Research Article

Design, Synthesis and Evaluation of Biological activity of certain Novel Triazole schiff bases

Bhagyalakshmi N¹, Udupi RH^{2*} and Niranjan MS¹

¹Govt. college of pharmacy, Bangalore. Karnataka, India. ²N.E.T. Pharmacy college, Raichur. Karnataka, India.

ABSTRACT

4- Formyl phenoxy acetic acid (1) obtained from 4-hydroxy benzaldehyde yielded the corresponding Schiff bases (**2**a₁-a₁₀) bearing free carboxyl group on treatment with primary amines/acid hydrazides under anhydrous condition. Several 4-amino-3-substituted-5-mercapto-1,2,4-triazoles (**3**a₁-a₁₀) were prepared in excellent yields by the condensation of Schiff bases bearing free carboxyl group with thiocarbohydrazide through a single step reaction. Elemental analysis, IR and ¹HNMR data confirmed the structure of the newly synthesized compounds. Synthesized triazole derivatives were investigated for their antibacterial, antifungal, anti-inflammatory and analgesic activities. The tested compounds showed significant anti-inflammatory and antibacterial activities. However these compounds exhibited moderate analgesic and antifungal activities.

Keywords: 4-amino triazoles, bioactivity, Schiff bases, spectral characterization, antiinflammatory and analgesic activities.

INTRODUCTION

Synthesis of compounds for potent and diverse biological activity has always drawn considerable interest. Several five membered aromatic systems having three heteroatoms at symmetrical positions have been studied because of their interesting physiological properties^{1,2}. 4-amino-3substituted-5-mercapto-1,2,4-triazoles as a bifunctional agent, can react with various electophillic reagents and their derivatives have been reported to possess broad spectrum of biological activities³⁻⁶ which have stimulated much interest in the chemistry of triazoles. Similarly Schiff bases are also known for their anti-inflammatory, anticancer and antitubercular activity. So it was though that triazoles bearing Schiff base moiety could be more potent bioactive compounds.

The above observations coupled with our continued interest in the synthesis of biologically active compounds, prompted us to undertake the synthesis

of heterocycles wherein the two biologically active moieties like triazoles and Schiff bases are present together and also to explore the activities associated with these nuclei. The required 4-amino-3-substituted-5mercapto-1,2,4-triazoles (3a1-a10) were prepared in excellent yield through multistep reactions. 4-hydroxy benzaldehyde was reacted in alkaline condition with aqueous chloroacetic acid to obtain 4-formyl phenoxy acetic acid (1) which is on treatment with different amines/hydrazides under anhydrous conditions furnished Schiff bases (2a₁-a₁₀) bearing a free carboxyl group. The synthesis of 4-amino-3substituted-5-mercapto-1,2,4-triazoles was accomplished in a single step by condensing Schiff bases with thiocarbohydrazide following the literature method⁷ and the synthesised derivatives were investigated for their biological activities like antibacterial, antifungal, anti-inflammatory and analgesic activities.

The reaction sequence leading to the formation of desired compound are outlined in scheme-I. As depicted in the scheme the Schiff bases $(2a_1-a_{10})$ bearing free carboxyl group cyclised to 4-amino-3-substituted-5-mercapto-

1,2,4-triazoles $(3a_1-a_{10})$ by reacting with thiocarbohydrazide. The hydrazide used for preparing Schiff bases $(2a_7-a_{10})$ were obtained from hydrazinolysis of esters of substituted aryl\ aryloxy acetic acid.

The Schiff bases $(2a_1 - a_{10})$ were condensing obtained by amines/hydrazides with 4-formyl phenoxy acetic acid which in turn obtained bv reacting 4-hvdroxv benzaldehyde with chloro acetic acid in alkaline condition. The IR spectrum of compound 4-formyl phenoxy acetic acid showed characteristic absorption bands in the region 3060 (-OH of COOH), 2852 & 2918 (aromatic C-H stretching, strong broad bands), 1755 (C=O of CHO) and 1714 (C=O of COOH). (1,4-disubstituted 844 benzene ring). The compound gave positive tests for carboxyl and aldehyde aroups. The disappearance of absorption bands at 1755 for C=O of CHO in the IR spectrum and appearance of a new peak C=N in the range 1600-1615 cm⁻¹ indicated the formation of the Schiff bases. Chemical tests showed negative test for aldehyde group. The ¹HNMR spectrum of $2a_1$, showed characteristic signals at δ 3.5 (1H, s, CH=N), 4.8 (2H, s, OCH₂) 7.0-7.8 (9H, m, Ar-H), 9.8 (1H, s, OH). The spectra of other Schiff bases also confirm their formation.

The reaction of Schiff bases with thiocarbohydrazide furnished in the single step the required triazole derivatives. IR spectra of compound 3a showed characteristic absorption bands at 3439 (NH₂), 3065 (aromatic C-H stretching), 2926 (CH stretch of OCH₂), 1651 (NH bending), 1599 (C=N), 1512 (C=S), (C=C), 1246 840 (1,4disubstituted benzene The ring). disappearance of strong bands at 2852 and 2918 for OH of COOH of Schiff base and appearance of new broad peak at 3439 for NH₂ of triazole confirms the formation of triazole, ¹HNMR spectrum of **3a** showed characteristic signals at δ 8.5 (1H, s, CH=N), 4.8 (2H, s, -OCH₂), 5.9 (2H, s, NH₂), 7.0-7.8 (9H, m, Ar-H). The peak for OH of COOH at 9.8 is disappeared and the new peak for –SH of triazole appeared at 13.8 confirming the formation of triazole. The spectra of other Schiff bases also confirm their formation.

Biological activity

In the present investigation, certain synthesized derivatives were screened for their following biological activity.

a) Antibacterial and antifungal activity⁸

The triazole derivatives (3a, 3a, 3a, 3a7, 3a8, & 3a9) were screened for invitro antibacterial activity against the standard strains of Staphylococcus aureus, Bacillus subtilis (MMTC-441) (Gram positive), Escherichia coli (MMTC-4315) Pseudomonas and auriginosa (MMTC-424) (Gram negative) by cup-plate method at 100 and 200 µg/ml concentration. DMSO was used as solvent control. Streptomycin and Ampicillin were used as standard drugs.

The synthesized compounds were also tested for antifungal activity against fungal organisms *Aspergillus oryzae* (**MMTC-1122**) and *Candida albicans* (**MMTC-183**) by Cup-plate method in potato dextrose agar (**PDA**) medium at the concentration levels of 100 and 200 μ g/ml. DMSO was used as solvent control and Griseofulvin, Clotrimazole were used as standard.

The antibacterial and antifungal screening of the compounds revealed that triazole derivatives exhibited weak to moderate activity. Among these triazole derivatives, it was observed that the compounds derived from acid hydrazides like $3a_8-a_{10}$ were found to possess much higher activity than

triazole derivatives derived from aromatic amines $(3a_1-a_7)$. This may be due to the presence of CONH group. The activity of the compounds was found to be 50 % of Streptomycin and almost 70 % of Ampicillin. However no conclusions could be drawn for probable mechanism of action or structural activity relationship (SAR) among the compounds of the above series.

b) Anti-inflammatory and analgesic activity^{9,10}

The triazole derivatives (**3a**₂, **3a**₄, **3a**₆, **3a**₇, **3a**₈, **3a**₉) were screened for antiinflammatory activity using rat hind paw

method of Winter et al, modified by Dhawan and Srimal. The compounds were also screened for analgesic activity using Eddy's hot plate technique. Anti-inflammatory activity carried out by carrageenan induced rat paw oedema method revealed that triazole derivatives of both mono substituted amines and acid hydrazides showed significant anti-inflammatory activity comparable to standard drua (Ibuprofen). The activity was found to be 86 % of the standard and it continued till the 4th hr under test.

	Anti-inflammatory activity decrease in paw oedema volume and percentage of reduction										
Treatment	1 st Hour	2 nd Hour		3 rd Hour		4 th Hour					
group	Oedema Vol. (ml)	% red.	Oedema Vol. (ml)	% red.	Oedema Vol. (ml)	% red.	Oedema Vol. (ml)	% red.			
Control	0.6916 ±0.2712	-	0.895 ±0.018	-	1.091 ±0.481	-	1.425 ±0.613	-			
Ibuprofen	0.415 ±0.0214	39	0.343 ±0.029	61	0.320 ±0.0275	70	0.2966 ±0.024	80			
3a ₂	0.5466 ±0.0290	20	0.5166 ±0.032	42	0.450 ±0.0288	58	0.435 ±0.026	68			
3a₄	0.5583 ±0.0247	19	0.505 ±0.029	43	0.445 ±0.0325	59	0.426 ±0.032	69			
3a ₆	0.516 ±0.0247	25	0.48 ±0.031	46	0.415 ±0.037	61	0.4033 ± 0.031	71			
3a ₇	0.5166 ± 0.037	25	0.466 ± 0.039	47	0.401 ± 0.0399	63	0.398 ± 0.038	72			
3a ₈	0.483 ± 0.027	30	0.436 ± 0.024	51	0.380 ± 0.023	65	0.358 ± 0.023	74			
3a₀	0.4766 ± 0.022	31	0.428 ± 0.020	52	0.371 ± 0.022	66	0.358 ± 0.016	74			

Table 3A: Anti-inflammatory activity of triazole derivatives

Analgesic activity of the compounds was carried out in albino mice of either sex by noting the reaction time to the painful stimuli. Eddy's Hot plate technique was used for the study. The reaction time for each mouse was recorded at a time interval of 0, 15, 30, 60, 120, 240 and 480 minutes after the administration of test substance. Though at the initial hours the analgesic activity of the compounds were slightly higher in comparison to standard drugs, the detailed study revealed that compounds exhibited only moderate analgesic activity.

Treatment	Average reaction time (Mean ± SEM) and percentage analgesic activity.											
group	0 Hour	½ Hour	1 Hour	2 Hour	4 Hour	6 Hour	% analgesic activity (PAA)					
Control	2.75 ± 0.30	3.25 ± 0.30	3.66 ± 0.30	4.08 ± 0.23	4.25 ± 0.21	4.45 ± 0.58	-					
Phenazone	3.50 ± 0.18	5.75 ± 0.21	7.08 ± 0.23	8.41 ± 0.27	9.83 ± 0.21	12.5 ± 0.22	357.14					
Diclofenac	3.41 ± 0.20	4.75 ± 0.21	5.83 ± 0.21	7.16 ± 0.27	8.25 ± 0.21	10.58 ± 0.153	310.26					
3a₂	3.66 ± 0.30	4.5 ± 0.18	4.75 ± 0.28	5.25 ± 0.28	5.91 ± 0.15	6.75 ± 0.21	184.42					
3a₄	3.75 ± 0.21	4.5 ± 0.22	4.8 ± 0.21	5.08 ± 0.23	5.25 ± 0.28	6.33 ± 0.37	168.80					
3a₀	3.75 ± 0.21	4.83 ± 0.10	5.33 ± 0.10	5.75 ± 0.21	6.16 ± 0.27	6.91 ± 0.23	184.26					
3a ₇	3.75 ± 0.21	4.75 ± 0.11	5.41 ± 0.08	6.61 ± 0.10	6.83 ± 0.10	7.33 ± 0.10	195.47					
3a₀	3.83 ± 0.16	5.41 ± 0.15	6.08 ± 0.23	6.75 ± 0.28	7.25 ± 0.30	7.83 ± 0.24	204.44					
3a ₉	3.41 ± 0.21	4.83 ± 0.24	5.5 ± 0.18	6.33 ± 0.10	6.91 ± 0.20	7.58 ± 0.15	222.29					

Table 3B: Analgesic activity of triazole derivatives

Experimental

Melting points were determined on a Toshniwal apparatus in open capillaries and are uncorrected. The purity of the compounds was checked by TLC on silica gel-GF254 plates using ethyl acetate: n-hexane (1:1) solvent system as irrigant and UV light as visualizing agent. IR spectra in KBr (cm⁻¹) was recorded on a Shimadzu FTIR-8400 series spectrophotometer and ¹HNMR $(DMSO-d_6)$ on Bruker spectra spectrospin 200 MHz spectrometer using TMS as internal standard (chemical shifts are expressed in δ ppm). All the compounds showed satisfactory analytical results for C, H and N.

Synthesis of thiocarbohydrazide

Absolute ethanol (25 ml) and hydrazine hvdrate (16 ml) were taken in a beaker and stirred. To this ammonium hydroxide solution (10 ml) was added with stirring. Carbon disulphide (4 ml) was added drop wise at this stage for 10 min with stirring and the mixture was allowed to stand for 30 min. Later sodium chloro acetate (4.5 gm) followed by hydrazine hydrate (6 ml) was added to the above mixture and stirring was continued for 3-4 hrs. The reaction mixture was kept in refrigerator for whole night. The crystalline product obtained was filtered, washed with ethanol, dried and recrystallized from hot water (white crystalline solid, mp 168 °C, yield 80 %). IR (KBr) cm⁻¹: 3422 (NH), 3275 (NH₂), 1649 NH bending, 1287 (C=S).

Synthesis of 4-formyl phenoxy acetic acid:

The 4-hydroxy benzaldehyde (3 gm, 0.26 mol) was dissolved in 33 % aqueous NaOH solution to which was added slowly chloroacetic acid solution (2.5 gm, 0.26 mol) with constant stirring, sufficient water was added to dissolve the solid obtained and the reaction mixture was refluxed for 7 hrs. On cooling it was acidified with HCl and

the precipitate obtained was dissolved in 10 % NaHCO₃ solution and again reprecipitated with HCI. The solid was filtered, washed 2-3 times with water, dried and recrystallized from aqueous ethanol (Whitish crystalline solid, mp 197 °C, yield 75 %).

Synthesis of Schiff bases Method-1

Equimolar quantities of 4-formyl phenoxy acetic acid and substituted primary amine/hydrazide were taken in sufficient quantity of absolute ethanol with catalytic amount of glacial acetic acid/p-toluene sulphonic acid and the reaction mixture was refluxed for 10-12 hrs. Excess of ethanol was distilled off. The obtained solid product was washed with sod.bisulphite, dil.HCl followed by water and recrystallized from aqueous ethanol.

Method-2

Eqimolar quantities of 4-formyl phenoxy acetic acid (0.01 mol) and primary amine (0.01 mol) were taken in sufficient quantity of glacial acetic acid and refluxed for 6-8 hrs. The reaction mixture was concentrated and poured on crushed ice when require Schiff base precipitates out. It was filtered washed with water and recrystallised from aqueous ethanol.

In the both methods the progress and of the compounds purity were monitored by TLC studies using silica gel plates. The spots on the plates were visualized in UV chamber and Rf were noted. The other values compounds of this series were prepared following the same procedure and characterized.

 $2a_1$: IR : 3530 (OH), 3061 (aromatic C-H stretching), 2928 and 2858 C-H stretching of OCH₂ asymmetric and symmetric, 1745 (C=0), 1599 (C=N) and (C=C); 1420-1312 (C-H bending of OCH₂ asymmetric and symmetric), 1172 (C-O-C), 835 (1, 4-disubstituted phenyl ring), 760 (monosubstituted phenyl ring), ¹HNMR 4.8 (2H, s, OCH₂),

7.00-7.80 (9H, m, Ar-H), 8.80 (1H, s, CH=N), 11.70 (1H, s, OH of COOH), Mass m/z 255 (M^+).[Found C, 70.53; H, 4.98; N, 5.45 C₁₅H₁₃O₃N requires C, 70.58; H.5.09 ; N, 5.49 %]

2a2: IR: 3452 (OH), 3060 (aromatic C-H stretching), 2970 and 2854 (C-H stretching of OCH₂, asymmetric and symmetric), 1712 (C=O), 1601 (C=N), 1576, 1512 (C=C), 1410 and 1375 (C-H bending of OCH₂ asymmetric and symmetric), 1175 (C-O-C), 839 (1,4disubstituted phenyl ring), 592 (C-Cl), ¹**HNMR** 4.8 (2H, s, OCH₂), 7.00-7.80 (8H, m, Ar-H), 8.90 (1H, s, CH=N), 11.74 (1H, s, OH of COOH).[Found C, 62.22; H, 4.08; N, 4.80; C₁₅H₁₂O₃NCl requires C, 62.28; H, 4.15; N, 4.84 %]

2a4: IR: 3450 (OH), 3062 (aromatic C-2962-2848 Н stretching), (C-H stretching of OCH₂, CH₃ groups), 1718 (C=O), 1604 (C=N), 1599, 1524, 1476 (C=C ring stretching), 1422-1380 (C-H bending OCH₂& CH₃ groups) 1190 (C-O-C), 842 (1,4-disubstituted benzene), ¹**HNMR** 2.30 (3H, s, CH₃), 4.80 (2H, s, -OCH₂), 7.00-7.80 (8H, m, Ar-H), 8.90 (1H, s, HC=N), 11.70 (1H, s, -OH), Mass m/z 269 (M⁺).[Found C, 71.29; H, 5.53; N, 5.16; C₁₆H₁₅O₃N requires C, 71.37; H, 5.57; N, 5.20 %].

2a8: IR: 3462 (OH), 3348 (NH), 3065 (aromatic C-H stretching), 2930-2838 (C-H stretching of CH_3 , CH_2 and OCH_2 groups), 1728 (C=O), 1668 (C=O of CONH), 1608 (C=N), 1602,1580, 1465 (C=C ring stretching), 1428 (C-N),

1418-1368 (C-H bending of CH₃, CH₂ and OCH₂ groups), 1192 (O-H bending), 1185 (C-O-C), 838 (1,4disubstituted phenyl rings), ¹**HNMR** 0.90 (6H, d, 2xCH₃ of CH(CH₃)₂, 1.40 (3H, d, CH₃ of CH-CH₃), 1.80 (1H, m, CH of CH(CH₃)₂), 2.40 (2H, d, CH₂ of CH₂-CH(CH₃)₂), 3.80 (2H, s, CH₂ of OCH₂), 3.90 (1H, q, CH of CH-CH₃), 7.10-8.00 (8H, m, Ar-H), 8.70 (1H, s, HC=N), 10.60 (1H, s, NH of –CONH), 11.80 (1H, s, OH of COOH).[Found C, 69.02; H, 6.72; N, 7.29; C₂₂H₂₆O₄N₂ requires C, 69.10; H, 6.80; N, 7.32 %].

Synthesis of triazole

Equimolar quantities of Schiff base and thiocarbohydrazide were taken in rb flask fitted with thermometer. The reaction mixture was heated in an oil bath on hot plate till the contents started melting. The mixture was maintained at the same temperature for 1-2 hrs with occasional shaking the flask. The reaction mixture was cooled. washed, with 10 % sodium bicarbonate solution, followed by water, dried and recrystallized from DMF. The progress and purity of the compounds was monitored by TLC studies using silicagel **GF254** plates. The solvent system used was ethyl acetate : Petroleum ether.

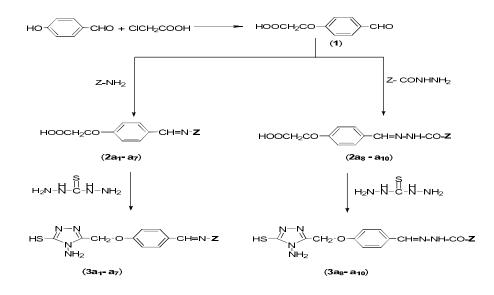
The compounds of this series were prepared following the same procedure and characterised in

S. No.	Code	Z	mp ⁰C	% Yield	Rf value	
1	2a ₁	Phenyl	207	60	0.50	
2	2a ₂	4-Chlorophenyl	165	78	0.52	
3	2a₃	2-Chlorophenyl	154	48	0.50	
4	2a4	4-methyl phenyl	178	81	0.50	
5	2a₅	2-methyl phenyl	69	58	0.45	
6	2a ₆	2-fluoro phenyl	206	60	0.56	
7	2a ₇	4-hydroxy phenyl	271	66	0.66	
8	2a ₈	2[4'-Isobutyl phenyl] propionyl carboxamido	155	40	0.67	
9	2a ₉	2[5'-methoxynaphthyl] propionyl carboxamido	184	40	0.68	
10	2a ₁₀	2[1'-amino, 2',6'-dichloro phenyl] benzyl carboxamido	176	35	0.60	
11	3a₁	Phenyl	220-224	64	0.50	
12	3a ₂	4-Chloro phenyl	203	65	0.55	
13	3a₃	2-Chloro phenyl	192	45	0.56	
14	3a₄	4-methyl phenyl	223	65	0.62	
15	3a₅	2-methyl phenyl	165	45	0.56	
16	3a ₆	2-fluoro phenyl	246	40	0.62	
17	3a7	4-hydroxy phenyl	250	55	0.58	
18	3a₀	2(4'-isobutyl phenyl) propionyl carboxamido	214	38	0.65	
19	3a ₉	2(5'-methoxy naphthyl) propionyl carboxamido	250	35	0.65	
20	3a ₁₀	2(1'-amino, 2',6'-dichloro phenyl) benzyl carboxamido	252	40	0.68	

Table I: Physical data of compounds (2a₁-a₁₀) and (3a₁-a₁₀).

3a1: IR: 3439 (NH₂), 3072 (aromatic Cн stretching), 2926, 2857 (C-H stretching of -OCH₂ asymmetric and symmetric), 2620 (SH), disappearance of C=O of COOH at 1745, 1651 (N-H bending), 1599 (C=N), 1560, 1512, 1460 (C=C ring stretching), 1160 (C-O-C), 840 (1,4-disubstituted phenyl ring), 730 (monosubstituted phenyl ring), 690 (C-S), ¹HNMR 5.10 (2H, s, OCH₂), 5.89 (2H, s, NH₂), 7.85-8.28 (9H, m, 8H of Ar-H and 1H of CH=N), 13.18 (1H, s, SH), Mass m/z 325 (M⁺), 210, 180, 115, 107, 104, 77, 65. [Found C, 70.54; H, 5.00; N, 5.47; C₁₅H₁₃O₃N requires C, 70.58; H, 5.09; N, 5.49 %].

3a2: IR: 3417 (NH₂), 3068 (aromatic C-H stretching), 2931 (C-H stretching of OCH₂), 1640 (N-H bending), 1606 (C=N), 1598, 1514, 1455 (C=C ring stretching), 1242 (C=S), 824 (1,4-disubstituted phenyl ring), 698 (C-S), 569 (C-Cl); ¹HNMR 5.10 (2H, s, -OCH₂), 6.00 (2H, s, NH₂), 7.30-8.70 (9H, m, 8H of Ar-H and 1H of HC=N), 13.2 (1H, s, SH), Mass m/z 359, 244, 139, 115, 107, 77, 65.[Found C, 53.41; H, 3.79; N, 19.44; C₁₆H₁₄ON₅SCI requires C, 53.48; H, 3.89; N, 19.49 %].


3a4:IR: 3421 (NH₂), 3070 (aromatic C-H stretching), 2924 (C-H stretching of –

OCH₂), 1643 (NH bending), 1606 (C=N), 1585, 1510, 1479, (C=C ring stretching), 1246 (C=S), 1174 (C-O-C), 833 (1,4-disubstituted phenyl ring), 698 (C-S), ¹HNMR 2.52 (3H, s, CH₃), 5.00 (2H, s, -OCH₂), 5.68 (2H, s, NH₂), 6.70-7.90 (9H, m, 8H of Ar-H and 1H of HC=N), 13.23 (1H, s, -SH), Mass m/z 339 (M⁺), 224, 128, 115, 107, 77, 65. [Found C, 60.11; H, 4.95; N, 20.59; $C_{17}H_{17}N_5OS$ requires C, 60.17; H, 5.00; N, 20.64 %] 3a8: IR: 3449 (NH₂), 2986, 2955, 2868 (C-H stretching of OCH₂, CH₂& CH₃ group), 1640 (N-H bending), 1602 (C=N), 1580, 1520, 1452 (C=C ring stretching), 1261 (C=S), 1170 (C-O-C), 840 (1,4-disubstituted phenyl ring), 1696 (C-S), ¹HNMR 0.90 (6H, d, 2xCH₃) of CH(CH₃)₂), 1.4 (3H, d, CH₃ of CH-CH₃), 1.8 (1H, m, CH of CH(CH₃)₂), 2.4 (2H, d, CH₂ of CH₂-CH(CH₃)₂), 3.9 (1H, q, CH of CH-CH₃), 4.8 (2H, s, CH₂ of OCH₂), 5.6 (2H, s, NH₂), 6.70-8.30 (9H, m, 8H of Ar-H and 1H of HC=N), 10.2 (1H, s, NH of CONH), 13.20 (1H, s, SH). [Found C, 60.09; H, 6.09; N, 19.08; C₂₂H₂₇O₂N₆S requires C, 60.13; H, 6.15; N, 19.13 %].

ACKNOWLEDGEMENT

The authors are thankful to the pharmaceutical companies for

providing gift samples to carry out this work.

Scheme-1

Compound	Antibacterial activity zone of inhibition in mm and concentration in μg/ml.									Antifungal activity zone of inhibition in mm and concentration in µg/ml.			
	S. aureus		B. subtilis		E. coli		P. aeruginosa		A. oryzae		C. albicans		
	100	200	100	200	100	200	100	200	100	200	100	200	
Control	0	0	0	0	0	0	0	0	0	0	0	0	
Streptomycin	12	20	8	18	20	32	18	26	-	-	-	-	
Ampicillin	12	22	10	18	14	20	12	22	-	-	-	-	
3a ₂	0	8	0	9	0	10	0	10	3	7	2	7	
3a₄	0	6	0	9	0	8	5	8	2	9	3	8	
3a ₆	8	12	10	13	5	12	6	10	5	9	4	11	
3a7	7	11	8	13	10	15	5	12	7	12	5	10	
3a ₈	6	12	7	14	8	13	7	13	8	14	6	12	
3a₀	7	14	8	15	7	16	6	12	10	16	8	14	
Griseofulvin	-	-	-	-	-	-	-	-	12	20	10	20	
Clotimazole	-	-	-	-	-	-	-	-	14	20	12	22	

Table II: Antibacterial and antifungal activity of triazole derivatives.

REFERENCES

- Holla BS and Udupa KV. Synthesis, spectral studies and biological activities of some N-bridged heterocycles derived from 3-aryl aminomethyl-4-amino-5-mercapto-1,2,4-triazoles. Farmaco Societa chimica italiana. 1992;47:305-318.
- 2. Udupi RH, Sudheendra G, Bheemachari, Shrinivasulu N, Rajesh Varnekar and

Purushottamachar. Design, synthesis and biological activity of certain 3,4-disubstituted-5mercapto-1,2,4-triazoles and their hydrazino derivatives. Bull Korean Chem Soc. 2007;28(12):2235-2240.

- Yale HL and Piala JJ. Substituted s-Triazoles and Related Compounds. J Med Chem. 1996;39:42-46.
- 4. Pramila T, Bheemachari, Rajesh V and Udupi RH. Condensed bridge

head nitrogen heterocyclic systems: synthesis and biological evaluation of substituted-striazole-thiazolothiones and striazolo-thiadiazinones. Indian J Hetrocyclic Chem. 2008;17:229-232.

- Sudheendra, Shrinivas Rao P, Bheeemachari, Udupi RH, Ramachandra Setty and Rajesh varnekar. Synthesis and Evaluation of biological activities of 3aryloxymethyl-7,7-dimethyl-5pyrazinoyl-6,7,8,9-tetrahydro-1,2,4triazolo(4,3-b) (4,1,2)benzothiadiazin-9-ones. Indian J Heterocyclic Chem. 2007;17:63-66.
- 6. Udupi RH, Chandramouli and Himabindu V. Synthesis of certain new azetidin-2-one derivatives and comparative study of their biological activities. Oriental J Chem. 2007;23(3):1077-1080.
- Udupi RH, Kasinath N and Bhat AR. Synthesis and biological activity of some 2-(6-methoxy naphthyl) propion amido azetidin-2ones. Indian J Hetrocyclic Chem. 1998;7:221-224.
- Cruickshank R, Duguid JP, Marmoin BP and Swan HA. The Practice of Medical Microbiology Churchill Livingstone, London, 1975; Vol.II, 12thedn, 190.
- 9. Srimal RC and Dhawan BN. Indian J Pharmacol. 1971;3:4.
- 10. Turner RA. Screening methods in pharmacology, Academic Press, New York and London.1965;100.