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An asymptotic model of isothermal catalyst is obtained from a well-known model
of porous catalyst tor appropriate, realistic limiting valves of some nondimensional
parameters. In this limit, the original model is a singularly perturbed m-D reaction—
diffusion system. The asymptotic model consists of an ordinary differential equation
coupled with a semilinear parabolic equation on a semi-infinite one-dimensional
interval.

1. INTRODUCTION

This paper deals with a well-known model of porous catalyst that after
suitable nondimensionalization [ 1, Vol. ] may be written as

Qujdt = Au—§>flu, v) in &2, Juion=o(1 —u) at a2, (1.1)
L1 8v/01t = Av+ pd*f(u, v) in £, dvfdn=r(1—v) at 82, (1.2)

for +> 0, with appropriate initial conditions
u= 1, >0, v=rp,>0 in £, at t=0. {1.3)

Here # >0 and v >0 are the reactant concentration and the temperature
respectively, A4 is the Laplacian operator, » is the outward unit normal to
the smooth boundary of the bounded domain £ < R™ {with m 2 1) and the
parameters ¢° ( Damkohler number), L { Lewis number), f ( Prater number),
. and v (material and thermal Biot numbers) are strictly positive. The
nonlinearity f accounts for the reaction rate and is usually of one of
the following forms, that are associated with the so-called 4rrhenius and
Langmmiir- Hinshelwood kinetic laws [1],
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flu, vy =u exply — y/v) {1.4)
Sl vy=uf{u+ k)~ exply —y/v) {1.5)
Sl vy =wf[u+kexply,—y./v}] ™7 exp(y —y/v) {1.6}

where the reaction orders p and ¢ and the acrivation energies y and y, are
strictly positive. The reaction orders may be non-integers,

Porous catalysts usually exhibit a large thermal conductivity and conse-
quently £ is nsually very small, the ratio o/v is large and v is either small
or of order unity, depending on the size of the catalyst (see [1]}. In addition,
L and ¢ vary in a wide range {from small to large values). Then, the limit

F—0, gy — =0 {1.7)

18 realistic, and leads to simpler submodels than {1.1)-(1.3). If, in addition,
v is small and ¢° remains bounded, then the following simpler sub-model
is obtained from (1.13-(1.3})

Jufdt = Au— ¢ flu, v), Juion=a(1 —u) at ag2, {1.8)

(VafvL) dVidi=Sa(1 = V) + (f#*v) | fuu,v)dx, (19)
i

with appropriate initial conditions, where V, and 8, are the measures of
the domain £ and of its boundary respectively, ie.,

VQ=J dv,  Sp=| ds it m>2 Sg=2 il m=1, (L10)
£ i
and V is the spatial average of the temperature v, ie.,
V="5'[ oxndx (L11)
2

The model (1.8)-(1.9) was obtained in [2] by means of formal, singular
perturbation techniques. For a rigorous derivation of a slightly different
model (namely, the boundary conditions in (1.1} and (1.8) being replaced
by new ones of the Dirichlet type) see [3]. For the rigorous derivation of
related simplified sub-models of general reaction-diffusion systems, see
[4-7]. As a by-product of the results below, a fairly direct denivation of
{1.81-{1.9} could be readily obtained by means of the ideas in this paper;
but for the sake of brevity we shall omit that derivation. The steady states
of {1.8)—{1.9} and their linear stability were analyzed in [2] for the par-
ticular case when f is as given in {1.4} with p=1; some global stability



properties for more general, smooth nonlinearities were obtained in [&],
and the steady states for some non-Lipschitzian nonlinearities were
analyzed [%].

If $? is large and » is small then the limit (1.7} is much more interesting
because the original model (1.1}H{1.2} is singularly perturbed. We shall
consider the case when ¢? — oo but ¢ 1s appropriately small. In this limit,
the following sub-model of (1.1}-{1.3} applies

dpr =201 - A0, V)  In —oo<&E<, (1.12)
=0 as ¢— —<o, Ou/os = {aig)(1 — u) at =40, {1.13)

]

(Vad*/(SovL)) dVjde=1—V+(pop) [ AD. V) de, (1.14)
with appropriate initial conditions, where Vg, 85 and ¥ are given again
by (1.10)~(1.11) and ¥ is appropriatetely close to #. The new rescaled
variables T and ¢ are

t=¢%  C=dn, (1.15)

where # is a co-ordinate along the cutward unit normal to 8£2. Let us now
briefly explain (in loose, physical terms, but following the main ideas in the
derivation below) where this model comes from. Since ¢ is large, the
chemical reaction is very strong and, after some time, the reactant is con-
sumed and # becomes very small in £ except in a thin boundary layver near
the boundary of £2. Since, in addition, ¢ and v are small, the temperature
v becomes spatially constant (in first approximation) after some time,
Finally, if £, > 0. after some time, the reactant concentration in the bound-
ary layer depends only on time and on the distance to the boundary of £
{and not on transversal co-ordinates along @42 if the spatial dimension m
is greather than one} in first approximation. Then {1.12}-(1.13) gives the
evolution of # in the boundary layer, and (1.14} provides the spatially
averaged temperature in first approximation.

Notice that the sub-model {1.12)—(1.14) consists of a 1-D semilinear
PDE coupled with an ODE and thus 13 much simpler than the original
model {1.1)-(1.2); in particular, the sub-model is independent of the shape
of the domain £ (it depends only on the overall quantities ¥, and Sg).
A formal derivation of this sub-model, based on singular perturbation
techniques, was given in [ 2], along with the analysis of the steady states,
their linear stability and local Hopt bifurcation, for the particular case
when the nonlinearity fis as given in (1.4}, with p=1.

If ¢* is large but v is no longer small, then the temperature does not
become spatially constant after some time and a third sub-model is



obtained that consists of the m-D heat equation with appropriate non-
linear boundary conditions, coupled with infinitely many 1-D semilinear
equations (one for each point of @¢2). This non-standard sub-model was
derived in [10] via formal, singular perturbation techniques and will be
rigorously justified elsewhere [11]. Besides its intrinsic mathematical in-
terest, this sub-model exhibits a large variety of codimension two and three
bifurcations that predict interesting dynamic behaviors (see [ 10]).

The main object of this paper is to provide a rigorous derivation of
{1.12)-{1.14). More precisely, we shall prove that, after some time 7. (i) u
18 very small except in a thin boundary layer and v is spatially constant in
first approximation, and (i) the concentration in the boundary layer and
the averaged temperature satisfy {(1.12}-{1.14), in first approximation,
uniformly in r 2 T.

Let us now state precisely the assumptions to be made below. We shall
consider the limit

¢ — o0, foaiid +a)—0, y—=0 and a '=0(1). (1.16)

The domain £ and the nonlinearity f will be assumed to be such that

{H.1} £2cR"”{(mz1)is a bounded domain, with a connected, C*** {for
some o > () boundary if m = 2. Notice that then € satisfies uniformly the
interior and exterior sphere conditions: there are two constants, p, > 0 and
P2 >0, such that for every point x of 8€2, two hyperspheres, of radii p, and
P2, Sy and S,, are tangent to 822 at x and satisfy S, =@ and S, " Q= {x}
{overbars stand for the closure).

{H.2} The C'-function f: [0, o[ x [0, 2¢[ = R is such that f{0, v)=0
for all vz0 and filue)y>0for all u>0 and all v =0,

{H.3} There is a continnous, increasing function, g,: [0, o[ = B such
that

Jlu, vy g (u) i #=0 and r=0,

{H.4} There are two strictly positive constants, &, and k,, and a
positive, continuous, decreasing function, g.: [0, «[ — R, such that

ku< flu, vygku it 0€ug? and vz 142,

ug-{1) < flu, v) if =0 and v 172,
(H.3} There are three constants, k; >0, k, >0 and k>0, such that

ki fiw, vk, |flw o) sksu f Osusoflo+d/kh./2m) and vz 1.



In addition, the initial conditions {1.3) will be assumed to be such that
(H.6) iyl ¢, = 011} and |y || o, = O(1) in the limit (1.16).

Notice that the non-linearities {1.4)-(1.6) satisfy (H.2) for p= 1 and all
{positive) values of the remaining parameters; our results below do not
apply (and are not straightforwardly extended)} to non-Lipschitzian non-
linearities, such as {1.4)-(1.6} if p <1, that are also of practical interest.
Assumption {H.4) is satisfied by (1.4}-(1.6) only if p =1. Now the restric-
tion is purely technical; if the inequalities in {H.4} are replaced by k4’ <
fAuw, vk v’ and v¥g, < fiu, v) with p> 1, then our results below still
apply after some {unfortunately, not always obvious) changes, but we do
not pursue this extension for the sake of brevity. The first inequality in
assumption (H.3) (namely. f,(u v)zk;) is essential in our derivation
below; although we have some reasons to believe that the model {(1.4)-(1.6)
should still apply without this restriction, we do not see how to eliminate
it completely {we are only able to replace it by k,u# ~' < f,(u, v) with p> 1,
but even this small extension requires additional technicalities that are
again omitted for the sake of brevity). The remaining restrictions in {H.5)
are clearly satisfied by the nonlinearities {1.4}-{1.6) for all {positive} values
of the parameters.

To end up this section let us state the main result of this paper, which
18 proved at the end of Section 2.

THeEOREM 1.1. Under the assumptions (H.1)-(H.6}, there are two con-
stants, A>0 and >0, and for each solution of (1.1)-{1.3) there is a
solution of

abpr=a"0ia* =4 10, V)  in —w<y<, {117}
0=0 at p=—-m, 803y =06(1 - at 7=0, (1.18)
a0
(VQ/SQL}dV;’dr=v(l—V}+/)‘qi:2J £, Vydyg+yle), (1.19)

and a constant T >0 such that

{1} A depends only on the domain €2, ¢ depends only on Q and on the
quemntities

d,a, L fandv, {1.20%
and T depends only on Q, on the quantities, (1.20) and on

lto | ceay> ool ce- {1.21)



(i} & and T are such that

&= O0(pdal(d+0)),

T=0(¢ '+ L log <L>+O(L"}log (2+§+ £ )

E+v viE+v)
. 2
+0((11L)—1)1og<2+'g+@), (1.22)
i the fimir (1.16),
(iii) For all t 2 T we have
| —d(x), 6)—lx, )| < [ole+ V)¢ +0)] exp[ — Apd(x}]
if dixy< p,/2, (1.23)
[V —olx, ) se+v if xeQ, [ e)] (e +v)? +efg?, {124}

where d{x) is the distance from x to 88 and p, is as defined in assumption
{(H.1}.

2. MATHEMATICAL DERIVATION OF THE
APPROXIMATE MODEL

Under the assumptions (H.1)-(H.2}, the parabolic problem {1.1)-{1.3} is
readily seen to have a unique classical solution in a maximal time interval,
0 <t < T, that satisfies

u>0 and v>= 0 for all (x, I)EQX[O, T, {2.1}

et Ml + 10 Dy =00 as (/T if T<on. (22)

If, in addition, {H.3} holds then 7= =0 and every solution of (1.1}-{1.3} 15
uniformly bounded in 0 ¢ < =0,

In order to derive the asymptotic model (1.12)-(1.14) we shall first
obtain, i Section 2.1, some estimates on related linear elliptic problems
and on the solution of (1.1)—(1.3}. Then, the asymptotic model will be
derived in Section 2.2, under the assumptions (H.1)-(H.5). Finally, the
asymptotic model will be analyzed in Section 3 and some concluding
remarks will be drawn in Section 4.

In order to avoid too clumsy expresions, we shall only give the orders
of magnitude (in the limit (1.16)) of the several constants that appear in
this section.



2.1. Some Preliminary Estimates

Let us first prove some results concerning two singularly perturbed,
linear elliptic problems, that will be systematically used in the sequel.

LemMma 2.1.  Let the domain @ < R™ be such that assumption (H.1} {at
the end of Section 1) holds, and let u and v be the unigue solutions of

Au= Au in £2, Sujon=a{l —u) at 482, {2.3)
Av+eA*u=0 in 2, dvfdn=vi1 —v) ar 882, {2.4)
where A. ¢, @ and v are positive and g > v. As A — o, the following estimates
hold
[efig+d,)] exp[ —&,d(x)] < ulx)
< [o/(o +9;)][coshi(d.( p) —d(x)}){cosh(d,p,}], (2.5)

0S00:/(0+82) S AP | u(x)dx <0808, /(7 +3)), (2.6)
[e)

l<o(x)<1+8s, (2.7}

forall x € Q. where p, and S, are as defined in assumption (H.1) and Eq. (1.10)
respectively, d(x} is the distance from x to 842, d\{x) =min{d{ x), p1} and
the positive constants 8., 8, and 0, satisfy

Sy=Af/m. dy=ecd o+ v and [8,—A|l=0(A"") as A— o0,
(2.8)

uniformly in e>0, 6 >0 and v > 0.

Proof. If the dimension m is equal to 1, then (2.3} and (2.4} are solved
in closed-form and (2.5)-{2.7} are readily obtained. If m =2, let u,, =
minfu{x): xe 82} >0 and for each x, e, let S, be the outer hyper-
sphere, of radius p,, that is tangent to 8¢ at x, (assumption (H.1)). If r is
the distance to the center of §,, let the function w =u,, exp[ —&{r — pg,}].
where d, =(m—1}/2p,; + \/(m— 13/4p3 + A*. Then &, satisties (2.8) and w
18 such that

dwzAw I Q@ ={xeR":r>p,}, W= u,, ato82,.
In addition =€, and w<u, <y at dQ2. As a consequence, maximum
principles [ 12] readily imply that ¥z w in £, and the first inequality (2.5)
follows provided that

i, z0f{a+0,). {2.9)



In order to obtain this inequality, let x;, be a point where the minimum #,,
is attained. Then w=w=w, at x, and, since #Zw in £, we have
Owjln z Bufdn at x,, e, & u,, = a(l —u,,) and (2.9) follows. Thus the first
inequality (2.5) has been obtained.

The second inequality (2.5) is obtained in a similar way. Let u,,=
max{u(x): x€£2}; notice that such maximum is attained at 02 because
Au>01n &. For each x, €3, let §, be the inner hypersphere of radius p,
that is tangent to 2 at x, (assumption {H.1)), and let the function w be
defined as w=u,, coshid.rifcoshid,p,}). where r is the distance to the
center of §, and the constant J, is as defined in Eq. {2.8). Then

Aw < A%w in 2,={xeR":r<p jc W=t at  aq,,

and maximum principles imply that ¥ < win £,. But if x; is a point where
the maximum u,, is attained, then w{x,)=u(x,) and dw/dn < Ju/dn at x,,
1e., Gty Sa{l —uy) or uy<a/ie+d,) Since, in addition, # < w for all
xp €082, the second inequality (2.7) follows when dix)<p,. In order to
prove that this inequality also holds when xeQ,={xeQ :d(x)>p,},
notice that if £, # (¥, then the maximum of # in 2, is attained at 2%,
{because Au>0 in £2.) and v < {c/(c + J.)) cosh{d.p,} at 8¢2.. Thus the
second inequality {2.5) has been obtained.

In order to prove that {2.6) holds integrate Eq. (2.3} in £, integrate
by parts and take into account the boundary condition to obtain
A [pudx=0[s5(1 —u), and apply (2.5).

Finally. the first inequality (2.7} is readily obtained via maximum prin-
ciples when taking into account that e4%:> 0 in £. In order to obtain the
second inequality (2.7). notice that the function v, =v—¢&{1 —u) satisfies

Av, =0 in £2, v fen=v(l —v))+elc —vi{1—u),

and, since uzof(c+3,) at 882 (see (29)) and o > v. maximum principles

readily imply that v, <1+elg—v)d o +d)v in £, or v<1+ead,/
{g+6,)v in £. Thus, the proof is complete,

Let us now prove some estimates on the solution of {1.1)-(1.3). In par-
ticular we show that, after some time, # becomes quite small except in a
boundary layer near 862 (Lemma 2.2} and |¢ — V] also becomes quite small
{Lemma 2.3), where I is the spatial average of v,

LemMma 2.2, Under the assumptions (H.1)-{H.4) and (H.6) {ar the end of
Section 1) there is a constant T, depending only on

ol e 0ol ez, @, 0, L, B, and v, {2.10)



and satisfying
T=0{¢ 2 logl2+¢fo+a/dy+¢ "+ (vLYy Vlog(2+ fo3/vhy (211}
in the fimit (116}, such that every solution of (1.1)-{1.3) satisfies
< ul -, t)<#,, 1/2<o(-, <1+, 2 ifr=T, (212)
where u|, u. and v, are the unigue solutions of
ity =2k, $%u in £2, duyfon=o(l—u)  at 0Q, (2.13)
Aits =k i, /2 in £, Sisjin=a(1 —u,) ar 02, (2.14)
Avy+ Bk dH, =0 in 82, v, fon=w1—p;) at 882, (2.15)
with the constants k>0 and k. > 0 as defined in assuniption (H.4).
Proof. Let o) > (} be the smallest eigenvalue of
A+ o, =0 in £2, do\ jon+ve, =0 at g2, (2.16)
and let ¢, be the associated eigenfunction such that
@, >0 in 2, max{ g, (x): xeQ} =1 {(2.17)
@, and o, are readily seen to satisty

min{g (x}: xeQ2} -1 and oy =Sav/Va+olv?) as v-0,
(2.18)
where S5 and ¥, are as defined in (1.10). The proof proceeds in five steps.
Step 1. w and v are such that
u<Ad, and  v<A, if xe@Q and 20, {2.19)
where the constants A, and A, depend only on the quantities (210} and
satisfy
l<A,=0(1) and 1<A4,=0(1+pé*/v), in the limit (1.16). (2.20)
Let A, =1+max{u,{x): xeQ}, that satisfies (2.20) according to
assumption (H.6). The function w, defined as w= 4, —u, is readily seen to
satisfy w>0in 2 if r=0, dw/r —Aw>01n Q if >0 and dw/dn + ow >0

in 862 if >0 and, consequently, maximum principles [12] imply that
w20 in £ if 1> 0. Then, the first inequality (2.19) follows.


http://satisfi.es

In order to obtain the second inequality (2.19), let the function ¢, be
defined as the unique solution of the linear problem

Avy + o g (A)=0 in Q. Jus v, —1)y=0 at g,

where the function g, is as defined in assumption (H.3). Maximum prin-
ciples readily imply that

v <1+ g4y @) /[eyminf{ g (x):xeQ}]  in Q,

where o, and ¢, are as defined above, or, according to (2.17)-(2.18) and
the first estimate {2.20],

max{vy(x}): xe @2} =01+ fé*/v)  in the limit (1.16).  (2.21)

On the other hand. the function w, defined as w=max{v,(x): x 2} +
v, — v satisfies {see assumption {H.3))

w>0 inQ, if =0, L7'dwfdr>Aw inQ, if >0, (222)
dwidn +rwz0 at 842, if >0, {2.23)

and consequently maximum principles imply that w0 in € if £ 2 0. Then
assumption {H.6) and Eq. {2.21} yield the second inequality (2.19), with 4.
satisfying {2.20}, and the step is complete.

Step 2. There is a constamt T, depending only on the quantities {2.10},
such thar T, = O(1/vL) in the limit (1.16), and

vx1/2 in 2 if =T, {2.24)

Let the constant 4,3 1/2 be such that 4,¢, > 1 —¢, in Q. Notice that
A, may be chosen to be bounded, according to assumption (H.6) and
Eq.{2.18). The function w defined as w=v—1+ 4,9 expi—a,Li) is
readily seen to satisfy (2.22) and (2.23) and, as above, maximum principles
imply that w20 in € if 1= 0. Then (2.24) holds with T,={«x,L}~!
log (24,) and the result follows.

Step 3. There is a constnat T, depending only on the quantities {2.10},
such that 0 < T, — T, =O(¢ ™2} in the limit (1.16), and

ey in 2 if 1=T,.

Let the constant 4,>0 be defined as 4,=g.(4,). According to the
assumption (H.2} and the results in steps 1 and 2, f{u, v)> 4,1 in Q for



all £t T, and the function w=A,exp[ — A,¢*( —=T,)] + 1 —u satisfies
w>0 in@ ifr=0, wlr>Adw—A,¢*w inQ if t=T,, (225
awidn+awz0 at és2, it =T, {2.26)

As a consequence, maximum principlea imply that w20 if xe@ and
t2T,. and the result follows with T, = (As0°) "V og 4.

Step 4. There is a constant T, dependmg only on the quantities {2.10},
such that 0 < Ty =T, =0(¢ *log(2+¢jc+ /Py +¢7") in the limir (24)
and

) Su<u, ing if 12T, {2.27)

where ) and u, are as given by (2.13)-(2.14}.

For the sake of brevity we shall only obtain the second inequality (2.27;
the first inequality is obtained in a completely similar way. Let the function
#, be the unique solution of the linear problem

Auy =k ¢u, in £, Qv 0= ol 1 —15) at g2,
and let the constant ¢ be defined as
S=min{u;(x): € Q}/2.
According to Lemma 2.1,  is such that
oz [a/de+8,}] exp{ —o,D/2), (2.28)

where D is the diameter of the domain £ and |§, — \/A:qﬁl =O{¢ ~'). Then
the function w=(14J) 4, —u, —& is such that Aw <k ¢*w in 2, Iw/dn +
ow=0 at 82, and maximum principles imply that w0 in Q, ie,
#y — 1, 3 01 —u,) in R, or according to Lemma 2.1,

—uy 2 0/ + J2mik, o). {2.29)

Now, if the constant A5 > 0 is such that A; > u(-, T;) —u; in @ (A5 may
be chosen to be such A, <2, according to the result in step 3). then the
function w=u; — it + A exp[ —¢ k(1 — T,»)] satisfies (2.25)—(2.26) with A,
and T, replaced by &, and T, respectively, and again maximum principles
imply that w=0 in & if 1= T.. Then the second inequality {2.27) holds
provided that

Ty — T, = (%) " llog[As(d+ /2mik,0)/5¢ ]

and, when taking into account {2.28), the result follows.



Step 5. There is a constant T, depending only on the guantities {2.10},
such that 0 < T =T, = O(1/vL) log{2 + */v) in the limir (1.16), and

v< 1+ in Q if t=T {2.30)

According to the results in steps 1-4, if 1> T, then w<w, (1) and
1/2<v< 4,, and according to assumption (H4), flu, v) <k, u in . Let
the function w be defined as

w=t, —v+Aqp,exp] —o, Lir—T5)].

where A3 | satisfies 4,9, 2 4, in ; notice that, according to (2.18), 4,
may be chosen such that

Ag= 0045} = O(1 + pd?/v). (2.31)

Also the function w satisfies {2.223-(2.23} with ¢ replaced by 1 — T, and
maximum principles imply that w0 in @ for all 1 2 T,. As a consequence,
{2.30) holds with T= Ty + (o, L) ! log(l + 4;). Finally, T—T,= O{1/vL)
log(2 + B¢?%/v) in the limit (1.16), as obtained when taking into account
{2.18) and (2.31}. Thus the step and the proof of the Lemma are complete.

LemMma 2.3, Under the assumptions of Lemma 2.2 there are two con-
stants, p>0 and T' 2T such that (1) g and T'—T depend only on {the
domain $2 and)

&, a, L fandv, {2.32)

(iiy p=0v+pgofig+a)) and T —T=OL7"} log[(l+{fog/
(g +¢nNu] in the limit (1.16); and (1) if t 2 T then

lo—VI<p  forall xeQ, {2.33)

where V(1) is the spatial average of v, ie.,

Vin=Va' | wx ndv.  with Vo=| dv. (2.34)
e

e
Proof. Let us define the new time variable
t=Lt-T. {2.35)

Then the spatial average of v satisfies

dvide = [ v

"él

(1 —v)a:s+ﬁ¢2j 1w, t!]cbc]/VQ, (2.36)
£ 13



as obtained upon integration of (2.2} in £, integration by parts, substitu-
tion of the boundary condition and multiplication by ¥7'. If (2.36) is
substracted from (2.2) then we obtain

o —V)jor = Mv =V + p¢*flu, v)
—V!;l[v J (1 —v)ds+ fg* i S, v]dx], {2.37)
an 2

Hve— Mjdn=v(1—1) at 062, {2.38)

On the other hand, according to assumption (H.4) (at the end of
Section 1) and Lemmas 2.1 and 2.2, we have

flunysku, inQ if 120, O<uy<l inf2

11— || oy = OlE/(d + ),

{2.39)

| wlx)dx=0a/gla+$),  llovlcw=O0+pgali¢+ayw) (240
i

in the limit (1.16), where #, and », are as given by (2.14) and (2.15).
The proof proceeds in three steps.

Step 1. The following inequality holds
[ (v— V)2 dx < Byexp( —2y,7) + 23, B,
el
1 ot O = MOl (e —n)] de - (241)

i t=0, where y, >0 depends only on the domain Q. B, >0 and B,> 0
depend only on (the domain £ and) the gquantities {2.32), and B, =
O(v+ podfic+¢)) and By = O(1 + fadfic + W) in the limir (1.16).

If (2.37) is multiplied by v — ¥, the resulting equation is integrated in £2,
integration by parts is applied and (2.38) is substituted, then the following
equation results

thj (v— d’f——[ |Vo|* dx + fg° [ (v—=V) flu, v} d

tv [ (0— WY1 —v) ds, (2.42)

e



where we have taken into account that, according to {2.34)
j° (60— Vydv=0 forall 730. (2.43)
L1

Now we take into account the following Poincaré-Friedrichs-type
property. There is a constant y > 0, depending only on the domain £, such
that for every ¢ € W3{£2) such that {, ¢(x) dv =0, the following inequality
holds (see, eg., [13, p.45, Eq.(212}]) y | eix) dx<fg Vel  dx If, in
addition, (2.12}, (2.39), and (2.40) are taken into account, then the follow-
ing inequality results from (2.42)

<—y| 0=VPdv+B I 0= Vollaw I 20 (244)

2

where B, = ¢k, {5 u{x) dx+v |a |8)(s) — 1| ds = Oiv + og/{c + $)) in
the limit {1.16) {see (2.40}), as stated. And we only need to apply Gronwall’s
lemma to obtain (2.41) with B, = [50{x)* dx = [, [v{x, 0) = V{0)]% dx (see
{2.12) and (2.32)). According to (2.40), B,= O(l + fog/(a +¢$)v)* in the
limit {2.16), and the step is complete.

Step 2. The following inequality holds
le= Vieaysre e+ 11 S P2[Bs + 10 = Vliyowge—1, 1] (2.45)
Jor all t= 1, where v, >0 depends only on the domain 2 and B, > O depends

on (£ and) the quantities (2.32), and satisfies By = v+ fodfic+ ¢)) i the
firmit (1.16}.

In order to obtain {245} we decompose v — I as
t—F==vFo+w +w,, {2.46)
where ¢ and w, are uniquely defined by the linear problems

Ap=w in £2, dplon+ve =1 at g4,
dw, ot =dw, —w, + B¢ f(u, ) in Q. if >0, (2.47)
Ow fon+wvw =0 atal2, if 20, w =0 in . if =0,



and w, satisfies, for all 720,

Sw,yjit —Aw, = —vFe+w, +ve— 1)1 ¥

{&;}ZJ (u, v dH»J (l—t!]ds} ing (2.48)

o0

o, /On + rw,=v at 0.
Now, ¢ and w, are such that

>0  inQ  elgg=0(1) as r—0, (2.49)
0w, < (2, k) pl1+Byp) @ il 720, (2.50)

where k| and &, and «. are as defined in assumption {H.4) {at the end of
Section 1) and Lemma 2.2, and B, is given B,=c max{] —u,(x): xc0Q}/
min{ g(x}: x €82} and satisfies (see (2.39))

B,=O(¢s/($+)), in the limit (1.16). (2513

In order to obtain {2.49) we only need to apply maximum principles to
{2.47). and take into account that v—0 is a regular limit of (2.47).
Similarly, (2.50} follows when taking into account that if either w=w, or
w={2k, k)1 —1>+ B,¢)—w, then dw/dt —Aw+w>=0 in Q, dw/dn+
w20 at 82 if >0, and w0 in Q if =0, and applying maximum
principles.

Finally, (2.34), {2.393-(2.40}, and {2.49)-(2.51) imply that the sup norm
of the right 51de of {248} is bounded above by a constant B; >0 that
depends only on the quantities (2.32) and satisfies

B.=0(v+fodfi¢+a)), in the limit (1.16). (2.52)

Then, local parabolic estimates [ 14, p. 355] readily imply that for each
p =2 there is a constant d,, depending only on the domain £, such that

||“’2||14/§»1(9x]r 1D SO Bs v+ Wall gy n et raapd)

for all 2. If p =2 is taken such that p > (m + 2)/2 (m =dimension of 2},
then imbedding theorems [14, p.80] imply that there is a constant &,
depending only on £, such that

||Wz||cu§}x[f, r+1] 55; ||Wz||w§-1(gx]f,r+ 0

These two inequalities and (2.46}, (2.49)-(2.52) readily imply the stated
result, and the step is complete.



Step 3. The result in the statement of this lemma holds.
For each positive integer &, let P20 and Q, =0 be defined as
Po=lv—Vliagxmresrne  Qe=lv—= Vg w es1pn- (253}
Then, according to (2.12}, (2.34) and (2.40), we have
P,+P,<B,, (2.54)
where B, depends only on the quantities (2.32) and satisfies
B, =0(1 + pdai{¢ + o)v), in the limit {1.16), {(2.55)

and, according to the resnlts in steps 1 and 2,

N B+ =1
Qi< [ BB [ Wt 01— Mg enol 261

xexp{ =2y, Ty dr {2.56)

k
< (207 exp(n) | Byt By TP expitng [ exn-2p 256)

g=0

Pr<yo Byt Qpoy + Ok (2.57)

for all k= 1. Also. if {2.57) is substituted into {2.56) and (2.54) is taken into
account, then we obtain

k-1
0:<B,0.+ (28? > O expi2y )+ BS> exp{ =2y, k) forall k=2,
s=1 .
{2.58)

where the constants B; and B; depend only on the quantities (2.32) and
satisfy

B,=0(v+ fodfic+¢)), Bs=O0(l+ fog/ic+¢Iv)?, in the limit (1.16).
{2.59)
The inequalities (2.54) and {2.58) imply that

O, <5B,+ (1 + B+ B yexp[ —yi{k = 1)) forall k=1,

as readily seen by means of an induction argument. Then we only need to
take into account {2.35), {2.53), (2.55), (2.57) and (2.59} to complete this
step and the proof of the lemma.



2.2, Derivation of the Asymptotic Model

Let us define the function U as the unique solution of the following semi-
linear parabolic problem

QURe=AU—(U. V)  inQ il >0, (2.60)

dUn=a(l = U) at 80, if r>0; =i, in 2, ifr=0,
{2.61)

where V is the spatially averaged temperature, defined in (2.34), that
satisfies (see (2.35)—{2.36))

(Vo /LNdVidt)=v j

(1—v)ds+ pg? j fln o) de,  (2.62)
2] £
In order to derive the asymptotic model ( 1.8)-( 1.9} we shall first prove that
there is a constant 7" such that if 72 7" then the following properties
hold: (i) v>1in £, ¥>1 and ¥ is very small except in a boundary layer
near the boundary of 2 (Lemma 2.4); (ii) |#— U] 18 appropriately small in
the boundary layer (Lemma 2.5); and (iii) |V¥/] is appropriately small in
the boundary layer, where ¥ is the spatial gradient along the hypersurfaces
parallel to 22 (Lemma 2.8). Then the asymptotic model will be obtained
in Theorem 1.1 as follows. As a consequence of property (i1}, U depends
only on the distance to 42 in first approximation and thus U satisfies a
1-D parabolic equation in first approximation. In addition, since |v— V] is
appropriately small {Lemma 2.3}, # and v can be replaced by U and ¥ in
Eq.{2.62} in first approximation, and the model {1.12}-{1.14} follows. Let
us begin with property (i).

LemMma 24,  Under the assumptions (H.1)-{H.4) and (H.6) {ar the end of
Section 1) there is a constant T72 2T such that T —2T' depends only on
the quantities (2.32) and satisfies T 2T =O(vL)"'log[ 24+ vi¢ + o)/
Péc] in the limit {1.16), and

V=1, v=]1 and wysUsu, mQ.  jforall 12T, {(2.63)

where uy, ti, and T' are as defined in Lepmnas 2.2 and 2.3,

Proof.  According to the results in Lemmas 2.1-2.3, if r 2 T then

ﬁqﬁz '[ f(li, v) dx = ﬁkz SQg¢f2[¢+g ..-"}”/2}",] ]‘



where Sg=jm lds. As a consequence }V is such that (see also (2.33)-(2.34)
and (2.62})

(Vo /LXdVidiyzvSg(l — V —u)+ BSok,0¢/2[ ¢ + o /mi2k, ],

where p is as defined in Lemma 2.3. Then we only need to apply
Gronwall’s lemma and take into account that » — 0 in the limit {1.16} and
Eq. (2.33) to obtain the first two inequalities {2.63) for r2 T, with T as
stated. Finally, the last two inequalities {2.63} readily follow by the argu-
ment in the proof of Lemma 2.2, step 4. Thus the proof is complete.

Now, we show that |# — U] is conveniently small.
LemMma 2.5.  Under the assumptions (H.1)-{H.6) (at the end of Section 1},
fet g and T be as defined in Lemmas 2.3 and 2.4. Then there is a constant

T2 TY such that T — T depends only on the quantities (2.32) and satisfies
Ti=T7=0(¢~"Yog{1 + 1/n} in the limit (1.16), and

| U — u] < &k s peans K in Q, Jorall t=T53, {2.04)

where ks, ks and u., are as defined in assumption (H.5} and Lenmia 2.2,

Proof. Since, according to Lemma 2.1, w.<dfic+¢./k./2m), when
using assumption {H.5) (at the end of Section 1} and the results in Lemmas
2.2-24, and applying the mean function theorem. we have

S, v)— LU vy=h{x, t){u—=U), with  fix, #) 2 ks,
| AU ) = AU, V)| < ksp
in Q, for all 1> T". As a consequence, the functions
W = kst g+ [ofo + /s 2m) ] expl —ky¢2(e— T12] +(u—U)
are readily seen to satisfy
dw, Ot—Aw, +¢"hx, Hw, =0  in £,
aw, jdn+ow, >0 at a0, if 1277,
w, =0 in@ if 1=TY,

and maximum principles imply that w, >0 in @ for all 1> T}. Since, in
addition, u, = [¢flo +8,)] expi —o,D/2), where D is the diameter of the
domain £ and |5, — Jk:/2¢| = O{¢ ') as ¢ — 20 (Lemma 2.1}, the result
follows. Thus, the proof is complete.



The following result gives a bound on the spatial derivatives of the
solution of (2.60)-{2.61).

LemMa 2.6, Under the assumptions of Lemmia 24, there is a constant
>0, depending only on the quantities (2.32), such that g, = N ed/i¢ + )
i the fimit (1.16) and

IVUix, 1}
Spyexpl —dd,(x) Jks/2m]  if xe@Q  and t2T7+2¢% (265)

where d\(x)=min{p,, & x‘}}, d{x} is the distance from x to 88 and p,, k,
and T7 are as defined in assumptions (H.1) and (HA4) {(at the end of
Section 1) and in Lemma 2.4.

Proof. According to assumption (H.4) and the results in Lemmas 2.1
and 2.4, we have

0<fiU, V)< U,

{2.66)
UK [26/la+ ¢ Jhki/2m)] exp[ —dd (x) Jk./2m],
0<1=-Ux[l +0dix)] 6 /(g +3)), (2.67)

in 82, if ¢ = T, where 8, depends only on the quantities (2.32) and satisfies
|6, —/2k,¢| = O(1/d} in the limit (1.16).

In order to bound |VU{(x,. &,}|. with x, €2 and ¢, T + 2/$>. we shall
distinguish three cases, depending on the relative values of dx;), 1/¢
and 1/o.

Case 1. dix,)<min{l/e, 1/¢}. In this case we introduce the new
variables w, ¢ and 7 defined as

w=1-0U X=Xy + & and =1y + €%, {2.68)
where ¢ =min{1/s, 1/¢}. to rewrite (2.60)-{2.61) as
owjdr=d.w+ (6 AU, V) inQ,, awdn+eow=0 atd,. (2.69)

Now if B and B are the balls with center at the origin and radii 1 and 2
respectively, local L, estimates up to the boundary [ 14, p. 355] and imbed-
ding theorems [14, p. 80] imply that there is a fixed constant X such that

IVewll o5, - ro, 1]J€K[{5¢’}2 AU V}||171'3;x]—1. o+ Iwlsx-10 1

where B,=Bn 2, B.=B"nQ, and p=(m+ 3)/2. Notice that although
942, n B' and the coefficient ¢7 in the boundary condition depend on &, the



constant K may be chosen to be independt of £ because ¢ is bounded above
{see (1.16)) and, as ¢ — 0, 882, n B' converges to a part of a hyperplane and
¢ remains bounded above. Now, when using {2.66) and {2.67) and taking
into account that ¢ < 1 we obtain

IVewll e, « o, 11y
< 2K[(2y, )% kedof{a + ¢k, 2my+ 2y (1 + 2ea) 8, /(6 + 5,)],

where y,, 18 the measure of the unit ball of B™, or when coming back to
the original variables,

IVU(xo. 1)l

< 2K[(2y,)' " kygofic +d ko /2m) + 2y, (max{s, o} + 26} o +8))].
(2.70)

Case 2. o>¢ and ljo <dix,)<1/¢. In this case we take ¢=d{x,)/2

and use the variables (2.68). Thus (2.69) holds again. But now B’ 262, is
void and local interior estimates and imbedding theorems yield

”Vg""‘”cmx[o, |]}$K[(8¢]2 ||ﬂ U, V]"LP(B'xj—l, |[}+ ||W||I_1(B'x]—1, I[}]s

where X is a fixed constant and p = (m + 3)/2 as above. When using (2.66)
and {2.67} and taking into account that ¢ < 1/2, we obtain

IVer |l ermn o, 11y

= K[ {z}rm}”p kl sqﬁgf{g + q{’\; kQ;'Ilfsz + 2}"::1{ l + 266] 5I ;"Ir(‘g + 51\}]9
or. when coming back to the original variables,

|V x,. 1,)]
= K[ {Z}Fnrjup kl Qﬁg;"({g + q{’\; kQ;'Ilfsz + 2}"”10'35| ;"Ir(‘g + 51 J ]' {271 J

Case 3. dix,)> 1/¢. Now we take £=1/¢ and use the variables ¢ and
T defined in {2.68) to rewrite (2.60} as

UBr=4U- AU, V) in £2,.
Since B' m £2, is void, local interior estimates and imbedding theorems yield

||V¢'U||C(Bx[0, |])5~K[ 70, VJ”LP(B'x]—L Tk ”U”LﬁB’x]—L 1[1]:



where again X is a fixed constant and p = {m + 3)/2, or when using {2.67)

||V: U“ CIBx[0, 11}
€ 2K 2y, ) k[ af(o + o ko /2m)] exp[ —d(dy{(xs) —e) Sk /2m].

Then we only need to come back to the original variables to obtain

IVU(xo, 10}l € 2K(27,, )7 k\[go/{a + ¢/ /2m)]
xexp[ —dld,(xo) — 1/} /K2 /2m], (2.72)

where we have taken into account that o,(x, — &) = d|(x)—e=d|(x,}— 1/¢.
Finally, since one of the cases 1-3 above necessarily holds, Eqs. {2.70)-
{2.72} yield the stated result, and the proof is complete.

In order to bound the gradient of U along the hypersurfaces parallel to
42 (1e., orthogonal to the normals to 82 at each point} we first collect
some facts from differential geometry. Let £, be defined as

Q ={xeQ: dix)<p,/2} (2.73)

where p, is defined as in assumption (H.1) (at the end of Section 1} and,
as above, d{x) is the distance from » to 8. According to assumption
{H.1), the hypersurfaces parallel to Q2 are of class C*, and simply cover
Q.. Notice that il x = xg(#7°, ..., #™) is a C-regular parametric representa-
tion of a part of one of these hypersurfaces, H, and n=n(4>, .., #™) is the
outward unit normal to H, then

x=g"n{y?, o 5V Xl L 1T (2.74)
defines a local C*-coordinate system of R* such that the hypersurfaces ' =
constant are precisely those parallel to H (and to 8€2). Also, the covariant
components of the metric tensor associated with these co-ordinate system
are such that

gu=n-n=1 and gy =n-(g'nu+ xp)=0 if k#1, (275)

where the dot stands for the inner product of R™. Then the contravariant
components of the metric tensor satisfy

gl=1,  g%=0 if kL (2.76)

With these facts in mind we can prove the following result.



LemMa 27, Let I, be a unit vector that is tangent to a hypersurface, H,
parallel 10 3R, at peQ,. Then there are a neighborhood N of p in R™,
a CP-vector field I: N - RB*, 1wo vectors a, and a, and two scalars, b, and b,
such that the following properties hold:

(1) ay, as, by and b, depend continuously on p and i;.
(i) F=fyatp, I-T=1in N and, for each ge N Q,, llq) is tangent
ta the hypersurface parallel to 82 passing through g .
(i) If IcR is an open interval and U:.(NnQ))xI->R is a
C*-function satisfving

UL =AU+  in (NAGQ,)x] (277
then the C*'-function w=VU .1 satisfies

dwidt=Aw+a, - Vw+a, VU+bw+ Ve -Tatp, foral tel {2.78)
Owidn=V(AU/On) - I+ b,wat p.  forall tel {2.79)

where n is the outward unit normal to H ar p.

Proof. Let H be the hypersurface parallel to 86 passing through p
and let x=x4(#% .., 4™} be a C’-parametric representation of H in a
neighborhood of p, where (#°, ..., ) are Fermi geodesic coordinates defined
as follows. The first coordinate #° is an arclength along the geodesic of
H, C, that 18 tangent to ¢, at p. If s> 2, then the remaining coordinates
are arclengths along m — 2 geodesics that are tangent at each point of € to
&5, s €,,, Where {e,, .., ¢,} is an orthonormal frame moved along C by
parallelism on H, such that e, =7, at p. In addition, {#7, ..., #) are chosen
with origin at p and such that the line 5’ = ... =™ =0 is the geodesic C.
That coordinate system is well defined in a neighborhood of p and such
that
it #°=...=4"=0, Xogp=Ty  alp, {2.80)

‘Y‘-."l'}i + .,\,‘0”_,1' = 5{}

where J; is the Kronecker symbol (see, e.g.. [15, p.335]). Then (2.74)
defines a C’-coordinate system of R™ in a neighborhood N of p. whose
metric tensor satisfies (see (2.75)-(2.76) and (2.80))

gi=g"=0d, forall i j=1,..,m if p'=p'=...=9"=0. (28])

Also, (2.77) may be written as

auv =z oo i ;1)
[ i B G—I.-*2__ Gl.e'2 iy 2
di Zl & a;;*anf’ '’ (678 Jani’ T

Li=



where G is the determinant of the #1 xm matrix (g;). If this equation is
derivated with respect to #* and it is taken into account that, according to
(2.81), dg¥/0n* = 3G/én” =0 at p, then the following equation results

Ow, [Bt=dw,+ A4 -VU+ Vg -1, v, [Bn=V(8Ujdn} 1, at p,

where w, =aUjdn* =vVU ‘[f;'n”z+xwz} and A4 is the vector field whose
contravariant components are

o0 2
A_.f_ G—1°
Z on’ [ on'

GV *g”]] {2.82)
and w=VU. {§'n,: + xp,2)// 222 = W1 // g2 18 readily seen to satisfy (2.78)
and (2.79}) at p with

ay =2 gnlph) P Vg0l p)) ay={g{pH~'" 4,
by={g:(p)) "7 A /g p)) by= —( g pYY 170/ gan{p)ion  (2.83)
and 7= (n'n,2 4 xo,2)/\/ &2

Notice that 7 is a unit vector tangent to the hypersurfaces 5'= constant
{that are parallel to H) along the parametric lines associated with the coor-
dinate #°. Finally, @,, a», b, and b, depend continuously on p and 7, {see
{2.82)-{2.83) and take into account that g, g% and their first and second
order derivatives depend continuously on p and 7). Thus the proof is
complete.

A bound to the gradient of {7 along the hypersurfaces parallel to 92 is
given in the following result

LemMma 2.8.  Under the assuniptions (H.1}-{H.6) (at the end of Section 1},
fet py, Kk, ks, T and p| be as defined in assumptions (H.1}, (H4), and (H.5)
and in Lemmas 2.4 and 2.6. Then there are two constants, T" = T + 1/¢* and
o> 0 depending only on the quantities (2.32) such that T"-T\=
Ol ~?) log ¢ and jt. = Olc/{($ + a)) in the limit (1.16), and

|¢’U|sﬁazexp[—\/f;¢d{x}] if xeQ,, and 1=T", (284

where U is a solution of (2.60)(2.61), VU is the gradient of U along the
hyper-surfaces parallel to 882,

k=min{k,/4m, k,/3} >0, {2.85)

£, is as defined in (2713} and, as above, d x) is the distance from x to 082,



Proof.  Let us consider the function

wy = (524 gty expl —ke™(1 — 1/$* — T ] expl — Jkgd(x)),  (286)

where g, >0 is as defined in Lemma 2.6 and g; > 0 is to be defined below
(see Eq. (2.88)). When taking into account that £, may be covered by a
finite number of coordinate systems such as that in {2.74), with ;' = —d(x),
it is readily seen that

Ay < (kg2 +hedywy. (V| = Jkdw,  in@,,

(2.87)
ow, (on=Jk¢w,  atdQ.  for alls.

where k.= \/_max {1G,1/Gl in 2,}. Let the continnous functions a,,
a,: @2, >R and by, b,: 2, - R be as defined in Lemma 2.7, and let &,> 0
be a common upper bound of |, |. la;|. and |#,| in £, and of |5, | on 88.
Notice that k. depends only on 282, If

¢ >max{k,/ Sk, 6(1 +ke+ky) Jhfles. /6ks/ls}
{recall that ¢ — oo in the limit {1.16}}) and g is defined as

f = (4, %) max{ ko §3 [k s /3 — (ko + k) /K 6 — k5],
¢ expl — /kgp1/4)) (2.88)

then g, >0 and w, satisfies

dw, jot> Aw| +a, - Vw, +a, - VU+bw, —k.¢°w, atp, forall peQ,,

{2.89)
w > |V if dix)y=p,/2, {2.90)
Ow,jfon—byw, >0 at p, forall pede, (2.91)

provided that 7 = T + 1/¢7, as readily seen when taKing into account (2.65)
and (2.85)-(2.87).
Now, if we show that

VU < w, in 2, for all =T)+1/$* (292}
then (2.84) follows with u, as given by (2.88) and 7" =T+ /¢ +

(k¢*y ~ " log(1 + g, /u»). In order to show that {2.92) holds first notice that,
since |VU| < |VU|, according to (2.86) and the result in Lemma 2.6,



w, > |VU| in 2, if 1=1/¢*+ T. Assume for contradiction that there is a
first value of ¢, T, and a point p e 2, such that

\YU(p, T =w,, |VUI<w, in, il t<T, (293

Let H be the hypersurface parallel to 842 at p. According to the definition
of V, there is a unit vector, 7,, that is tangent to H at p and such that

\VU(p. To)| =VU(p, To) -5, =VU(p. To) -1y,
and if 7 and N are as given in Lemma 2.7, then
VU.T=VU-ig|VU| in 2, NN, for all r. {(2.94)
As a consequence, w= V.7 satisfies (see (2.93))
w=w, at (x, h=(p, To), wsw, inQ nN if 1T, {2.95)
Also, the result (iii) in Lemma 2.7 implies that
ewidr<Aw+a, -Vw+a, VU + b w—¢*kyw
at (x, t)=ip, T,) if peg, {2.96)
dwjiin= —aw+ b,w< b,w at ix0)={p T,) if pea, (297)

where we have taken into account (2.60)-(2.61) and that, according to
Lemmas 2.1 and 2.4 and to assumption (H.5) {at the end of Section 1),
AU, Vizk, and w=w, >0 at {x, 1) ={p. T,). In order to get contradic-
tion, we shall distinguish three cases:

{1 If pef2, then w,=w, —w satisfies Viw.{p, Tp) =0, Aw{p, T,) =0
and dw,ip, T}or<0 (see (2.95)) and this is in contradiction with the
mequality that is obtained upon substraction of {2.89) and (2.96).

() If p e 82 then w, =w, —w satisties dw,( p, To)/dn =0=bw,(p, T})
{see (2.95)) and this is again in contradiction with the inequality that is
obtained upon substraction of {2.91} and (2.97).

(iii) Finally, if di p) = p,/2 then w, =VU.-7< |[VU| < |VU| at (x, 1) =
{p, Ty) {see {2.94) and (2.95}), and this is in contradiction with (2.90).

But, according to the definition of £,. in (2.73), one of the three cases,
{1}, {ii), or {11} above, necessarily holds. Then a contradiction has been
obtained and the proof is complete,

Now we have the ingredients to derive the model (1.17)-(1.19). The
remainder i, in (1.19), is such that |(¢)| is appropriately small, and ' and
V are appropriately close to # and v respectively, as stated in Theorem 1.1.



Proof of Theorem 1.1. 1f0<gdix)<p,/2, let y = —d{x) be a coordinate
along the outward unit normal to 6Q and for each #, let Hin,} be the
hypersurface parallel to 8€2, defined by #=4#,. Notice that the Laplacian
operator may be written as

AU=G“§? (G;f;) au. (2.98)

Here, for each x € Q such that d{x) < p, /2, 4 is the Laplaoe—Beltrami operator
on the hypersurface H{ —d{x)}, and G=|(1 =k, #)--- {1 —k,._,#)|, where
ki, .. k,_, are the principal curvatures of 44 at the point of 44 that
shares with x the normal to 842 Notice also that

GG, |G, and |G,, | are bounded if —p,2<y<0. (299}

i

Now, let U= Uix, ) be as defined by (2.60)-(2.61), and let U, = U\(n, )
be as given by

V=S~ | Uls.ods where S(;;}:j ds  (2.100)

Y Hin) Hiy)

is the measure of the hypersurface Hiy). If, for each ye ]—p, /2, O[ we
integrate (2.60) on Hix} and divide by S{x), then after some manipulations
we obtain

BU, [0t =82U, oy — AU, M+ @m0y in —p,2<y<0, (2.101)

where we have taken into account that {4 Uds=0 and

1 28'(y) U,
(. 0) (U, — flu, V}ds]+—\—
il =47 S V=g Lm ' Sy oy

S 1 @ UaG \

LE J - — —ds. 2.102)
Sty 1 28(n) oy Lf,,) G o {

Similarly, if we integrate the boundary condition {2.60} in &€ = Hi(} and
divide by S, = S50}, then we obtain

U, jop=c{l = U} + @,i1) at =0, (2.103)

where

@il t) = (3G/an)y ds— [ S10Y/S(0Y] U,(0, 61 (2.104)

1
23{0 } [H(U) G



Now, when taking into account assumptions (H.l) and (H.5) and the
results in Lemmas 2.1, 24-2.6, and 2.8, we obtain

U, <2[ 0/ /kea/2m + )] expl — /haamdd(x)),  (2.105)

¢ U —dx), 1y—Uix, 1}
Spsexpl— Jhkodx)) if xeQ and  dx)<p,/2, (2106
loy(n, Ol s expl —Jhdn) i —p,2<n <0, |on) <ps.  (2107)

for all ¢ 2 T, where T", k and & are as defined in Lemma 2.8 and assump-
tion {H.4) and g, > (0 depends only on the domain £ and on the quantities
(1.20) and satisfies p, = O(c/(c+¢)} in the limit (1.16).

Now, let U be the unique solution of

Ui =3Tioy* —¢*A0. VY  in —ww<y<0,
a0iy=c(1 =Ty at p=0, (2.108)
if ¢t = T, with initial conditions
Un, T=0U, T i —pi/2<9n<0,
O, T = Ui —pr /2, Ty exp[ Sk 2m dln+ p,/2)]  (2.109)

f —m<p<—p/2

Since 10, V) <k, U (assumption (H.4)) and U(y, T") < 2[6/id/ K2 /2m +0)]
expl — /&, /2m ddix)) (see (2.105}), maximum principles readily imply that

0< Ty, 1) <2[aild Sk 2m+ V] expl Sk, 2m ¢y)

f —wo<p<g0 and 1277, (2.110)
and assumption (H.5} and the mean function theorem readily imply that

AU, V= AT Vi=hix, 50U, — 0, with A(x, 0) 2k,
it —p,/2<y<0. (2.111)

Then if

A=k2  and  5=max{8u,/ké, dus/ Sk,
[40/(0 +¢/k2/2m)] exp(—/k¢p,/4)},



the functions w_ =& exp(Agy) £ (U, — U) are readily seen to satisfy

Ow  Jot—0"w o+ ¢ Mx, )w, >0 in —p 2<y<0, ifr=T",
w,>0 atp=—p /2. dw, /p+oew, >0 at y=0, if t=27",

w, >0 in —p/2€yp=x0, ir (=77,
and maximum principles readily imply that w_ 20, ie., that
| U, — O] < 6 exp(Agn) in —p,/2€y=<0, if t=T". (2.112)

If, in addition, we take into account (2.64) and (2.106}, then {1.23) follows.
In order to obtain {1.24} we only need to take into account that ¥ satisfies
{2.62}, and that #,v— V and & — U satisfy {212}, (2.33} and (1.23). Thus
the proof is complete.

Remark 2.10. In the following, we shall ignore the initial transient
0< 1< T, where T'is as given in Theorem 1.1. Then the estimates (1.23)-(1.24)
and (2.110) will be assumed ro hold for all 1= 0.

3. ANALYSIS OF THE ASYMPTOTIC MODEL

The asymptotic model (1.17)-(1.19) will be considered now. We shall
first analyze, in Section 3.1, the distinguished limir when all terms are of
the same order and then we shall consider, in Section 3.2, other sub-limits
leading to still simpler sub-models. Finally, in Section 3.3 we shall analyze
the particular case when the non-linearity is as given by one of the expres-
sions {1.4)-(1.6), and the activation energy 7 is large.

3.1. The Distinguished Limit

Let us consider the following sub-limit of (1.16)
alp - s, vLid® = VoliS,, Bofhv— A, {3.1)
where

s>0, />0 and A>0 are bounded, and ¢ > o0, Lo, v—-0.
(3.2}



Then the model {1.17}-{1.19} may be written as

dUpr=02010> — LU V) In —w<E<, (3.3}
U=0 at ¢&=—ow, 0RE=s(1-0) at &=0, (3.4)
Al
I='dVide=1— I/+,1J F1O, Vydeé + (1), {3.5)
where
E=dy.  T=¢r. Y =¥p {3.6}

and, according to Remark 2.10,

0< T<[2/( Skaf2m +5)] expl Sk, /2méE) if —oo<E<0 and 720,
(3.7)

[ {T)| <&y = O(v) uniformly in 0 €7 < o0, {3.8)

Two remarks concerning this model are in order:

(a} According to Theorem 1.1, the attractors as t — oo of (3.3)-(3.5)
are close to the attractors of the original model {1.1)—(1.2), in the sense of
the estimates (1.23)-(1.24).

(b} If we ignore the remainder ¢, then (3.5) may be rewritten as

IV dVide=1— VA | fO V) (35)

Notice that condition {3.7) defines an imvariant ser of both (3.3)-{3.5) and
{3.3)-(3.4), (3.5') (that is, if the first two inequalities in (3.7) hold at t=1,,
then they also hold for all t=1,}), as readily seen when applying a
maximum principle. Then we may consider only those solutions of both
{3.3)-(3.5) and (3.3)-( 3.4}, (3.5} that satisty (3.7) and (for comparison of
the solutions of both problems) define the distance associated with the
norm

10T, ), Peenll =sup{ T(E, ) expl —/ky/2m &) —oo <& <0} + | V(7).
(39)

With that distance, the solution of both problems remain close to each
other in finite time intervals, as readily seen by the argument leading to
Eq.{2.112), in in the proof of Theorem 1.1. As a consequence, {with the
distance associated with {3.9)) the exponential attractors, as ©— <0, of both



{3.3)(3.5) and (3.3)(3.4), (3.5") are close ro each other; of course, non-
exponential attractors need not be close. This is the sense in which the
asymptotic behavior as 7— =0 of {3.3)-(3.5) (or that of (1.1)-{1.3},
according to Remark {a} above} may be approximated by that of
{3.3)(34), (3.5).

Even with a fairly simple nonlinearity, such as that in {1.4), with p=1,
the model (3.3)-(3.4), (3.5') exhibits at least multiple steady states and
Hopt bifurcations, see [2].

3.2. Some Particular Sub-limits of (3.1)-(3.2)

Let us now consider the model (3.3)-(3.5) in the particular sub-limits
§=0, 5> wand /-0. As

50 {3.10)

7 is small (see (3.7)) and, according to assumption (H.5), at the end of
Section 1, the nonlinearity /' may be written as

AT, V=100, V) O+ 00101, (3.11}

If A is fixed then the right-hand side of (3.5) equals 1—VF in frst
approximation and the dynamics of the resulting model is trivial. If,
instead, A is large, such that

sA—= A, #£0, o0, with 0= /=fixed, {3.12)
then the model {3.3}3-(3.5) may be rewritten as

a'r:rl /af:az'rjl /a‘fz - 01f1( Y+l tlexpl k. /2mE)  In —oo <E<0,

{3.13)
U,=0 at &¢=—-w0, a0, 5=14+ysr) at £=0,
{3.14)
all
I 7'dVidr=1-V+ A,\fl{V}J U,dE + ynlt) + a1, {3.15)
where
O =0fs.  fV)=£i0, V) {3.16)

and, according to (3.7} and {3.11}, the remainders ., 3, and \, are such
that

sl &, )] + |a{T)] + [al7)] = O{s) uniformly in —s0 <&<0, 720
(3.1



in the limit {3.10}, (3.12). Then, if the remainders ¥, ..., 5 are ignored in
{3.133-{3.15}, we obtain an asymptotic model that is seen to approximate
the large time behavior in a sense similar to that described in Remarks {a)
and {b), at the end of Section 3.1.

In the limit

§ = a0, with [#0 and A#£0 fixed, {3.18)
we have
[20(0, 7)/0¢| = uniformly bounded in 1 =0, (3.19)

as readily seen by an argument similar to that in the proof of Lemma 2.6,
Case 1. Then the boundary conditions {3.4) may be written as

O=0 at &=—m, U=14+ysr) at £=0, (34"
where the remainder 35 is given by
Wity =s"1aln0, tyjes (3.20)
and, according to (3.19), satisties
[Wsit) = O~ uniformly in 720, {3.215

in the limit {3.18). Again, if the remainders ¥, and ¥ are ignored in the
model {3.3), (34'), (3.5), then we obtain an asymptotic model that
approximates the large time behavior of (1.1}-(1.2), in a sense similar to
that described in Remarks (a) and (b}, at the end of Section 3.1.

In the limit.

{—=0, with s and A fixed, {3.22)
let us replace Eq.(3.3) by
0=0200 - 10, V) in —w<E< (3.3

For each function ¥ = JVir} the problem (3.3’) (34) is readily seen to
uniquely define

O=H V) {(3.23)

and, according to assumptions (H.4) and (H.5) at the end of Section 1. the
following estimates are seen to hold

0< Hexp(—/ka&)=O(1),  [BH/oV|expl—/kE) = O(1)  (3.24)



uniformly in —w0 <&<0, 70, F>1/2, in the limit (3.22), where Oil)
stands for a bounded quantity. If (U, V) is a solution of {3.3)—(3.5) and
U, = H(& V(1)) is the associated solution of {3.3'), (3.4}, then |dVidr| =
O}y uniformly in 7 > 0, as readily seen from (3.5} when taking into account
agsumption (H.4) and Eq. (3.7}, and {3.24) implies that

18T jat| expl( — /K, & = O] uniformly in  —w0 <&<0, 10,
{3.25)

in the limit {3.22}. Then we only need to apply maximum principles, as in
the argument leading to Eq. (2.108), in the proof of Theorem 1.1, to obtain

10— T, | = 0(1) exp{ —kz + /& &)+ OU) exp( Sk &)

uniformly in —=0 <& <0, 7> 0, where k=min{k,, k,}/2 (see assumptions
{H.4} and {(H.5}}, and consequently

10— T, | expl —/k &) =0(1

uniformly in —w<{<0, 1t>7,=0(|logl|). {3.26)

Then we only need to replace & by I, in (3.5) to obtain

a0
avjdt=1—V+i| fIHE V) Ve +gen. (327)

— o

where H is as given in {3.23); the new time variable ¥ and the remainder
¢ are given by

and, according to {3.26) the remainder is small. ie.,

WelT)| = OUh uniformly in  —w0 <&<0, 7>1, {3.28)

in the limit (3.22). If the remainders ¥, and \, are ignored in {3.27} then
an antonomous ODE is obtained that may exhibit multiple steady states
and vields trivial dynamics (namely, V(7) converges to a steady state as
= o). As above, this implies that the dynamics of (1.1)-{1.2) is essentially
trivial in first approximation.

Similarly. as / = oo one could try to prove that the time derivative in the
left hand side of (3.5} may be just omitted in first approximation. Then,
after solving the resulting equation and replacing its solutions into (3.3},
a non-local semilinear equation would be obtained. Unfortunately, this



would require the non-linearity f to be such that f, <0, while £, is usually
positive (see {1.4)-(1.6)). In this case, when the time derivative is omitted
in (3.5}, the resulting equation may possess multiple solutions and, as a
consequence, the complete problem may possess relaxation osciflations
whose analysis is bevond the scope of this paper (see, e.g., Hastings [16]
and Grasman [17] for a formal analysis of these oscillations in related
problems).

3.3. Large Activation Energies

As mentioned in Section 1, the activation energy y may be fairly large
{1.4)—(1.6}. Let us now consider the limit

¥ W0 {3.29)

in (1.4} (with p=1 for assumptions (H.4} and (H.5} to hold); the analysis
of the non-linearities {1.5) and (1.6} is completely similar.

In the limit {3.29} we shall consider two distinguished liniits. In a first
extinction Hmit we rescale ¢2, 8, and v as

gi=¢expl—y), Fi=py and v, =vfy, {(3.30)
to rewrite (1.13-{1.2}, (14} as
Oufdr=Au—¢iuexp(—1/e,)  inL,
Sufbn=a(l —u) at a¢2, {3.31)
L™ 100, /8t=Adv, + B ¢iuexp( —1l/r;)  in g2,
Juyfdn=vilfy—u) at 882, {3.32)
In the limit
o0, ¢iow, fidiolig+a)-0, vr—0, ¢ '=0(1) (3.33)

the results in Section 2 {and, in particular, Theorem 1.1) apply to yield the
asymptotic model

aliior =020/on* — ¢ Uexp(—1/V))  in —o<p<0, (3.34)

=0 at p=—o, JTop=e(l-0) at 5=0, (3.35)
A0

(Vol/SoLydV jdi= —vV + f¢7exp(—1/V)) J TdE + vy + win),
- (3.36)



where ¥, is the spatial average of v, and [(2) +v/¥|, |#— U] and |v, = V|
are appropriately small, according to Theorem 1.1. Notice that (3.34)-(3.36)
is essentially (except for the constant » on the right-hand side of (1.19)) a
particular case of the model {1.17)}-(1.19), and thus the analysis in Sec-
tions 3.1-3.2 above applies to this new asymptotic model.

In a second ignition limir. ff and v —1 are rescaled as

Po=yp and  py=ye-1) (3.37)
to rewrite (1.1)-(1.2), (1.4} as

Sujdt = Au — duexp[v- /(1 + vy} ] in 2,

Sufdn=a{l —u) at o2, {3.38)
L= 180, /01 = Av, + B¢ uexp[o. /(1 +1,/¥)] in 2,
dr, [on = — vy, at o8, {3.39)

Notice that now the non-linearity is not bounded (as v, — o0} in the limit
{3.29), as required by assumption (H.3} and thus the results in Section 2 do
not apply to (3.38)-(3.3%). But the boundedness assumption was used in
Section 2 only to prove {in Lemma 2.2} that v is bounded. Then, if we only
consider those solutions of (3.38)-(3.39) such that |v.{t}| is bounded in
0 <t <o, then Theorem 1.1 still applies {after slight changes to account
for the fact that the non-linearity depends on the small parameter 1/y) in
the limit

yo 0, ¢*ow, fugafd+a)-0, vo0, a7 '=0(1), {3.40)
to obtain the asymptotic model

dthiot=8*Tion* —¢*Texp(V,) In —om<p<O, (3.41)
U=0 at p=—-—w, ATdy=c(1-0) at p=0, (342)

(VolSaL)dVyjdt= —vV, + B¢ exp( V) §°  Udy+ (2, {3.43)

where ¥, is the spatial average of v, and ||, |#— 0| and |v, — V,]| are
appropriately small. Again, the analysis in Section 3.1 and 3.2 above still
applies to (3.41)<3.43).

In addition. (3.38)-(3.39) possess solutions that are not bounded, but
become very large in finite time. This phenomenon is known as ignition in
the Combustion literature and its analysis in connection with (3.38)-(3.39)
is (again} beyond the scope of this paper.



4. CONCLUDING REMARKS

We have considered the model {1.1}—(1.2} in the limit (1.16). The spatial
domain, the non-linearity and the initial data have been assumed to satisty
assumptions (H.1}-{H.6). Some of these assumptions could be relaxed as
explained at the end of Section 1, and have been imposed for the sake of
both brevity and clarity. The assumption f,>k,> 0 {in (H.5)} instead, is
necessary for some of the ideas in the paper to apply, but perhaps it is not
necessary for the main result to hold.

In Section 2 we have first obtained some estimates on the solutions of
{1.1)—{1.2} implying that, after an initial transient (1) the reactant concen-
tration & becomes quite small except in a boundary layer, near the bound-
ary of the domain, 862, (i) the temperature ¢ becomes approXimately
spatially constant, and (iii) the gradient of & along the hypersurfaces
parallel to @62 becomes small. Then the asymptotic model {1.17)—(1.19} was
obtained. The 1-D parabolic semilinear equation {1.17} yields the reactant
concentration in the above-mentioned boundary layer, and the ODE (1.19)
gives the spatial average of the temperature.

The asymptotic model was analyzed {in Section 3.1) in the distinguished
fimir when all terms are comparable {except for the remainder i, that is
smaller} and in some representative sub-limits {in Section 3.2}. Namely, (i)
when s— 0 (ie, when chemical reaction is much faster than material
exchange through the boundary) and s — o0 the mixed boundary condition
at =0 (in (1.18)) can be replaced by Neumann and Dirichlet boundary
conditions respectively, and (ii) when /— 0 (ie, when diffusion is much
faster that thermal exchange through the boundary} the reactant concen-
tration becomes quasi-steady and the asymptotic model is reduced to an
ODE; the opposite limit, /— =0, is much more subtle, as explained at the
end of Section 3.2. Finally, in Section 3.3 we considered the case when the
chemical reaction obeys a first-order Arrhenius kinetic law and the activa-
tion energy is large.

Let us point out that the asymptotic model was derived in a quite
realistic limit, and that it is much simpler than the original reaction-
diffusion system. Thus we expect this model to be useful in the analysis of
the dynamics of catalytic pellets, which are of great interest in chemical
reactor theory.
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