
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Hoverd, Tim and Sampson, Adam T. (2010) A Transactional Architecture for Simulation. In:
 ICECCS 2010: Fifteenth IEEE International Conference on Engineering of Complex Computer
Systems. IEEE Press pp. 286-290.

DOI

Link to record in KAR

https://kar.kent.ac.uk/24147/

Document Version

UNSPECIFIED

A Transactional Architecture for Simulation

Tim Hoverd

Department of Computer Science

University of York

York, UK

Email: tim.hoverd@cs.york.ac.uk

Adam T. Sampson

School of Computing

University of Kent

Canterbury, UK

Email: ats@offog.org

Abstract—We are developing a concurrent, agent-based ap-
proach to complex systems simulation as part of the CoSMoS
project. In such simulations an agent’s behaviour can typically
be characterised as a series of queries and updates to its
environment—a “transactional” pattern of interaction familiar
to programmers of database systems. We explore how ideas
from the field of databases, such as optimistic approaches
to consistency and replication, may profitably be applied to
the field of simulation, and how the constraints of modern
databases can be relaxed to yield better performance while
maintaining simulation validity.

Keywords-science; simulation; concurrency control; database
concurrency operations

I. INTRODUCTION

The CoSMoS project1 is developing an approach to agent-

based modelling and simulation of complex systems us-

ing concurrent software engineering techniques. Using the

CoSMoS design process, a complex system is modelled

as a collection of interacting, concurrent agents, each of

which may have its own behaviour. CoSMoS has been

especially concerned with systems that demonstrate emer-

gent behaviour, where complex group behaviours arise from

simple rules followed by individual agents: for example,

Reynolds’ boids [1] are simulated birds that form flocks as

an emergent behaviour.

The initial simulations built as part of the TUNA

project [2] used the simple approach of modelling interac-

tions between agents directly as channels or method calls.

As more complex simulations were constructed, the lack

of structure to the communications made it increasingly

difficult to reason formally about the behaviour of the simu-

lations. Model-checking is one way to guarantee correctness

of a concurrent simulation [3]—but this is often awkward,

because model-checking languages are not very expressive,

and intractably slow for even modest-sized systems. A better

approach is to use a structural design rule such as I/O-

PAR [4], which describes how to construct components of

a parallel system that, when used to construct a complete

system, will guarantee that the system as a whole is free

from deadlock and livelock problems. However, the design

rules applicable to systems in which any component may

1http://www.cosmos-research.org/

communicate with any other in an unstructured fashion allow

only very simple patterns of behaviour.

A. Environment orientation

To enable the engineering of more complex simulations

as part of the TUNA and CoSMoS projects, we needed to

introduce a common structure to the interactions between

agents [5]. Our approach is based on the observation that the

agents in complex systems—for example, flocking birds and

trail-following ants—do not communicate directly with each

other, but interact through the medium provided by their

environment. Agents place information about their current

state into the environment, and receive information about

other agents—often in a highly-filtered form—from the envi-

ronment. We call this approach environment orientation [6],

because it requires us to model our agents primarily in terms

of their interactions with the environment.

This approach is familiar in the context of real-world

communication using stigmergy [7]—but we argue that all

communication in a complex system can be considered

as being mediated by the environment. Information placed

in the environment may persist for some time, like the

pheromones used by ants to form trails, or be transitory,

such as the “photons” used to simulate visibility among a

flock of birds.

Each agent in an environment-oriented simulation has

both internal state, private to that agent, and external

state which is made visible to other agents through the

environment—how the agent “wishes to be seen” by other

agents. Each agent follows a simple cycle of behaviour:

• retrieve information from the environment;

• compute new values for its internal and external state;

• publish its external state to the environment.

The regularity of the interactions between agents and their

environment permits a wide variety of implementations; for

example, we can construct massively-concurrent simulations

using the client-server pattern [4], [8]. (The introduction

of the environment as an explicit mediator is a common

pattern in the process-oriented programming paradigm, used

to simplify interactions between concurrent processes when

there is no natural ordering between them.)

We have already made practical use of this approach

to simplify the implementation of several concurrent, dis-

tributed CoSMoS simulations [9], [10], and we plan to

continue its use in future case studies. In the remainder of

this paper, we will consider further some of the implications

of environment orientation on the construction of complex

systems simulations.

II. TRANSACTIONS AND LOCKING

Environment orientation can be considered as a trans-

actional approach to complex systems simulation. Each

agent in a simulation is responsible for maintaining the

information published about itself. It does this by performing

a sequence of transactions against the environment, which

is a shared database of external states: during each cycle,

an agent will query the environment for the external states

of the other agents it is interested in, and update the

environment with its new external state.

As the external state stored for each agent is only written

to by that agent, there is no possibility of lock contention

when updating the environment. That is, as long as agents

reading the contents of a particular agent’s external state

are prevented from viewing inconsistent state information

while an update is in progress—that is, updates to the

environment are atomic—then no further locking mechanism

is necessary. Several approaches exist to ensure this sort of

consistency: we can either make individual updates atomic,

using the same techniques that conventional databases use

to implement read-committed transaction isolation, or we

can use phase synchronisation between concurrent agents to

enforce write-before-read ordering [11].

In addition, these atomic updates of external state by

individual agents mean that it is never necessary to roll back

a transaction. We observe that this is also true of real-world

complex systems: agents in the real world are not able to

roll back their changes to the environment.

With such an overall design, there are many possible

implementations of the state database used in the complex

systems simulation, including relational database manage-

ment systems and Linda-like [12] tuple spaces. Another

possibility is software transactional memory [13], an ap-

proach to concurrent programming which makes database-

like transactional operations available on shared memory.

While the guarantees of full atomicity for multi-step opera-

tions that STM provides are not required for environment-

oriented simulation, the STM approaches to lock-free atomic

memory updates to shared memory on modern multicore

systems are directly applicable to fine-grained simulation,

without the considerable overhead of rollback.

III. EMBODIMENT

In an environment-oriented complex systems simulation,

the environment is responsible for managing the state

database and providing those facilities that are embod-

ied [14] by the environment. Typically, the environment

embodies aspects of real-world physics. For example, [6]

describes how these embodied services may result in in-

formation being presented to agents, the clients of the

environment, using various topological representations of the

information.

The choice of properties to embody within the environ-

ment, though, is not always clear. For example, consider

the implementation of pheromone trails in a simulation of

ant foraging, in which trails are laid by ants, and fade

away as time progresses. Trails could be implemented as

agents, spawned into the simulation by ants, which maintain

a pheromone level at a particular physical location as part

of their external state; the behaviour of the pheromone

agent would simply be to reduce its level periodically,

and exit once the pheromone was exhausted. Alternatively,

the trails could be embodied within the environment: the

environment itself would “understand” that the pheromone

levels represented an aspect of the physical world, and would

manipulate the levels itself to implement decay.

There are trade-offs to be made here in terms of simplicity

and generality, and in terms of efficiency. If all physical

properties are implemented using specialised agents, the

external state database is effectively just a tuple store (albeit

one that will be accessed by, perhaps, many simulated agents

executing across a distributed system); this simplifies its

implementation and makes it directly applicable to all types

of environment. However, these agents increase system load,

and may require different patterns of interaction with the

environment, complicating the communication patterns of

the simulation—for example, you may need to ensure that

all environmental properties have been updated before agents

can observe the environment. On the other hand, if properties

are implemented by the environment itself, this does not

complicate the patterns of interaction between agents and the

environment—but it requires the environment to be aware of

the details of these properties, reducing its generality. It may

prove convenient to strike a balance between the two in a

practical simulation framework: implement a few common

physical properties in the environment itself, but make it

possible to extend the simulation with additional properties

by writing specialised agents.

IV. TIME AND FAIRNESS

In a simulation following the I/O-PAR design rules, the

communications between the agents give the simulation as a

whole a shared sense of granular time: no agent can proceed

to the next time step until it has communicated with all

its neighbours. When agents do not directly communicate

with each other, this shared sense of time is lost: agents

can perform transactions whenever they like, which makes

it possible for agents to execute at different virtual rates.

This is, of course, what happens to real-world complex

systems agents as is discussed in [6]. However, in the real

world, no agent can “run ahead” of the others; agents execute

in a perfectly fair parallel manner, with the rate of their

behaviour only limited by the inherent physical properties

of the world. In a simulation, freewheeling is not acceptable:

we must introduce a sense of time in order to ensure that

agents’ access to the shared computational resources is

scheduled fairly, with no agent able to starve another of

execution time.

In the current CoSMoS simulations we provide the shared

sense of time by an explicit barrier synchronisation at the

end of each timestep [11], an approach inspired by Bulk

Synchronous Parallelism [15]. We can further subdivide each

timestep to control access to shared resources in one or more

of a set of predefined “phases”.

We plan to improve performance for phase-based sim-

ulations by combining the “virtual time” technique used

in event-based simulation [16], in which a unitless virtual

time is represented simply as a monotonically-increasing tag

tracked by simulation components, with the phase-regulating

“clock” primitives provided by the X10 programming lan-

guage [17]. Our clocks will keep track of a time- and phase-

ordered list of future events; this will allow agents to run in

strict time order with the maximum possible concurrency for

each time step, while avoiding the unnecessary synchronisa-

tions that are a common problem in phase-based programs.

However, the problem with all these approaches is that

they offer an inherently discretised representation of time.

Discretising time has been shown to affect the accuracy of

complex systems simulations in the same way that discretis-

ing space does [18], and results in reduced expressiveness of

simulation systems [19]; we feel that continuous time is an

extremely useful feature for complex systems simulations.

Furthermore, we must support these notions of continuous

or discretised virtual time across non-uniform multicore

and distributed systems—a problem that is hard to solve

efficiently. Within the CoSMoS project we are investigating

the extent to which this can be done using “sloppy” syn-

chronisation: allowing the clocks on neighbouring systems

to drift away from each other within predefined tolerances.

V. REPRODUCIBILITY

Complex systems simulations are generally seen as

providing the ability to perform completely reproducible

experiments—providing a clear advantage over experimen-

tation on real-world complex systems, where reproducibility

is generally not feasible, and allowing published results to be

directly reproduced by other researchers. However, several

of the techniques we have described introduce nondetermin-

ism into our simulations: for example, concurrent transac-

tional state updates without external synchronisation allow

updates to occur in any order, and “sloppy” implementations

of time synchronisation in a distributed simulation may trade

off consistency against performance.

We believe that a degree of nondeterminism will be

acceptable in many circumstances. Simulation can be con-

sidered as a scientific instrument that we use to understand

the behaviour of a system, and like all instruments it has

a degree of uncertainty in its results that can be estab-

lished by calibration. The scientific method is very good at

dealing with real-world experiments with nondeterministic

behaviour; the same techniques—error bounds, sensitivity

analysis, and other statistical techniques—can be applied to

interpret the results of nondeterministic simulations.

It is rare that the results of a single run of a complex

system simulation are directly useful, just as the result of a

single real-world experiment is rarely considered sufficient.

We normally want to run our simulation many times with

the same parameters, and aggregate the results to give a

better understanding of the typical behaviour of the system;

this will have the effect of “averaging out” the effects

of nondeterminism on the individual results. In addition,

permitting a greater degree of nondeterminism will generally

speed up the simulation, making it practical to run it more

times—and, unlike in the real world, we can ensure that the

initial conditions for a set of experiments are always exactly

the same.

When debugging a simulation, being able to reproduce

a single run exactly is sometimes useful. To support this,

we could give the programmer a control that allows them

to trade determinism against performance—for example,

by reducing the degree of concurrency and enabling addi-

tional explicit synchronisations when greater determinism

is required. Furthermore, techniques exist for debugging

nondeterministic concurrent systems [20] where software

is instrumented so that a rough trace of its execution

path is retained. Subsequent debugging runs can then be

automatically steered down the same execution path, with

the trace being iteratively refined with feedback from the

programmer until the desired behaviour is reproduced. This

approach could be applied to a nondeterministic simulation.

Fundamentally, we believe that a complex systems simu-

lation will still be more reproducible (i.e. have less variance

in its results) than a corresponding real-world experiment—

although it is still important to construct a reasonable validity

argument for any simulation. Given the inherent inaccuracy

in most existing simulations, we believe that encouraging

scientists to reason about the accuracy of results obtained

via simulation in the same way that they would for “wet”

experiments is appropriate.

VI. ROBUSTNESS

The real world—the most complex of all complex

systems—is inherently extremely robust. Systems composed

of a huge number of independent agents from which useful

behaviour emerges will usually continue to function in a

wide range of different circumstances: agents are born and

die, information is delayed, lost or corrupted, and interac-

tions are complex and unpredictable. While undesirable be-

haviours exist, such as the auto-immune diseases that appear

in organisms equipped with complex immune systems, they

are rare; complex systems usually return themselves to some

kind of stable state.

Engineered systems fare poorly by comparison, usually

demonstrating extreme sensitivity to both initial and chang-

ing conditions. Systems built by humans tend to be fragile,

with a wide variety of spectacular failure modes [21]. This

applies even to existing simulations of complex systems,

which often display high sensitivity to parameter values and

to implementation details such as the scheduling order of

concurrent processes.

An ideal complex systems simulation would be as robust

as the complex system itself. In our transactional approach,

each agent’s behaviour is largely independent of the other

agents in the simulation, and is not affected by the heavy

hand of precise time steps and explicit global synchro-

nisation. We believe that this decoupling should tend to

increase the robustness of our simulations, and that we

should actively try to build robust simulations by testing the

sensitivity of our simulation to artificially-induced “faults”

such as blocked access to parts of the simulation, changes to

the order in which state updates are recorded, and forcible

introduction or termination of agents. We are investigating

such systematic manipulations of our simulations with the

ultimate intention of being able to measure the robustness

of a particular simulation.

VII. CONCLUSION

We have described a “transactional” approach to the

simulation of complex systems, based on our experience

of existing approaches to simulation, and we have outlined

some of the implications that the use of this approach

would have on the construction of simulations. Many of the

individual techniques we have described are already being

used successfully during the construction of simulations for

the CoSMoS project.

We are presently building new concurrent simulations

using a “purely transactional” approach to implementation.

While our initial results have been encouraging, so far we

have only considered systems at a relatively small scale

without distribution; we plan to extend our work to larger

systems to further test the effectiveness of our approach.

ACKNOWLEDGEMENTS

We would like to express our thanks to other members of

the CoSMoS project, and in particular to Susan Stepney of

the University of York for many helpful discussions. This

work is part of the CoSMoS project, funded by EPSRC

grants EP/E053505/1 and EP/E049419/1, and a Microsoft

Research Europe PhD studentship.

REFERENCES

[1] C. W. Reynolds, “Flocks, herds, and schools: A
distributed behavioral model,” Computer Graphics,
vol. 21, no. 4, pp. 25–34, 1987. [Online]. Available:
http://citeseer.ist.psu.edu/reynolds-flocks.html

[2] “TUNA: Final Report,” 2007.

[3] S. Schneider, A. Cavalcanti, H. Treharne, and J. Woodcock,
“A layered behavioural model of platelets,” in ICECCS 2006.
IEEE, 2006.

[4] P. H. Welch, G. R. R. Justo, and C. J. Willcock, “Higher-Level
Paradigms for Deadlock-Free High-Performance Systems,” in
Transputer Applications and Systems ’93. IOS Press, 1993,
pp. 981–1004.

[5] C. G. Ritson and P. H. Welch, “A process-oriented architecture
for complex system modelling,” in Communicating Process
Architectures 2007, vol. 65. IOS Press, 2007, pp. 249–266.

[6] T. Hoverd and S. Stepney, “Environment orientation: an
architecture for simulating complex systems,” in Proceedings
of the 2009 Workshop on Complex Systems Modelling and
Simulation, S. Stepney, P. H. Welch, P. S. Andrews, and
J. Timmis, Eds. Luniver Press, 2009, pp. 67–82.

[7] G. Theraulaz and E. Bonabeau, “A brief history of stigmergy,”
Artif. Life, vol. 5, no. 2, pp. 97–116, April 1999. [Online].
Available: http://dx.doi.org/10.1162/106454699568700

[8] J. M. R. Martin and P. H. Welch, “A design strategy for
deadlock-free concurrent systems,” Transputer Communica-
tions, vol. 3, no. 4, 1997.

[9] P. S. Andrews, A. T. Sampson, J. M. Bjørndalen, S. Stepney,
J. Timmis, D. N. Warren, and P. H. Welch, “Investigating
patterns for the process-oriented modelling and simulation of
space in complex systems,” in Artificial Life XI: Proceedings
of the Eleventh International Conference on the Simulation
and Synthesis of Living Systems, S. Bullock, J. Noble, R. Wat-
son, and M. A. Bedau, Eds. MIT Press, Cambridge, MA,
2008, pp. 17–24.

[10] P. S. Andrews, F. A. C. Polack, A. T. Sampson, J. Tim-
mis, L. Scott, and M. Coles, “Simulating biology: Towards
understanding what the simulation shows,” in Proceedings
of the 2008 Workshop on Complex Systems Modelling and
Simulation, York, UK, September 2008, S. Stepney, F. Polack,
and P. Welch, Eds. Luniver Press, 2008, pp. 93–123.

[11] F. R. M. Barnes, P. H. Welch, and A. T. Sampson, “Barrier
synchronisation for occam-pi,” in 2005 International Confer-
ence on Parallel and Distributed Processing Techniques and
Applications (PDPTA). CSREA Press, 2005, pp. 173–179.

[12] D. Gelernter, “Generative communication in Linda,”
ACM Trans. Program. Lang. Syst., vol. 7, no. 1,
pp. 80–112, January 1985. [Online]. Available:
http://dx.doi.org/10.1145/2363.2433

[13] N. Shavit and D. Touitou, “Software transactional memory,”
in PODC ’95: Proceedings of the fourteenth annual ACM
symposium on Principles of distributed computing. New
York, NY, USA: ACM, 1995, pp. 204–213.

[14] S. Stepney, “Embodiment,” in In Silico Immunology,
D. Flower and J. Timmis, Eds. Springer, 2007, ch. 12, pp.
265–288.

[15] R. H. Bisseling, Parallel Scientific Computation: A Structured
Approach using BSP and MPI. Oxford University Press,
2004.

[16] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang.
Syst., vol. 7, no. 3, pp. 404–425, July 1985. [Online].
Available: http://dx.doi.org/10.1145/3916.3988

[17] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-
oriented approach to non-uniform cluster computing,” in
OOPSLA ’05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications. New York, NY, USA: ACM,
2005, pp. 519–538.

[18] I. Cohen and D. Harel, “Two views of a biology-computer
science alliance,” in Proceedings of the 2009 Workshop on
Complex Systems Modelling and Simulation, S. Stepney, P. H.
Welch, P. S. Andrews, and J. Timmis, Eds. Luniver Press,
2009, pp. 1–8.

[19] C. Elliott, “Why program with continuous time?”
http://conal.net/blog/posts/why-program-with-continuous-
time/, accessed on January 13th, 2010.

[20] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
and S. Lu, “Pres: probabilistic replay with execution sketching
on multiprocessors,” in SOSP ’09: Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles.
New York, NY, USA: ACM, 2009, pp. 177–192.

[21] Risks, “Forum On Risks To The Public In Computers And
Related Systems,” http://catless.ncl.ac.uk/Risks, accessed on
2nd November, 2009.

[22] S. Stepney, P. H. Welch, P. S. Andrews, and J. Timmis,
Eds., Proceedings of the 2009 Workshop on Complex Systems
Modelling and Simulation. Luniver Press, 2009.

