𝐻𝑏𝑏𝑏𝑏 : 𝑞𝑞𝑗𝑗 ∈ 𝑄𝑄ℎ𝑖𝑖 �

|𝐻𝐻𝑏𝑏𝑏𝑏 |
  , (1) 

represents the likelihood that a query qj is made by a host in Hbl 
[1]. However, even legitimate domains (e.g., www.microsoft.com) 
can be queried by these hosts and could receive a high value for 
P(qj | Ihi=1). Therefore, the latter ratio is not appropriate to judge 
whether a query is suspicious or not. Thus, we also calculate the 
likelihood that a query qj is queried by a host in H-Hbl: 

𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 0� =
�ℎ𝑖𝑖 ∈ (𝐻𝐻 −𝐻𝐻𝑏𝑏𝑏𝑏 ): 𝑞𝑞𝑗𝑗 ∈ 𝑄𝑄ℎ𝑖𝑖 �

|𝐻𝐻 −𝐻𝐻𝑏𝑏𝑏𝑏 |
 (2) 

Then we obtain the posterior probability that a host hi will send 
query qj: 

𝑃𝑃�𝐼𝐼ℎ𝑖𝑖 = 1 | 𝑞𝑞𝑗𝑗 � =
𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 1� ⋅ 𝑃𝑃(𝐼𝐼ℎ𝑖𝑖 = 1)

𝑃𝑃�𝑞𝑞𝑗𝑗  �
= 

𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 1� ⋅ 𝑃𝑃(𝐼𝐼ℎ𝑖𝑖 = 1)
𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 1� ⋅ 𝑃𝑃(𝐼𝐼ℎ𝑖𝑖 = 1) + 𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 0� ⋅ 𝑃𝑃(𝐼𝐼ℎ𝑖𝑖 = 0)

 

It has been shown [13], and we have empirically verified, that 
assuming P(Ihi=1)=0.5 gives good results under widely varying 
conditions. Making this assumption, then: 

 𝑆𝑆ℎ�𝑞𝑞𝑗𝑗 � =
𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 1�

𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 1� + 𝑃𝑃�𝑞𝑞𝑗𝑗  | 𝐼𝐼ℎ𝑖𝑖 = 0�
  , (3) 

where Sh(qj) represents P(Ihi=1|qj). Now, Sh can be calculated 
using equations 1 and 2, which have known values. 
Equation 3 will produce an extreme value if a domain name is 
rarely queried. For instance, if the only host h querying the said 
domain belongs to Hbl, Sh(qj) will be 1 (and 0 if h∉Hbl). We 
cannot consider as infected a random host querying this name in 
the future based only on this single evidence. This is because the 
query can be for a legitimate name even if it is sent by a host in 
Hbl. 
To deal with these cases, we can use Bayesian statistics to 

determine P(Ihi=1|qj). The calculation is based on observed DNS 
traffic as well as x, the a priori belief that a domain name that was 
never queried before will be queried by an infected host. 
For this, we start assuming that Ih is a binomial random variable 
with a beta distribution prior, and that it represents the infection 
classification of a host making a specific query q [13]. Next, we 
perform n trials, each of which consists in examining the next host 
hi∈H that sent q to see if hi is infected. If it is, we consider that the 
experiment was successful and assign Ihi=1. This is a binomial 
experiment since (1) Ih can take only two values, 1 and 0, and (2) 
given two hosts, hi and hi+1, whether host hi queried q is 
independent of whether host hi+1 also did so. For binomial 
experiments assuming a beta prior distribution, the probability that 
the nth+1 trial will be successful can be expressed by [27]: 

 𝑃𝑃(𝐼𝐼ℎ𝑖𝑖 = 1 | 𝑞𝑞) =
𝛼𝛼 + 𝑠𝑠

𝛼𝛼 + 𝛽𝛽 + 𝑛𝑛  , (4) 

where α and β are the parameters of the Beta distribution, n is the 
number of trials and s is the number of successes involving q. 
However, we also want to incorporate in the calculation of the 
latter probability our a priori knowledge x. One way of doing this 
is to define f=α+β and α=f·x [13], where f is a constant 
interpreted as the strength we want to give to x. Formula 4 then 
becomes: 

 𝑆𝑆′ℎ�𝑞𝑞𝑗𝑗 � =
𝑓𝑓 ⋅ 𝑥𝑥 + 𝑆𝑆ℎ�𝑞𝑞𝑗𝑗 � ⋅ 𝑁𝑁𝑞𝑞𝑗𝑗

𝑓𝑓 + 𝑁𝑁𝑞𝑞𝑗𝑗
 (5) 

In this case s was approximated with Sh(q)·Nq, where Nq is the 
total number of times a query qj has been made during the traffic 
monitoring period. If we consider, for instance, values of 1 and 
0.5 for f and x respectively, then a query qj receives a neutral score 
S'h(qj)=0.5 before it is sent by any host. Thus we avoid the 
extreme values that Sh can take when we do not have enough data. 
Once S'h has been computed for all the queries made by a specific 
host, we calculate indicators of whether a host is infected. It has 
been shown [14][15] that robust indicators are obtained by taking 
the geometric mean of the host’s most extreme S'h(q) values 
(closest to 0 and 1). The selection of these particularly high and 
low values is done using two thresholds, Th and Tl: 

 𝑚𝑚 = #{𝑞𝑞 ∈ 𝑄𝑄ℎ  | 𝑆𝑆′ ℎ(𝑞𝑞) > 𝑇𝑇ℎ} and  

 𝐼𝐼(ℎ) = �
1, when 𝑚𝑚 = 0                            

1 − �∏ 𝑆𝑆′ℎ(𝑞𝑞)(𝑞𝑞∈𝑄𝑄ℎ |𝑆𝑆′ ℎ (𝑞𝑞)>𝑇𝑇ℎ )
𝑚𝑚 �

  (6) 

 

 𝑘𝑘 = #{𝑞𝑞 ∈ 𝑄𝑄ℎ  | 𝑆𝑆′ ℎ(𝑞𝑞) < 𝑇𝑇𝑙𝑙} and  

 𝑁𝑁(ℎ) = �
1, when 𝑘𝑘 = 0                                       

1 − �∏ �1 − 𝑆𝑆′ℎ(𝑞𝑞)�(𝑞𝑞∈𝑄𝑄ℎ |𝑆𝑆′ ℎ (𝑞𝑞)<𝑇𝑇𝑙𝑙)
𝑘𝑘 �

  (7) 

N(h) and I(h) indicate how likely it is that a host is infected or 
non-infected, respectively. We define a combined score: 

 𝐶𝐶(ℎ) =
𝑁𝑁(ℎ) − 𝐼𝐼(ℎ)
𝑁𝑁(ℎ) + 𝐼𝐼(ℎ) (8) 

The combined score will be between -1 and 1. Values close to 1 
indicate that the host is infected while values close to -1 indicate 
the host is not. A value of 0 means that there is not enough 
evidence to support conclusively one classification or the other 
based on our data and background knowledge. For consistency 



 

 

with the other scores, we modify C(h) so that we can get a score 
between 0 and 1 [14]: 

 𝑃𝑃(ℎ) =
1 + �𝑁𝑁(ℎ) − 𝐼𝐼(ℎ)

𝑁𝑁(ℎ) + 𝐼𝐼(ℎ)�

2  (9) 

P(h) indicates our degree of belief that a host is infected. Since it 
rarely gets extreme values close to 1 or 0, we need to select a 
threshold above which a host can be considered infected. 

2.1. Application to Bot Detection 
In this subsection we propose two ways to tune the Bayesian 
method for the task of bot detection. 
First, given that blacklisted names can only be queried by infected 
hosts, S'h can be made equal to 1 for queries in QBL. 
Second, for any host h∈Hsq, it is desirable to include the score S'h 
of its suspicious queries in the calculation of I(h). One way to 
improve the chances of such inclusion is to pick appropriate 
values for parameters f and x. If we want the score S'h(q) of such 
queries to be at least equal to the threshold Th for a particular 
value ω we can have: 

 𝑆𝑆′ℎ(𝑞𝑞) = 𝜔𝜔 =
𝑓𝑓 ⋅ 𝑥𝑥 + 𝑆𝑆ℎ(𝑞𝑞) ⋅ 𝑁𝑁𝑞𝑞

𝑓𝑓 + 𝑁𝑁𝑞𝑞
  

 =
𝑓𝑓 ⋅ 𝑥𝑥 + 1 ⋅ 1

𝑓𝑓 + 1   

 𝜔𝜔 ⋅ (𝑓𝑓 + 1) =  𝑓𝑓 ⋅ 𝑥𝑥 + 1  

 𝑓𝑓 =
1 −𝜔𝜔
𝜔𝜔 − 𝑥𝑥 (10) 

For example, if Th=ω=0.95 and x=0.5 (i.e., neutral), then f=0.11. 

3. METHODOLOGY 
The application of the Bayesian method requires tuning the 
parameters described in the previous section (e.g., Th and Tl). 
After tuning, we can employ the method on fresh data to verify 
the method’s effectiveness. 
In our experiments, we used two sets. The first set contains 
computers that we know with certainty to be infected. The other 
set contains hosts we confidently know to be uninfected. We 
collected DNS traffic of infected hosts. We ran variants of the 
same bot in computers under our control. If the bots running in 
this group of hosts queried known and unknown names of their 
C&C server, we detected the former if they were in a blacklist. 
However, we were interested in testing if the Bayesian method 
could detect the latter names. We did that as follows. 
First, we picked m traces of our n infected hosts, and we altered 
their DNS packets by obfuscating any blacklisted names in them. 
We obfuscated names by appending to them a non-existent ccTLD 
(.nv) to each blacklisted name (in A and CNAME queries & 
answers). We refer to the infected hosts with altered traces as the 
masked hosts, and to the ones with unmodified traces as the 
unmasked hosts. Masked hosts cannot be identified as infected 
based on a blacklist. Second, we merged the traces of the masked, 
unmasked, and uninfected hosts. Finally, we applied the Bayesian 
method to the merged trace. We then observed (1) which 
uninfected hosts were classified as such, and (2) which masked 
hosts were identified as infected, based on non-blacklisted names 
that both masked and unmasked hosts queried. If the Bayesian 
method can successfully recognize that the masked hosts are 

infected, it can detect bots that use unknown C&C names, e.g., 
due to fastflux or other C&C obfuscation. 
We describe in the following subsections the tasks needed for this 
analysis. 

3.1. Blacklist and Bot Specimens 
For one month, we acquired malware samples from MWCollect 
[11]. MWCollect is a distributed honeypot with sensors around 
the world. We also obtained daily from Shadowserver [18] a 
blacklist of known C&C servers. We considered for our 
experiments only those samples that were classified as a bot by at 
least one of the 32 antivirus programs maintained by VirusTotal 
[12]. From this universe, we selected executables that (1) had the 
same name, according to the Kaspersky antivirus, (2) contacted a 
same known C&C server, and (3) had distinct MD5 signatures. 
This process selected the two variants of two distinct bots that we 
used in our experiments. They are classified by Kaspersky 
antivirus as Backdoor.Win32.SdBot.cmz [6] and Net-Worm. 
Win32.Bobic.k [7]. Both SdBot and Bobic.k (also known as 
Bobax) are very popular botnet families [26][28][29]. 

3.2. DNS Data Collection 
We collected DNS traffic from uninfected and infected hosts as 
described next. 
We monitored DNS traffic generated by 89 PCs in instructional 
laboratories of our university during two 24-hour periods starting 
February 13, 2008. These PCs run Microsoft Windows XP and are 
used throughout the day by university students of different 
academic programs. Their configuration is tightly maintained with 
the latest antivirus definitions and OS and application updates. We 
did not find any blacklisted domain name or IP address in their 
traces. We labeled such traces CSL-1 (February 13-14) and CSL-2 
(February 14-15). These are considered the uninfected hosts. 
To collect DNS traffic from infected hosts, we used a sandnet 
based on Truman [2]. We modified Truman to allow malware to 
run unattended and on multiple platforms simultaneously. We also 
installed a DNS server (BIND [22]) on the sandnet gateway to 
allow bots under test to resolve domain names. We ran in this 
sandnet the bot specimens we selected for testing. The SdBot and 
Bobic.k variants were run during February 13-14 and February 
14-15 respectively. We used 4 sandnet hosts during each 24-hour 
period. Table 1 below summarizes our setup. 
 

Table 1. Sandnet setup for collection of bot traffic 
Bot name Variant # of PCs Dates (2008) 

SdBot V1 2 
Feb. 13-14 

V2 2 

Bobic.k V1 3 
Feb. 14-15 

V2 1 
 

Hereafter we will refer to the traces that each bot executable 
generated as <bot name>-<variant number>-<host number>. For 
example, SdBot-V1-3 is the trace generated by SdBot’s variant #1 
that ran on the sandnet’s third host. We captured four traces of 
each bot running concurrently on different computers. We found 
that the traces differ even between instances of the same bot 
version. Table 2 shows the number of unique domains queried in 
each trace. 



 

 

Table 2. Number of DNS names queried per trace 
Trace Total DNS names queried 

CSL-1 6636 

CSL-2 4512 

SdBot-V1-1 6 

SdBot-V1-2 20 

SdBot-V2-3 4 

SdBot-V2-4 8 

Bobic.k-V1-1 26 

Bobic.k-V1-2 27 

Bobic.k-V2-3 7 

Bobic.k-V1-4 27 

3.3. Test Traces 
For each bot we created a set of four traces each containing one 
unaltered trace and three obfuscated ones. These traces were 
generated by the variants of the same bot in the different hosts 
where they ran (Table 1). We varied sequentially the trace left 
unaltered in each of those combined traces. Our intention was to 
see if the Bayesian method could identify the masked hosts as 
infected. We then merged each of those four combined traces with 
the traces of uninfected hosts that were monitored during the same 
time period as the respective bots (CSL-1 for SdBot and CSL-2 
for Bobic.k). We will refer to those merged traces as test traces. 
For instance, the unchanged SdBot-V1-1 trace was merged with 
CSL-1 plus the modified versions of traces SdBot-V1-2 and 
SdBot-V2-{3,4}. We labeled each of these test traces simply by 
adding the suffix -T to the name of the bot trace that remained 
unaltered. In the latter example, illustrated in Figure 2, the test 
trace is labeled SdBot-V1-1-T. Its masked hosts are the ones 
numbered 2, 3 and 4. Collectively, we will refer to these sets of 
new traces as CSL-1-Sdbot-T and CSL-2-Bobic.k-T. 
 

 
Figure 2. Example of creation of a test trace 

 

Table 3 below shows the number of unique DNS names in each 
test trace, including the obfuscated ones. There were some 
common domain names in the traces of the bots and the 
uninfected hosts for both time periods. Also, the divergence in 
total names for traces in group CSL-2-Bobic.k-T is due to the 
varying number of obfuscated domain names in each trace. 

Table 3. Number of DNS names queried in each test trace 
Group Test Trace # Names 

CSL-1-Sdbot-T Any 6660 

CSL-2-Bobic.k-T 

Bobic.k-V1-{1,4}-T 4548 

Bobic.k-V1-2-T 4549 

Bobic.k-V2-3-T 4547 

3.4. Evaluation metrics 
To measure the effectiveness of our experimental classification 
we compute the resulting recall or True Positive Rate (TPR) [3], 
as defined by the formula: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 , 

where TP is the number of true positives (infected hosts classified 
as infected) and FN is the number of false negatives (infected 
hosts classified as non-infected). The TPR has a maximum value 
of 1 if all the infected hosts are classified as infected, regardless of 
the number of misclassified uninfected hosts. 
In addition, we calculate the resulting False Positive Rate (FPR) 
[3], as defined according to the following formula: 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 , 

where FP is the number of false positives (non-infected hosts 
identified as infected) and TN is the number of true negatives 
(non-infected hosts classified as non-infected). 

4. EXPERIMENTAL RESULTS 
Initially, we applied the Bayesian method only to the test traces in 
CSL-1-Sdbot-T (section 3.3). We wanted to find parameters that 
could yield good classification results with that trace, and then see 
if these same parameters were effective in trace CSL-2-Bobic.k-T. 
Following [1] we used values of ω=Th=0.95 and P(Ih)=0.5, and as 
in [20] we consider any host with a score P(h)≥0.9 (section 2) to 
be infected. Unlike [1] (and [15]) we do not use a value of Tl that 
is as far from the neutral score 0.5 as Th is, because in our traces 
there are hundreds of queries with very low S'h scores. This is 
illustrated in Figure 3 using as an example the test trace 
SdBot-V1-2-T. A value of Tl=0.05 would cause the inclusion of 
these low scores in the calculation of N(h), thus overwhelming the 
contribution of the much less numerous queries with S'h scores 
greater than Th used to obtain the score I(h). This would cause the 
resulting P(h) scores to be much less than the classification 
threshold, negatively affecting the true positive rates. 
We started with a very low value of Tl=25·10-6, which excluded 
from N(h) all but the most popular query of any trace in 
CSL-1-Sdbot-T. Using these parameters we were able to classify 
all the masked hosts as infected without misclassifying any of the 
uninfected hosts. We later tried different values of Tl to evaluate 
the sensitivity of the method to such parameter. Starting with our 
initial Tl value, we tested new ones in increments of ±25·10-6 until 
it was clear that trying further values was diminishing the 
accuracy of the classification. In total, we made 20 tests (4 test 
traces times 5 Tl values) for the first 24-hour period. We computed 
TPR and FPR values for every test and averaged the results of the 
traces in the same set for identical values of Tl (e.g., for 
Tl=50·10-6, all the rates for the traces SdBot-V<variant #>-<host 
#>-T were averaged.) 

SdBot-V1-1-T

Unmodified
SdBot-V1-1

Unmodified
CSL-1

Altered
SdBot-V1-2

Altered
SdBot-V2-4

Altered
SdBot-V2-3



 

 

 
Figure 3. Histogram of S'h scores in trace SdBot-V1-2-T 

Table 4 summarizes the number of queries included in the 
calculation of score N(h) for each value of Tl. The main reason the 
counts for Tl=100·10-6 differ in trace SdBot-V1-2-T from the 
others in CSL-1-Sdbot-T is that some of the domain names in 
these traces were not queried the same number of times by the 
bots, i.e., their Nq count was different. This affected the score 
S'h(q) for certain queries, since its calculation is sensitive to the 
value of Nq. 
Table 4. Number of domain names with S'h < Tl considered in 

calculation of N(h) for traces in CSL-1-Sdbot-T 

Trace 
Tl (millionths) 

0 25 50 75 100 

SdBot-V1-1-T 0 1 3 4 7 

SdBot-V1-2-T 0 1 3 3 6 

SdBot-V2-{3,4}-T 0 1 3 4 7 
 

Figures 4 and 5 show averaged FPR and TPR values respectively. 
A confidence level of 95% was used to compute a confidence 
interval for the error bars. There were no false positives and no 
false negatives for Tl=25·10-6 and Tl=50·10-6. The only instance in 
which we obtained one false positive was for trace SdBot-V1-4-T 
with Tl=0, when a misclassified host queried a domain that was 
also queried by the unmasked host in that trace. Such domain 
name belongs to an advertising firm [8][4] and was probably 
issued by the bot trying to confuse detection tools [1] (section 3). 
Further investigation by our university’s tech support personnel 
found the host not to be compromised confirming it was indeed a 
false positive. Note that in this case the value of Tl was always 
less than any query’s S'h score and thus N(h) scores for all hosts 
were equal to 1. This means the misclassified host was detected as 
infected based uniquely in the queries with top S'h scores (the 
suspicious queries). 
The cases when we obtained one false negative (a masked host 
identified as non-infected) are shown in Table 5. After inspection 
of these instances, we found that the culprit was the name 
ad.doubleclick.net which was queried by 0.87% (77 of 89) of the 
uninfected hosts and the only misclassified masked host. Hence, 
that query received a S'h score less than Tl. This drove the host’s 
P(h) score considerably below the threshold (0.9). 
After applying the method to CSL-1-Sdbot-T, we applied it to 
traces in CSL-2-Bobic.k-T. The parameters that gave no false 
positives for the first botnet also gave no false positives and no 

false negatives for the second botnet. To verify robustness of these 
results, we varied Tl. There were no false positives for any value 
of Tl tested. Figure 6 shows the averaged TPRs obtained. There 
were no false positives for any of the Tl values. However, in one 
instance we obtained no true positives either (i.e., the algorithm 
was unable to identify any masked host as infected.) This 
happened when Tl=100·10-6 in trace Bobic.k-V2-3-T, where the 
only unmasked host ran the second Bobic.k variant (V2) while the 
three masked hosts ran the first (V1). The cause of these 
misclassifications is explained next. Unlike Bobic.k-V2, 
Bobic.k-V1 queried the domain www.microsoft.com in all three 
PCs where it ran. During the corresponding time period, that was 
a popular domain among uninfected hosts (60 out of 89 queried it) 
and therefore it received an S'h score below Tl. This in turn caused 
the P(h) scores of the masked hosts to fall below our classification 
threshold (0.9). Table 6 shows the number of queries included in 
the calculation of score N(h) for each value of Tl. 

 
Figure 4. Average False Positive Rate 

for traces in CSL-1-Sdbot-T 

 
Figure 5. Average True Positive Rate 

for traces in CSL-1-Sdbot-T 
Table 5. Cases when TPR < 1 for traces in CSL-1-Sdbot-T 

Trace Tl (millionths) TP 

SdBot-V1-1-T 75 2 

100 2 

SdBot-V2-3-T 75 2 

100 2 

SdBot-V2-4-T 75 2 

100 2 



 

 

 
Figure 6. Average True Positive Rate 

for traces in CSL-2-Bobic.k-T 
 

Table 6. Number of domain names with S'h < Tl considered in 
calculation of N(h) for traces in CSL-2-Bobic.k-T 

Trace 
Tl (millionths) 

0 25 50 75 100 

Bobic.k-V1-{1,4}-T 0 1 2 3 3 

Bobic.k-V1-2-T 0 1 2 3 3 

Bobic.k-V2-3-T 0 1 2 3 4 

5. DISCUSSION AND LIMITATIONS 
Our results suggest the absence of false positives and false 
negatives for fairly wide ranges of parameters. However, if 
parameters are not well tuned, the method may generate false 
positives if a domain name is queried only by an infected host and 
one or a few of the uninfected hosts. In this case the method will 
incorrectly classify an uninfected host as infected because it 
queried a domain name that was not also queried by a sufficient 
number of other uninfected hosts. When we varied parameters for 
sensitivity analysis, the Bayesian method generated only one false 
positive. As explained before, the domain name that caused such 
misclassification did not correspond to a C&C server, but to a 
legitimate company (Microsoft). It was queried only by the bot 
and by the uninfected host deemed compromised by the method. 
Moreover, this specific instance occurred when no query’s S'h 
score was below the lower bound Tl. This error does not occur if 
Tl is properly tuned. 
False negatives may occur, if parameters are not well tuned, when 
very popular domain names during a time period are queried by 
both infected and uninfected hosts. This may occur because the 
number of queries with a S'h score near zero (indicating a low 
probability of the querying host to be infected) is usually 
considerably more than that of queries with scores near one. In 
our experiments, we observed false negatives only after we 
increased the lower bound threshold Tl to include more queries in 
the calculation of the host P(h) score. Proper Tl tuning avoids this 
error. 

6. RELATED WORK 
The method used in this paper is based on a Bayesian technique to 
distinguish between spam and non-spam (“ham”) e-mails, due to 
G. Robinson [13] (based on previous work by P. Graham [20]). It 
was employed to classify a new e-mail message as spam or ham 
based on the words it contains and the frequency those words 

appear in messages in two manually pre-classified sets. These sets 
consist of spam and non-spam e-mails respectively. Robinson 
modified the original method to allow the inclusion of any 
background information available about the probability of 
classifying a message as spam when words in it are seen for the 
very first time [13]. 
Ishibashi et al. [1] applied Robinson’s method for the identifica-
tion of a mass-mailing worm (Netsky [10]). They proposed to 
calculate the posterior probability of a host h being infected by the 
worm, based on the queries Qh the host made during a specific 
traffic-monitoring period. A bug in Netsky caused it to make a 
distinctive, albeit bogus, query of an undefined DNS type. Such 
query was used as a signature for classifying a host as 
initially-infected. However in [1] they lacked a list of infected 
hosts (apart from those making the bogus query) in the traffic 
monitored, so the true detection rate achieved was not reported. 
Rajab et al. [25] present a comprehensive infrastructure for botnet 
capture and tracking. It allowed them to perform an extensive 
investigation of measurements that characterize the structure and 
behavior of botnets. As part of their study they describe a 
life-cycle model of a typical botnet infection in terms of the bot 
activities such as download of the bot binary, C&C server DNS 
name resolution and C&C communication. 
A similar model was presented by Gu et al. [24]. However they 
(1) exclude C&C name resolution and the monitoring of bot 
propagation in internal networks, and (2) include the bot activities 
of inbound scanning of internal vulnerable hosts as well as 
outbound infection scanning of potential victims. Their system, 
BotHunter, must be located on a network’s egress position to 
monitor communication flows caused by bot actions 
(characterized in the life-cycle model). Bothunter uses anomaly 
detection techniques and a signature engine to identify those flows 
and then employs a correlation mechanism to issue an alarm if 
enough of the bot activities are detected. Unlike our approach, 
Bothunter (1) needs to monitor all network traffic, (2) does not 
use DNS traffic, and (3) performs more time consuming and 
complex activities [24]. 
BotSniffer [26] tries to discover spatial-temporal correlations and 
similarities in two types of bot responses to directives sent 
through a C&C channel. They are activity response (e.g., port 
scanning and spamming) and message response (e.g., informing 
the C&C of some action’s outcome). In both cases, bots reply in a 
similar way and at a similar time window, forming a “response 
crowd” that exhibit strong synchronicity. BotSniffer uses anomaly 
detection techniques to identify bot infection by monitoring the 
two types of responses within a group (a set of hosts connecting to 
the same server). These techniques detect botnets respectively by 
analyzing (1) “dense crowds”, i.e., those consisting of sizeable 
fractions of hosts in a group that issue message or activity 
responses, and (2) homogeneous crowds, i.e., those whose 
members have similar message responses. In contrast to these 
group analysis techniques, we only need to process DNS traffic. 
Choi et al. [23] proposed two methods to identify botnets based on 
DNS traffic. The first computes a similarity between IP lists of 
hosts that made the same DNS query during two consecutive time 
periods. If the similarity is greater than a threshold, their system 
raises an alarm. For this they needed IP lists of at least five 
members. The second method detects multiple names of a C&C 
server if the IP lists of such names are of similar sizes. 
Nonetheless, the first technique can be defeated by spoofing IP 
addresses unless they maintain certain state information. This may 



 

 

affect the method’s scalability. The second technique can generate 
false positives if the IP lists of two legitimate domain names 
happen to be of comparable sizes without being excessively large. 
Our approach however, can identify groups of less than five 
infected hosts. 
In another paper, we evaluated three heuristics for detecting 
anomalies in DNS traffic [30]. We found one heuristic to be 
particularly reliable: Names outside the querier's domain for 
which many DNS replies with NXDOMAIN status are observed 
usually correspond to C&C servers that have been taken down. 

7. CONCLUSION 
We proposed and evaluated a Bayesian method for botnet 
detection. Although similar methods have been broadly adopted 
by the spam-detection community and used before for worm 
detection [1], it had not been applied to bot detection before. Also, 
in the latter case no conclusive information about its effectiveness 
was reported. In this study, we found that the technique 
successfully recognized C&C servers with multiple domain 
names, while at the same time generating few or no false 
positives. Our sensitivity analysis suggests that the method is 
robust. 

8. ACKNOWLEDGEMENTS 
This project was funded in part by The Technology Collaborative 
through a grant from the Commonwealth of Pennsylvania, 
Department of Community and Economic Development. 

9. REFERENCES 
[1] K. Ishibashi, T. Toyono, K. Toyama, M. Ishino, H. Ohshima, 

I. Mizukoshi, “Detecting MassMailing Worm Infected Hosts 
by Mining DNS Traffic Data,” ACM Symposium proceedings 
on Communications architectures and protocols (SIGCOMM 
’05), pp 159-164, August 2005. 

[2] J. Stewart. “Truman - The Reusable Unknown Malware 
Analysis Net.” [Online] 
http://www.secureworks.com/research/tools/truma.html 

[3] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 
“Introduction to Data Mining” (1st ed.) 

[4] McAfee © SiteAdvisor, “Report for cpaclicks.com,” [Online] 
http://www.siteadvisor.com/sites/cpaclicks.com 

[5] The Honeynet Project, “Know your Enemy: Tracking 
Botnets – Bot-Commands”, [Online] 
http://honeynet.org/papers/bots/botnet-commands.html 

[6] Kaspersky Lab’s VirusList.com, “Backdoor.SdBot.gen” 
http://viruslist.com/en/viruses/encyclopedia?virusid=24976 

[7] Kaspersky Lab’s VirusList.com, 
“Net-Worm.Win32.Bobic.k”, [Online] 
http://viruslist.com/en/viruses/encyclopedia?virusid=90085 

[8] Shawn Collins’ Affiliate Marketing Blog, “Florida Attorney 
General Investigates Affiliate Marketers,” [Online] 
http://blog.affiliatetip.com/archives/florida-attorney-general-
investigates-affiliate-marketers/ 

[9] F. Weimer. “Passive DNS Replication,” in Proc. 17th Annual 
FIRST Conf., July 2005. [Online] 
http://www.first.org/conference/2005/papers/florian-weimer-
paper-1.pdf 

[10] Kaspersky Lab’s VirusList.com, 
“Email-Worm.Win32.NetSky.ae,” [Online] 
http://viruslist.com/en/viruses/encyclopedia?virusid=50431 

[11] MWCollect. “Malware Dedicated Whitehats.” [Online] 
http://www.mwcollect.org/ 

[12] VirusTotal. “Free Online Virus and Malware Scan.” [Online] 
http://www.virustotal.com/ 

[13] Gary Robinson. “A statistical approach to the spam 
problem”. In Linux Journal 107, March 2003, [Online] 
http://www.linuxjournal.com/article.php?sid=6467 

[14] Gary Robinson, “Spam Detection”, [Online] 
http://radio.weblogs.com/0101454/stories/2002/09/16/spamD
etection.html 

[15] Greg Louis, “Bogofilter Calculations: Comparing Geometric 
Mean with Fisher’s Method for Combining Probabilities,” 
[Online] http://www.bgl.nu/bogofilter/fisher.html 

[16] N. Ianelli and A. Hackworth. Botnets as a Vehicle for Online 
Crime. CERT Coordination Center, 2005. 

[17] Evan Cooke and Farnam Jahanian. The zombie roundup: 
Understanding, detecting, and disrupting botnets. In Steps to 
Reducing Unwanted Traffic on the Internet Workshop, 2005. 

[18] Shadowserver Foundation. [Online] http://shadowserver.org/ 
wiki/pmwiki.php?n=Shadowserver.Shadowserver 

[19] Honeynet Project. “Know Your Enemy: Fast-Flux Service 
Networks.” [Online] http://www.honeynet.org/papers/ff/fast-
flux.pdf 

[20] Paul Graham, “A Plan for Spam,” [Online] 
http://www.paulgraham.com/spam.html. 

[21] Jonathan Zdziarski,. “Ending Spam: Bayesian Content 
Filtering and the Art of Statistical Language Classification”. 
No Starch Press, 2005. 

[22] Paul Albitzand and Cricket Liu, "DNS and BIND". O’Reilly 
and Associates, 2001. 

[23] Hyunsang Choi, Hanwoo Lee, Heejo Lee, Hyogon Kim, 
“Botnet Detection by Monitoring Group Activities in DNS 
Traffic,” in 7th IEEE International Conference on Computer 
and Information Technology (CIT), 2007. 

[24] G. Gu, P. Porras, V. Yegneswaran, M. Fong, W. Lee: 
“BotHunter: Detecting Malware Infection Through IDS-
Driven Dialog Correlation. In Proc. of USENIX Security 
Symposium, Boston, MA, August 2007. 

[25] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. “A multi-
faceted approach to understanding the botnet phenomenon”. 
In Proceedings of ACM SIGCOMM/USENIX Internet 
Measurement Conference, Brazil, October 2006. 

[26] G. Gu, J. Zhang and W. Lee. “BotSniffer: Detecting Botnet 
Command and Control Channels in Network Traffic,” in 
Proceedings of the 15th Annual Network and Distributed 
System Security Symposium, ISOC, February 2008. 

[27] David Heckerman. “A tutorial on learning with Bayesian 
networks.” In Michael Jordan, editor, Learning in Graphical 
Models, pages 301–354. Kluwer Academic, 1998. 

[28] M. K. Reiter and T.-F. Yen. “Traffic aggregation for malware 
detection.” In Proceedings of the Fifth GI International 
Conference on Detection of Intrusions and Malware, and 
Vulnerability Assessment (DIMVA’08), 2008. 

[29] Inoue, D. Yoshioka, K. Eto, M. Hoshizawa, Y. Nakao, K. 
“Malware Behavior Analysis in Isolated Miniature Network 
for Revealing Malware's Network Activity”. IEEE 
International Conference on Communications (ICC) 2008. 

[30] Villamarín-Salomón, R., Brustoloni, J.C. "Identifying 
Botnets Using Anomaly Detection Techniques Applied to 
DNS Traffic". 5th IEEE Consumer Communications and 
Networking Conference (CCNC), 2008.  

 


	1. INTRODUCTION
	2. BAYESIAN METHOD
	2.1. Application to Bot Detection
	3. METHODOLOGY
	3.1. Blacklist and Bot Specimens
	3.2. DNS Data Collection
	3.3. Test Traces
	3.4. Evaluation metrics
	4. EXPERIMENTAL RESULTS
	5. DISCUSSION AND LIMITATIONS
	6. RELATED WORK
	7. CONCLUSION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

