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Summary In this paper we consider the issue of performing statistical inference for Lorenz
curve orderings. This involves testing for an ordered relationship in a multivariate context
and making comparisons among more than two population distributions. Our approach is
to frame the hypotheses of interest as sets of linear inequality constraints on the vector of
Lorenz curve ordinates, and apply order-restricted statistical inference to derive test statistics
and their sampling distributions. We go on to relate our results to others which have appeared
in recent literature, and use Monte Carlo analysis to highlight their respective properties and
comparative performances. Finally, we discuss in general terms the issue and problems of
framing hypotheses, and testing them, in the context of the study of income inequality, and
suggest ways in which the distributional analyst could best proceed, illustrating with empirical
examples.
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1. Introduction

Suppose you were to draw 1000 observations from a population distribution, say a lognormal or
Singh–Maddala, and then plot the decile Lorenz curve from this sample. Suppose you then draw
another sample of 1000 observationsfrom the same population distribution, and compare the two
sample Lorenz curves. Suppose you then repeat the exercise many times. In what proportion of
cases do you think you would find Lorenz dominance, of one sample curve over the other, even
though both have come from the same population distribution? 5% of cases? 10%? The answer
can be as high as 50% of cases.1 This demonstrates the need for statistical inference procedures
— and if we need them to test for equality of two empirical Lorenz curves, then,a fortiori, we
also need them to test the hypothesis that one empirical curve comes from a Lorenz-dominant
population, or that the underlying population Lorenz curves intersect.

This paper concerns: how to set up the null hypothesis, and the alternative(s), and how to
say with confidence that, for example, inequality increased steadily in the 1980s in the USA (or
that it did not). Namely, we shall consider three types of hypothesis: (1) that the Lorenz curves

1Details will be given later. This result, which may seem quite surprising at first sight, is simply due to the fact that
empirical Lorenz curve ordinates are typically strongly positively correlated.
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(of the underlying populations) are equal; (2) that there is a chain of dominance, of one curve
over another, and the other over the next, and so on (allowing explicitly for multiple populations
throughout); and (3) that the Lorenz curves are unrestricted. The relevant testing procedures will
be described, and contrasted with related results already in the literature. Next, we summarize
the results of some Monte Carlo experiments designed to compare size and power properties, and
address the questions arising for the practitioner: which test or battery of tests should be engaged,
and in what contexts? Finally, we give two illustrative applications, one of which compares
US family incomes at two-year intervals throughout the 1980s, and another which compares the
income inequality in two Italian regions. The final section contains concluding remarks and some
practical advice for the applied researcher.

Since we wrote the first draft of this paper, two very valuable contributions of Davidson and
Duclos (1997, 1998) have appeared. These authors significantly extend the seminal contribution
of Beach and Davidson (1983) which derived the asymptotic distribution of the Lorenz curve
sample ordinates. Davidson and Duclos derive the asymptotic sample distribution of quantile-
based estimators needed for both the measurement of progressivity, redistribution and horizontal
equity, and the ranking of distributions in terms of poverty, inequality and stochastic orders of
any order. These results can obviously be applied in conjunction with the methods discussed in
this paper: the researcher has simply to reshape the ordering of interest as a multivariate normal
model subject to linear inequality constraints, and then apply the results presented in our paper
to investigate these more general contexts.

2. Notation and overview

Let the income earned by individuals or families be a random variableY, whose properties within
a given population are described by the cumulative distribution function(cd f)P(y); this function
we assume to be strictly monotone and twice continuously differentiable. For anyp ∈ (0,1), this
implies the existence of thequantile function Q(p) = P−1(p); the corresponding Lorenz curve
ordinate is defined as

θ(p) = E{Y | Y ≤ Q(p)}/E(Y).
Given a sample of sizen, let Y( j ) denote thej th order statistic; sample estimates ofQ(p) and
θ(p) will be defined in the usual way

Q̂(p) = Y(s), wheres− 1< np≤ s

θ̂ (p) =
{

s∑
1

Y( j )

}/
(sȲ)

whereȲ is the sample average.
Assume now that we want to comparem separate populations by taking independent samples,

the one coming from thei th population having sizeni , i = 1, . . . ,m. Given a set ofk population
fractions 0< p1 < · · · < pk < 1, write θi j for θi (pj ), that is, the Lorenz curve ordinate
corresponding to thej th fraction in thei th population. We also writeθi for thek × 1 vector of
Lorenz curve ordinates in thei th population withθ̂i being the corresponding vector of sample
estimates.
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Beach and Davidson (1983) show that, under the above monotonicity and differentiability
assumptions, the vector

√
ni (θ̂i − θi ) has an asymptotically joint normal distribution with co-

variance matrix, say,6i whose entries are functions of quantiles, conditional expectations and
variances.2 They also show that a consistent estimate of6i can be obtained by replacing the
population quantiles, expectations and variances by the corresponding sample estimates (Beach
and Davidson1983, p. 729). This is essentially a distribution-free result from which they derive a
simple Wald statistic to test the hypothesis that two populations have the same Lorenz curve; the
fact that such a hypothesis can be safely rejected may provide strong evidence about the conjecture
that the structure of income (or wealth) inequality is essentially different in the two contexts.

However, in many cases the applied researcher in the field may be more interested in knowing
whether one Lorenz curve lies above or below another, and may also want to compare simultane-
ously more than two populations, to establish that, for instance, due to certain economic policies,
inequality has steadily increased during a sequence of years. In other circumstances economic
theory may lead to expect a more complex pattern of change in the inequality of income or wealth
so that the various Lorenz curves should have one or more points of intersection. One way of
putting this more formally would be to say that we are faced withthree hypotheses: H0, which
specifies that them Lorenz curves of interest are equal;H1, which specifies that them Lorenz
curves are completely ordered in a given direction, andH2, which indicates that them Lorenz
curves are unrestricted.

We are interested in distribution-free inferential techniques for testing these hypotheses. These
will be derived by using results from the theory of order restricted statistical inference, after
reframing H1 as a hypothesis concerning a set of inequality constraints on the parameters of
interest, and put into the framework of distance tests. An alternative procedure will be derived
from the idea of multiple comparison suitably adjusted.

3. Hypotheses Testing

For the chosen set of proportions 0< p1 < · · · < pk < 1, define first a discretized version of the
partial order induced by comparison of two Lorenz curves. Given two vectors of Lorenz curve
ordinates, sayθh andθi , we will say thatθh Lorenz dominatesθi , written θh � θi , whenever
θhj ≥ θi j for j = 1, . . . , k. Now, given an ordered set of populations, sayP1, . . . , Pm, define:

• H0: θ1 = · · · = θm, meaning that them Lorenz curves are indistinguishable at the level of
discretization adopted. It is important to notice thatH0 is acompositehypothesis, because
it does not specify the true value of the common Lorenz curve ordinates. Thus, we assume
the existence of a common true (up to an irrelevant scale parameter) incomecd f , say
P0 = P1 = · · · = Pm;
• H1: θ1 � · · · � θm, meaning that them Lorenz curves are completely ordered;
• H2 to indicate that them Lorenz curves are unrestricted.3

2Convergence to normality holds for a fixed set ofk population fractions when eachni goes to infinity. This means
that, whenever eachni is not too small relative tok, one can expect the actual distribution to be reasonably close to
normality. However, having both a finer discretization of the Lorenz curves (a largerk) and a greater accuracy in the
normal approximation are conflicting requirements.

3It is worth noting that a convenient feature of this problem is that the hypothesisH2 is always true. This implies that
in our testing procedures we do not have to worry about the potential problem in the case that neither the null nor the
alternative is true.
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Sometimes it is convenient to work with a slightly different version of the same problem, so let
H1−0 = H1 − H0 denote the hypothesis that at least one of the inequalities defining the partial
order is strict andH2−1 = H2 − H1 the hypothesis that at least one of the same inequalities is
not true, in which case we say that the curvescross(though they might actually be ordered in the
direction opposite to the one specified byH1). Our strategy will be to transform these hypotheses
into systems of linear inequalities, and use results from the literature on statistical inference for
testing multivariate inequalities.4

Let θ be themk× 1 vector obtained by stacking the vectorsθi one below the other, and let
the matrixD be a(m − 1) × m differencematrix having 1 on the main diagonal,−1 on the
diagonal above and 0 elsewhere. Let the(m− 1)k ×mk matrix R = (D⊗lk), with lk being the
k-dimensional identity matrix and⊗ the Kronecker product. Define the parameter vectorβ ∈ Rv,
with v := (m− 1)k, as:

β = Rθ.

The various hypotheses of interest can be written in terms of linear inequalities involvingβ and,
from now on, they will also denote the corresponding parameter sets so thatH0 = (β : β = 0),
H1 = (β : β ≥ 0) = Rv+, H2 = (β ∈ Rv), H1−0 = (β : β ≥ 0,β 6= 0), and H2−1 = (β :
min(β) < 0).

Letn=
∑

ni be the overall sample size and letr = (r1, r2, . . . , rm)be a 1×mvector such thatri

= ni /n is the relative size of thei th sample. The various hypotheses of interest specify restrictions
on the mean of an asymptotically multivariate normal variable

√
nβ̂ =

√
nRθ̂ ∼ N(

√
nβ,�),

whereθ̂ denotes the sample estimate ofθ, and

� = Rdiag(61/r1, . . .6m/rm)R′. (1)

3.1. Tests based on distance statistics

Let d(x, S,V) denote the distance between a vectorx ∈ Rv and a setS⊂ Rv in the metric of a
v × v positive definite matrixV,

d(x, S,V) = infy∈S(x− y)
′
V−1(x− y).

In general terms, ifHn, Ha ⊂ Rv denote the parameter spaces under the null and alternative
hypotheses respectively, the distance statisticDna can be written as:

Dna = n{d(β̂, Hn,�)− d(β̂, Hn ∪ Ha,�)}
and is equal to zero whenever the sample value ofβ belongs to the null hypothesis. A sensible
test procedure is then to reject the null hypothesis for large values ofDna.

The distance statistic for testingH0 (equality) againstH2 (the unrestricted alternative) is equal
to the usual chi-squared statistic

D02 = nβ̂
′
�−1β̂.

4The subject of testing the hypothesis concerning a set of inequalities goes also under the titles oforder-restricted
inference, one-sided testing, isotonic regression; for a detailed introduction see Barlowet al. (1972, ) and Robertson,
Wright and Dykstra (1988). Most of the results needed in this paper are contained in Kodde and Palm (1986) and Wolak
(1989).
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Theone-sideddistance statistics for testingH0 (equality) againstH1 (Lorenz ordering) andH1
againstH2 (the unrestricted alternative) are easily derived from the definition above and are
respectively equal to

D01= nβ̂
′
�−1β̂−min

y≥0
n(β̂− y)

′
�−1(β̂− y),

D12= min
y≥0

n(β̂− y)
′
�−1(β̂− y).

Note that these statistics satisfy the equationD02 = D01 + D12, and there are several efficient
algorithms to solve these quadratic programming problems; see e.g. Dykstra (1983) or Goldman
and Ruud (1993) and references therein.

In our context, however,� is unknown and has to be replaced by a consistent estimate. Because
the distributional results that we will be using (see Lemmas 1–3 below) hold underH0, we replace
�with �̂o where�o denotes the variance matrix of

√
nβ under the truecd f P0, and is obtained by

letting61 = · · · = 6m = 6o, say, in equation (1). A reasonable procedure to obtain a consistent
estimate of6o is as follows. Divide incomes within each sample by the corresponding arithmetic
mean to remove possible scale effects, and then pool all samples together. An asymptotically
equivalent estimate may be obtained by replacing each6i in (1) with the corresponding estimate
from thei th sample. This version ofD02 for comparing two populations is exactly the statistic
used by Beach and Davidson (1983, p. 731).5

The problem of testingH0 against the alternativeH1 would make sense for example when
economic theory predicts that the population Lorenz curves of interest should be ordered (due to,
say, changes in taxation and benefit policies), so that the crossing of the Lorenz curves (i.e.H2−1)
is an unlikely event. Then we can effectively restrict the parameter space toH1 and take a large
value ofD01 as reliable evidence to support the assumed population ordering.

In order to derive the asymptotic distribution ofD01 underH0, we recall thatH0 is acomposite
hypothesis. Because of the functional dependence of6o on P0, it follows that underH0 there
are infinitely many chi-bar-squared distributions which can describe the asymptotic distribution
of D01, one for each hypothesized value ofP0. In particular, as we show in the lemma below,
the asymptotic distribution ofD01 will depend on�o. In the same lemma we also give the
least favourable distributionof the test statistic, that is the distribution with the smallest rejection
region. This is the distribution required in the formal approach to testing composite hypotheses
(see, e.g. Lehmann, 1988).

Lemma 1. Under the assumption that as n increases ri , i = 1, . . . ,m, converges to a positive
constant, the asymptotic distribution of D01 is such that, for any x≥ 0,

Pr(D01 > x | P0) =
v∑

h=0

wh(�o)Ch(x) ≤
m−1∑
h=0

wh{Ddiag(r)−1D′}Ch+v−m+1(x),

wherewh(�o) andwh{Ddiag(r)−1D′} are nonnegative probability weights that sum to 1 and
Ch(x) denotes the probability that aχ2 with h degrees of freedom is greater than x.

Proof. The first equality follows trivially from the application of known results (see, for instance,
Shapiro, 1988); in the interest of completeness, we provide a sketch of the proof in the Appendix.

5This is equivalent to estimate� underH2; the corresponding estimate underH1 is a very difficult problem, beyond
the scope of this paper.
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In the Appendix we prove also the inequality defining the least favourable distribution, which
essentially follows when the Lorenz vector ordinates underH0 are perfectly correlated.

The result above states that the limiting distribution of the test statisticD01 is like that of a
chi-bar-squaredrandom variable, denoted̄χ2. A chi-bar-squared random variable is essentially
a mixture of chi-squared variables, where the mixing weightwh(V) is the probability that the
projection of aN(0,V) onto the positive orthant has exactlyh positive elements. The basic
properties of this distribution are defined in the appendix; for a detailed treatment see Shapiro
(1988) and Robertson, Wright and Dykstra (1988).

A useful result shown in the Appendix is that the weightsw j {Ddiag(r)−1D′}, j = 0, . . . ,m−
1, which determine the asymptotic least favourable distribution ofD01, are the same as thelevel
probabilitiesused in the context of order-restricted inference (see Robertson, Wright and Dykstra
(1988)). In the special case when the sample sizesni are equal in them populations (uniform
margins), the resulting weights may be easily calculated for an arbitrary number of populations
by a recursive formula discussed, e.g. by Robertson, Wright and Dykstra (1988, p. 82); this allows
an easy computation of the upper bound distribution.

In order to approach the least favourable distribution,P0 should be such that the elements
of θ̂i are almost perfectly correlated. Intuitively, this would happen when the variability of
incomes within a given interval [a,b] is negligible relative to the variability of incomes less then
a, or equivalently if the density function increases exponentially at an extremely high rate. A
distribution of this type is so unusual that in many practical cases there is sufficient evidence
against using such a distribution. Under the least favourable distribution, however, computation
of the probability weights is much easier so that one could start by computing the related upper
bound to the critical value for this test and then, if the sample value ofD01 is above this bound,
the null can be safely rejected without further computations. In the case where the value of the
test statistic falls below this critical value, an asymptotically correct procedure is then to compute
the critical values using the weightswi (�̂o). Although exact formulae for the calculation of
these weights exist only forv ≤ 4, whenv > 4, they can be estimated by projecting a reasonable
number ofN(0, �̂o) random vectors ontoRv+, and counting the proportion of times where exactly
i coordinates of these projections are positive.

3.2. Joint distribution of D01 and D12

It is actually possible to derive the joint asymptotic distribution of the two test statisticsD01 and
D12 underH0 with little effort as in the following lemma.

Lemma 2. Under the assumption that as n increases ri , i = 1, . . . ,m, converges to a positive
constant and that H0 holds, it follows that the asymptotic joint distribution of D01 and D12 is
such that, for any x≥ 0 and y≥ 0,

Pr(D01 > x, D12 > y | P0) =
v∑
0

wh(�o)Ch(x)Cv−h(y).

Proof. This result also follows trivially from application of known results on the chi-bar-squared
distribution. For the sake of completeness, however, we prove it in the Appendix.
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Denote now byF(x, y) the joint distribution function of ofD01 and D12 underP0 and by
G(x, y) the corresponding survival function, i.e.

G(x, y) = Pr(D01 > x, D12 > y | P0)

and recall the following identity which is useful below

F(x, y) = 1− G(x,∞)− G(∞, y)+ G(x, y),

whereG(x,∞) andG(∞, y) denote respectively the two marginals ofG(x, y).
We now propose to use the joint distribution ofD01 andD12 determined above in the construc-

tion of a testing procedure that partitions the sample space into three disjoint regions so that the
error probabilities of rejectingH0 in favour ofH1−0 or of H2−1 may be controlled simultaneously.
Our testing procedure is defined as follows:

• acceptH0 if D01 ≤ x andD12 ≤ y1 whereF(x, y1) = 1− α1− α2;
• rejectH0 in favour of H1−0 if D01 > x andD12 ≤ y0, whereF(∞, y0)− F(x, y0) = α1;
• reject H0 in favour of H2−1 when D12 > y1 or when D12 > y0 and D01 > x, with

1− F(x, y1)− F(∞, y0)+ F(x, y0) = α2.

This procedure permits the setting of a different size for the error probabilities of rejectingH0 in
favour of H1−0 (α1) andH2−1 (α2). Moreover, to reduce rejection in favour ofH1−0 in areas of
the sample space outsideRv+ and far away from the origin, where acceptance ofH0 is ruled out,
we allow the critical valuey0 to be much smaller thany1. The procedure based on a value ofy0
as small as possible may be useful if one feels that, because the assumption of Lorenz dominance
has a constructive content, it should be submitted to a stricter scrutiny. The price for this choice
is the somehowodd shapeof the rejection region towardsH2−1. This shape makes it possible
that, if D01 increases whileD12 remains constant or even decreases slightly, initial acceptance of
H0 changes into rejection towardsH2−1 rather thanH1−0. Clearly this may be justified only if
we consider acceptance ofH0 or rejection towardsH2−1 to be much safer statements.

To take a conservative approach one should search for aP0 which is least favourablein
the sense that, under the corresponding joint distribution underH0, the probability of rejecting in
favour ofH1−0 is minimized while that in favour ofH2−1 is maximized. Note that this application
of the idea of a least favourable distribution stems from the desire to be protected against rejecting
in favour of H1−0 when it is not true. Alternatively, one could search for the greatest protection
towards rejecting in favour ofH2−1 when false, but this route is not pursued here.

Consider then the joint asymptotic survival function ofD01 andD12 underH0 obtained using
the ‘least favourable’ weights’ vector employed in Lemma 2:

G+(x, y) =
m−1∑
h=0

wh{Ddiag(r)−1D′}Ch+v−m+1(x)Cm−1−h(y).

The next lemma states that, underH0, G+ is alsoleast favourablefor the joint testing procedure.

Lemma 3. For any x≥ 0 and y≥ 0, we have

Pr(D01 > x, D12 ≤ y | H0) ≤ Pr(D01 > x, D12 ≤ y | G+)
and

Pr(D01 ≤ x, D12 > y | H0) ≥ Pr(D01 ≤ x, D12 > y | G+)
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Proof. See the Appendix. Note that because the weights’ vector involved in the computation
of G+(x, y) is easily computable, this lemma allows simple calculation of conservative upper
bounds to the joint test procedure.

3.3. Using crossing Lorenz curves as the null hypothesis

On the other hand, as mentioned before, the only way to effectively reduce the advantage given
to H1−0 is to take the hypothesisH1∗ that min(β) > 0 as thealternative, and its complement
H2−1∗ , that is min(β) ≤ 0, as thenull. This means that the researcher is not prepared to engage
in a statement that the Lorenz curves are strictly ordered unless there is strong evidence in its
favour. If we denote withH0+ = {β : min(β) = 0} theboundaryof the null, D21, the distance
statistic for testingH2−1∗ against the alternativeH1∗ , is equal to 0, unlesŝβ > 0, in which case

D21 = infy∈H0+ (β̂− y)
′
�−1(β̂− y).

Sasabuchi (1980, Lemma 3.1) shows that, forβ̂ > 0, the element ofH0+ that minimizesD21 is
actually among the projections ofβ̂ on each of thev subspaces{β : βi = 0}, i = 1, . . . , v, though,
clearly, some of these projections may not belong toH0+ . By exploiting the simple form of the
projection onto a linear subspace, and under the assumption of a multivariate normal distribution,
Sasabuchi shows (Theorem 3.1) that the critical region under the least favourable distribution has
a surprisingly simple solution. Under asymptotic normality ofβ̂ his results apply immediately to
our problem and we have:

Lemma 4. Given the null hypothesis H2−1∗ and the alternative H1∗ , the critical region derived
from the D21 statistic reduces to:

reject if ẑi > zα, ∀ i,

where ẑi = √nβ̂i /

√
�̂oii , and zα denotes theα% critical value from the standard N(0,1)

distribution.

Intuitively, because thenull allows us to assign for the trueβ any value outsideH1∗ , we should
search for a critical region having rejection probability not greater thanα for any choice ofβ
along the boundary. Consider then any of thev extreme null hypotheses such thatβi = 0 for
i = j andβi > 0 for i 6= j . It easily follows that Pr(ẑi > zα) equalsα for i = j and converges
to 1 otherwise. Thus the test achieves the desired asymptotic size whenever the set of population
Lorenz curves are strictly ordered, except for two curves that touch only at one point.

This test will have low power against alternatives of the formzi = ε, i = 1, . . . , v, whereε
is a suitably small quantity. This is a consequence of the fact that the actual rejection probability
of the test is typically much smaller than its nominal level atH0: for example, if theβ̂i ’s were
independent the test would have a rejection probability equal toαv, which for reasonably large
v is a very small number for all conventional choices ofα. Of course, with a composite null
hypothesis, any test procedure will often have particular points with extremely low rejection
probability. However, it is of concern that a case of special interest likeH0 is among such points.

Finally it is interesting to note that the rejection region defined byẑi > zα, ∀ i coincides with
that stemming from the application of the so-calledintersection-unionprinciple: according to this
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approach, which has been implemented by Howes (1994) for comparing two Lorenz curves, the
null hypotheses can be written as the union of thev subhypothesisβi ≤ 0, while the alternative
can be written as the intersection of thev subhypothesesβi > 0. A result of Berger (1982) then
states that the test that takes as the rejection region the intersection of rejection regions of the
α-sized test for each of thev subhypotheses has underH2−1∗ overall rejection probability not
greater thanα.

3.4. The multiple comparison approach

The so-calledmultiple comparison approach, fruitfully employed for the case of testing for the
Lorenz ordering of two populations in a series of papers by Bishopet al.(1991, 1992, 1994) and
Beachet al.(1994) may be seen as a simplified version of our joint distance testing procedure.
Our analysis can be adapted to extend the multiple comparison approach to the case of more than
two populations, and to achieve a tighter control of some error probabilities of interest.

With the multiple comparison procedure, while the asymptotic normal distribution ofβ̂ under
H0 is still the starting point, one tries to make inferential statements that are correct irrespective of
the correlation between differentβ̂i . Beach and Richmond (1985) utilize this approach to derive
joint confidence intervals for the Lorenz curve ordinates and income shares; multiple comparison
techniques have since been extensively employed in a series of papers investigating the Lorenz
and related orderings in various settings (e.g. geographical inequality comparison (Bishopet al.,
1992), inequality trends in US over time (Bishopet al., 1991), the effects of truncation bias (Bishop
et al., 1994), single-crossing Lorenz curves (Beachet al., 1994), various stochastic dominance
concepts (Anderson, 1996)).

The multiple comparison approach is based on deep and elegant results by Richmond (1982)
and requires use of thestudentized maximum modulusdistribution. Given the asymptotic nature
of the problem, in practice it can be reframed into the following procedure that is very simple to
apply:

• acceptH0 if β̂ ∈ A0 = {β̂ : max(| ẑi |) ≤ zδ};
• rejectH0 in favour of H1−0 if β̂ ∈ A1−0 = {β̂ : max(ẑj ) > zδ and min(ẑi ) ≥ −zδ};
• rejectH0 in favour of H2−1 otherwise;

where Pr(Z > zδ) = δ and(1− 2δ)v = (1− 2α). This procedure relies on Sidak’s inequality
which states that the probability that a multivariate normal vector with zero mean and arbitrary
correlations falls in a cube centred at the origin is always at least as large as the corresponding
probability under independence (see Savin (1984) for a discussion of this and related inequalities)
so that

Pr(A0 | H0) = Pr{ max(| ẑi |} ≤ zδ | H0) ≥
v∏
1

Pr(| ẑi |≤ zδ | H0) = (1− 2δ)v;

hence the probability of erroneous rejections ofH0 is bounded above by 2α.
The consequence of the simplicity of this procedure is that, precisely because the information

contained in the covariance matrix is not used, we cannot split the total error probability 2α into
separate error probabilities of rejecting in favour ofH1−0 or H2−1. However we can establish
that, say,α1 = Pr(β̂ ∈ A1−0 | H0) (which is the more crucial becauseA1−0 suggests a specific
relationship among them Lorenz curves) cannot be greater thanα.
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This follows from the symmetry of the normal distribution

Pr(β̂ ∈ A2−1 | H0) = Pr(any ẑi ≤ −zδ | H0) = Pr(any ẑi ≥ zδ | H0) ≥
Pr{(any ẑi ≥ zδ) and(all ẑi ≥ −zδ) | H0} = α1.

4. Illustration and Applications

4.1. Monte Carlo comparison

Properties of the power functions of the various procedures discussed in this paper could, at
least in principle, be derived under the corresponding asymptotic distribution. Useful results in
this direction have been derived by Goldberger (1992), who considers testing linear inequality
constraints in the simple bivariate case. Goldberger’s main conclusion is thatχ̄2-based procedures,
by taking into account the covariance between the parameter estimates, can provide a clear
improvement on the multiple comparison procedure mainly when these estimates are negatively
correlated. It seems natural to expect that these results hold also for the generalv-dimensional case.
Because Lorenz curve ordinates are typically positively correlated, in many practical situations
there will be quite a strong positive correlation among the elements ofθ̂i . However, given that
�o is proportional to6o whenm = 2, while�o has blocks of negative elements form > 2, we
may expect that the relative performance of the various procedures should change dramatically
according to whether we are comparing two or more than two populations.

Reasonably accurate estimates of power may be obtained from the relative frequency of
rejection in favour ofH1−0 and H2−1 in a set of suitably designed Monte Carlo experiments.
Those briefly reported here are aimed to provide enough evidence about the conjecture outlined
above, and also to assess how accurate the approximations are, as provided by the asymptotic
distribution used to compute the critical values. Full details are contained in the Appendix.

Briefly, we drew repeated pairs of samples from Singh–Maddala (SM) income distributions,
having selected benchmark parameter values to fit the US census data for 1980 (McDonald,
1984). To construct pairs ofSMdistributions that satisfyH1−0 or H2−1, the results of Wilfling
and Kramer (1993) may be used. Wilfling and Kramer state a simple necessary and sufficient
condition for Lorenz curve dominance in terms of the two characterizing parameters of theSM
distribution, which will be used in the following to generate samples of Lorenz curves underH1−0
andH2−1.

The basic idea forH2−1 has been to construct situations with a single clear crossing of the
Lorenz curves, and to use two different sets of parameters which correspond roughly to situations
of low and high power (that is, corresponding to population Lorenz curves close to and far apart
from each other respectively). UnderH1−0 we also consider two different sets of parameters which
guarantee that the corresponding population Lorenz curves are strictly ordered, in situations of
low and high power, respectively.

In order to evaluate the relative performance of the different procedures, we recall that our
inferential problem does not involve the usual dichotomy between a null and an alternative
hypothesis, but three nested hypotheses. In the discussion below, whenH1−0 is the true state of
affairs, the power of each procedure will be evaluated as the probability of inferringH1−0, while
the error rate will be evaluated as the probability of inferringH2−1. Alternatively, whenH2−1 is
the true state of affairs, the power of each procedure is the probability of inferringH2−1, while
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the error rate is the probability of inferringH1−0. Because of the asymmetric nature of the two
hypotheses, and becauseH1−0 is actually the more ‘assertive’ one, particular attention should be
paid to the relative performance of each procedure in terms of power underH1−0 and error rates
underH2−1.

For m= 2, the main conclusions were:

• A procedure that would infer dominance(H1−0) of the first curve over the second whenever
the sample estimate of the two curves were to be ordered in this direction results in extremely
high error rates. For example, underH0, almost 23% of the samples were actually ordered
in the direction implied byH1 and in about 45% of the cases the samples exhibited strict
dominance in either direction.
• We tried two jointχ̄2 procedures both withα1 = α2 = 0.05, one withy0 = y1 and the

other using the smallest possible value fory0. Of these procedures, the one with a smaller
value of y0 is superior in terms of power and of error rates whenH2−1 is the true state
of affairs. UnderH1−0 the same procedure has again higher power, but a slightly larger
error rate due to its effort to control for the advantages ofH1. On the whole the second
procedure outperforms the first, and this result is confirmed by additional experiments based
on different values ofα1 andα2 which we omit reporting in detail for the sake of brevity.
Hence we recommend that, after setting the relevant values forα1 andα2, one should always
choose the smallest possible value ofy0.
• Under H0 the rejection rates of thēχ2 procedures are very close to the nominal value

0.05, which indicates that the asymptotic approximation is reasonably accurate. On the
other hand, the actual significance level for the multiple comparison procedure is well
below its nominal value in both directions, and theχ̄2 procedure under the least favourable
distribution is quite biased in favour ofH2.
• The χ̄2 procedure based onG+ does very well whenH2−1 is true. However, the larger

power underH2−1 is achieved at the cost of a significantly reduced power underH1−0.
Nonetheless the computational simplicity of this procedure might make it quite appealing.
• The multiple comparison procedure, when considered against the bestχ̄2 procedure, ap-

pears to be inferior both in terms of power and error rates underH2−1, while its higher
power underH1−0 is not as substantial; hence the heavier computational burden of theχ̄2

procedure may be worth the effort whenever greater precision is required.
• The best jointχ̄2 procedure achieves higher power and lower error rates both underH1−0

andH2−1 than the procedure based on the marginal distribution ofD01, and thus is unam-
biguously better.
• As could have been easily predicted, the procedure based onD21, because of its highly con-

servative nature towardsH1−0, brings down to negligible levels the probability of detecting
erroneous evidence in favour ofH1−0. However, this is paid for with a large reduction in
power whenH1−0 is actually true.

As we had conjectured before, the results for the casem = 4 were quite different. The proce-
dure which infers that them true Lorenz curves are related exactly as the corresponding sample
estimates now becomes much more conservative towards the ordering hypothesis, and is charac-
terized by both low power and high error rates underH1−0 and high power and low error rates
underH2−1. The D21 test never rejects its null hypothesis. Thus this procedure in this case is
useless as it pays no attention to sample evidence and is blindly conservative. As concerns the
multiple comparison procedure, although its actual significance level remains at about half its
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nominal level, in this case it seems to have extremely low power in both directions. Hence we
may tentatively conclude that there will be serious competitors to the jointχ̄2 procedure only
when the covariance matrix� exhibits strong positive correlations, which is typically the case
whenm= 2.

4.2. A simple illustration of the rejection regions

Procedures for testing one-sided multivariate hypotheses are in general neither very well known
nor treated in much detail in most textbooks in statistics and econometrics, even at the graduate
level. Readers unfamiliar with the subject can achieve a direct appreciation of the properties
and the functioning of these procedures by looking at plots of the rejection regions in the simple
bivariate case. These are given in the Appendix. More detailed plots including the power functions
are given by Goldberger (1992), who however considers only the marginal distributions ofD01
andD12. Of course, the bivariate nature of these examples means that these pictures are in general
not directly applicable to our problem, but we believe that they are nevertheless very useful to
appreciate the properties of these inferential procedures.

Figures B1–B6 compare rejection regions of the various procedures in the simplified situation
whereβ̂ has dimension 2 and can be plotted on the plane. In particular, in Figures B1 and B2 we
plot the rejection regions of the jointχ̄2 procedure withα1 = α2 andy0 set at its smallest possible
value against that of the usual chi-squaredD02 test withα = 0.10. Figure B1 considers the case
of positive correlation(ρ = 0.77). This value for the correlation coefficient was chosen because
it arises when comparing two benchmark (US 1980)SMLorenz curves withk = 2 (hencev = 2).
Any point in the positive orthant denotes a sample observation such that both empirical ordinates
of the first Lorenz curve lie above those of the second, while the second and fourth quadrant
denote a single crossing and the third quadrant denotes that the second curve lies above the first.
Of course, a typical application would use a much higher value fork, but looking at the rejection
region is instructive anyway.

In Figure B1, the boundary of the rejection region towardsH1−0 is highlighted in darker
grey. We see that the joint̄χ2 procedure rejectsH0 in favour of H1−0 in virtually all the positive
quadrant, minus the ellipsoid along the main diagonal. The boundary of the rejection region
towardsH2−1 is highlighted in a lighter shade of grey. We see that the bulk of the rejection region
is contained in the second, third and fourth quadrant. For comparison, the rejection region for
the usual chi-squaredD02 test is given by the area outside the ellipsoid centred in the origin.
In Figure B2 we consider the case of negative correlation,ρ = −0.5, which would arise for
example whenm = 3, k = 1 (v = 2). Again, the darker and lighter shades of grey denote the
rejection regions towardsH1−0 andH2−1 respectively, and the ellipsoid centred along the main
counterdiagonal defines the usual rejection region of the chi-squared test.

Recall from Section 3 that the jointχ̄2 procedure may lead to rejectH0 in favour ofH1−0 even
if the sample estimates of the Lorenz curves are not actually ordered. However, the appropriate
choice ofy0 prevents the corresponding rejection region from going much below thex-axis and
to the left of they-axis, under either positive or negative correlation. Finally, note that with both
positive and negative correlation theχ̄2 procedure accepts the nullH0 more often than the usual
chi-squared in areas which are close toH2.

In Figures B3 and B4 we compare the rejection regions of the joint chi-bar-squared and the
multiple comparison procedure withα = 0.05 for the cases of positive and negative correlation.
The boundary of the rejection regions for the multiple comparison procedure are highlighted in
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the darkest grey (towardsH2−1) and the second darker shade of grey (towardsH1−0). Note that,
precisely because the multiple comparison procedure does not use the covariance information,
these rejection regions are identical in both figures. From looking at the figures, it emerges that
the two procedures have substantial areas of disagreement, but in different directions according
to the sign of the correlation. In particular, under positive correlation the multiple comparison
procedure acceptsH0 in areas where the joint chi-bar-squared procedure rejects in favour ofH2−1,
but also rejects in favour ofH1−0 in areas where the joint chi-bar-squared rejects in favour of
H2−1. On the other hand, under negative correlation the multiple comparison procedure accepts
H0 in large areas near the origin where the joint chi-bar-squared procedure rejects in favour of
H1−0 (in the positive orthant) orH2−1 (in the negative orthant), but also rejects in favour ofH1−0
in large areas in the second and fourth quadrants were the joint chi-bar-squared rejects in favour
of H2−1.

Finally, in Figures B5 and B6 the darkest shade of grey highlights the boundary of the rejection
region of theD21 procedure. It is interesting to note that while with positive correlation this
rejection region has a slight intersection with the rejection region towardsH1−0 of the joint
chi-bar-squared procedure, under negative correlation it lies entirely inside it.

4.3. Illustrative examples

Income inequality in two Italian regions. In this section we compare the extent of income
inequality as recorded by the Lorenz curve in two Italian regions, Veneto and Sicily. It is generally
agreed that income inequality is greater in the less developed south as compared with the more
developed north. We use a sample of net family incomes, contained in a survey carried out by
the Bank of Italy in 1991. There are 359 families in the Venetian sample, and 476 in the Sicilian
one. Sample estimates of the Lorenz ordinates and their covariance matrix are easily obtained
from Beach and Davidson’s (1983) results, using deciles(k = v = 9).

Plotting the two sample Lorenz curves, it emerges that the one for Veneto indeed lies above
that for Sicily at all the decile points. This is why in this case the test statisticD01 = 12.0472=
D02. Note that equality is definitely accepted against the unrestricted alternative as Pr(D02 ≥
12.0472) = 0.211. The marginal chi-bar-squared procedure may be implemented computing the
p-value as Pr(D01 > 12.0472). This is equal to 0.180 under the least favourable distribution and
to 0.147 if the covariance matrix is estimated from the data. Finally, thep value corresponding
to rejection towardsH1−0 with thebestjoint chi-bar-squared procedure is equal to 0.073.

In this example the evidence towards the dominance hypothesis is not strong enough. However,
it is worth noting that thebestjoint procedure implies a much smallerp value than the usual chi-
squared procedure and this is an indirect indication of the gain in power that may be achieved by
looking at the specific alternative of interest(H1−0) rather than to all possible deviations from
equality.

Finally, we note that in this sample 0.0656≤ ẑi ≤ 1.992(i = 1, . . . ,9). Therefore, both the
multiple comparison approach and the distance testD21 lead to the acceptance of their respective
nulls at the 10% level.

Income inequality in the US in the 1980s.We consider the sample of US family incomes
from 1979 to 1989 as contained in the CPS microdata (March tape). Because about 40% of
households are in the sample in consecutive years, we use only data from alternate years. Consider
then the hypothesisH1 : (L79 � L81 � L83 � L85 � L87 � L89), that is, income inequality has
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progressively increased in the USA during the 1980s. Herem = 6 and we take againk = 9 so
thatv = 45. Each sample contains more than 40 000 observations.

The test statisticsD01 and D12 are respectively equal to 588.08 and 4.61. Intuitively, the
large value ofD01 is in itself quite strong evidence against the assumption of unchanging income
inequality while the relatively small value of the test statisticD12 seems to indicate that if the
samples are not perfectly ordered, this may well be caused by random fluctuations. More formally,
one can easily compute Pr(D01 ≥ 588.08, D12 ≤ 4.61 | G+)which is less than 0.0001 and may be
interpreted as thep-value under the least favourable distribution for the joint procedure discussed
in Lemma 3 and thus provides strong evidence for increased inequality.

It is interesting to note that the lowest value ofẑi (i = 1, . . . ,45), is equal in this sample to
−0.78, while its maximum is equal to 7.55. Thus, the multiple comparison approach also leads to
the rejection ofH0 in favour ofH1−0. On the other hand, observing the sample of Lorenz curves,
we note that there is some crossing among the later years (1985, 1987 and 1989). This implies
that the distance test statisticD21 equals zero; thus, if the researcher is not prepared to accept
the ordering hypothesis unless there is overwhelming evidence in its favour, the null hypothesis
‘nothing can be said’ will be maintained under this approach.

5. Concluding Remarks

Performing statistical inference for Lorenz curve orderings involves intricate statistical issues of
testing for an ordered relationship in a multivariate context. Our approach has been to frame
the hypotheses of interest as sets of linear inequality constraints on the vector of Lorenz curve
ordinates, and apply order-restricted statistical inference to derive useful testing procedures.

One peculiarity of our inferential problem is that it does not involve the usual dichotomy be-
tween a null and an alternative hypothesis, but three nested hypothesesH0, H1 andH2. Applying
known results on the joint distribution of the statisticsD01 andD12, we proposed a new procedure
which partitions the sample space into three regions, of acceptance ofH0, and rejection towards
H1−0 and H2−1. This procedure, which we calledjoint chi-bar-squared, gives the applied re-
searcher some flexibility depending on which type of error he wants to be protected against, and
on where he wishes to have greater power in detecting departures fromH0. If protection against
erroneously believing that the sample Lorenz curves are ordered, when in fact they are not, is
considered of primary importance, we also proposed theD21 testing procedure which simply
takes the hypothesis of the absence of ordering as the null. Interestingly, this distance testing
procedure coincides with that proposed by Howes (1994) in the context of ranking two Lorenz
curves, which stems from the application of the intersection-union principle.

We also discussed the multiple comparison procedure which can be seen as a simplified
version of the joint chi-bar-squared procedure. This procedure has been very popular in recent
applications involving the comparison of two Lorenz curves in different contexts. We have shown
how the procedure can be easily extended to consider more than two Lorenz curve at once, and
how to achieve a tighter control of some probabilities of interest.

We have also performed a Monte Carlo experiment to compare the empirical performance of
the three procedures, analysed their properties with the help of simple graphs of rejection regions,
and given some illustrative examples of application. The general conclusions from the theoretical
and empirical results appear to be the following.
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• The greater difficulty of applying the joint chi-bar-squared procedure over the multiple
comparison procedure seems to be worthwhile in terms of a substantially improved per-
formance. This is really not surprising in view of the fact that the multiple comparison
procedure ignores precisely the covariance information of the sample ordinates.
• The joint chi-bar-squared does not protect tightly and under all circumstances against the

error of believing that the sample of Lorenz curves are ordered when actually they are
not. If protection against this error is considered of overwhelming importance, then the
D21 procedure is the obvious candidate. However, this choice could carry a price in terms
of lower power in some regions of the parameter space. Thus, for example, if economic
theory strongly predicts that a set of Lorenz curves should be ordered (say given some
change in the taxation or benefit policy), so that the researcher could reasonably restrict the
parameter space to the positive orthant, then the possible increase in power could make the
joint chi-bar-squared a preferred alternative. The computational simplicity ofD21 however
could again tip the balance in its favour, at least in the case of comparing two Lorenz curves.
However, when there are more than two Lorenz curves to compare, the joint chi-bar-squared
procedure does seem to be the only viable alternative.
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A. Appendix. Proof of Lemmas

A.1. Brief review of results on thēχ2 distribution

Let ŷ(V, C) denote the projection of a vectorŷ ∈ Rv onto a convex coneC in theV−1 metric; ŷ(V, C) is
the solution to the problem

miny∈C(ŷ− y)
′
V−1(ŷ− y).

Under the assumption thatŷ ∼ N(0,V), the distribution of the chi-bar-squared random variable, defined as

χ̄2(V, C) = ŷ(V, C)′V−1ŷ(V, C) (2)
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is well known and depends on the coneC and the matrixV; whenC is the positive orthant, we simply write
χ̄2(V). Also, let us define thedualof C in theV−1 metric asCo = (yo: y′V−1yo ≤ 0,∀ y ∈ C).

Convex cones share many duality properties with linear subspaces: the following is in a sense a version
of Pythagoras’ theorem (see e.g. Shapiro, 1988, p. 50)

ŷ
′
V−1ŷ− (ŷ− ŷ(V, C))′V−1(ŷ− ŷ(V, C)) = ŷ(V, C)′V−1ŷ(V, C). (3)

For anyr × v matrix A of full row rank letC(A) denote the polyhedral coneC(A) = {x : Ax ≥ 0} andV
be av × v positive definite matrix. By applying appropriate linear transformations (see e.g. Shapiro, 1988,
pp. 54–55), the following identity holds

χ̄2{V, C(A)} = χ2
v−r + χ̄2(AVA ′) (4)

whereχ2
v−r is identically 0 whenA is nonsingular and thusv = r .

Finally, given two convex conesC1 ⊂ C2 ⊂ Rv and any positive definite matrixV, from the definition
of theV-projection it follows that for any real-valuedx,

Pr{χ̄2(V, C1) ≥ x} ≤ Pr{χ̄2(V, C2) ≥ x}. (5)

A.2. Proof of Lemmas 1 and 2

Let x̂ = √nβ̂. Then underH0, whenP0 is the truecd f , in the limit, when�̂o→ �o andx̂→∼ N(0,�o),
D01 reduces to

x̂
′
�−1

o x̂−minx≥0(x̂− x)
′
�−1

o (x̂− x),

thus, from equations (2) and (3), it follows that the asymptotic distribution ofD01 is χ̄2(�o), which proves
the first part of Lemma 1. By the same reasoning,D12 asymptotically reduces to

minx≥0(x̂− x)
′
�−1

o (x̂− x),

and using equations (3.3) and (5.4) from Shapiro (1988) it follows thatD12 will tend asymptotically to
the random variablēχ2(�o,Oo) whereOo denotes the dual of the positive orthant. The asymptotic joint
distribution ofD01andD12underP0, considered in Lemma 2, follows by applying Theorem 3.4 in Raubertas
et al., (1986) or Theorem 1 in Wolak (1989).

To prove the second part of Lemma 1, which establishes the asymptotic least favourable distribution for
D01, notice that if we put1 = Ddiag(r)−1D′, the variance matrix�o can be written as

�o = 1⊗6o = (Im−1⊗Lo)(1⊗lk)(Im−1⊗Lo)
′

whereLo denotes the Cholesky decomposition of6o, i.e. LoLo
′ = 6o. Then, using equation (4), in the

limit
D01 ∼ χ̄2(�o) = χ̄2{1⊗lk, C(Im−1⊗Lo)}. (6)

When6o tends to the case of perfect correlation,Lo tends to the limiting formσek
′
whereσ is a vector of

positive constants andek
′
is thek×1 vector(1,0, . . . ,0). Note that the coneC(σek

′
) is the same asC(ek

′
),

and also thatC(Im−1⊗Lo) ⊂ C(Im−1⊗ek
′
) because the first (upper left) entry ofLo must be positive.

Therefore, using equation (5), for any real-valuedx

Pr{χ̄2(�o) ≥ x} = Pr[χ̄2{1⊗lk, C(Im−1⊗Lo)} ≥ x] ≤ Pr[χ̄2{1⊗lk, C(Im−1⊗ek
′
)} ≥ x]

and the actual expression of the weights follows from (4) by puttingA = Im−1⊗ek
′
.
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A.3. Connection between probability weights and level probabilities

Use equation (4) again withA = D to get:

w j−1(1) = w j {diag(r)−1, C(D)}, for j = 1, . . . ,m− 1,

which is the probability that the projection of a normal vectory ∼ N(0,diag(r)−1) onto the cone of
nonincreasing vectorsC(D) = {x : x1 ≥ · · · ≥ xm} falls on a subspace of dimensionj , thus havingj distinct
elements. This is precisely the definition of level probabilities given in Robertson, Wright and Dykstra
(1988, p. 69).

A.4. Proof of Lemma 3

Above we have essentially shown that, when�̂o is replaced by its true value in the limit,D01 and D12
are equal to the square of the norm of the projection of a random vectorN(0,1⊗lk) respectively onto the
convex coneC(Im−1⊗Lo) and its dual. Moreover, because of duality relations

C(Im−1⊗Lo) ⊂ C(Im−1⊗ek
′
) and Co(Im−1⊗ek

′
) ⊂ Co(Im−1⊗Lo),

under the least favourable distributionD01 is associated to the largest cone andD12 to the smallest, so that
the result follows from direct geometrical considerations.

B. Appendix. Rejection regions
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Figure B1. Rejection regions of̄χ2 with α1 = α2 = α20 = 0.05 andD02 test withα = 0.10 and correlation
ρ = 0.77.
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Figure B2. Rejection regions of̄χ2 with α1 = α2 = α20 = 0.05 andD02 test withα = 0.10 and correlation
ρ = −0.5.
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Figure B3. Rejection regions of̄χ2 with α1 = α2 = α20 = 0.05 and multiple comparison procedure with
α = 0.05 and correlationρ = 0.77.
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Figure B4. Rejection regions of̄χ2 with α1 = α2 = α20 = 0.05 and multiple comparison procedure with
α = 0.05 and correlationρ = −0.5.
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Figure B5. Rejection regions of̄χ2 with α1 = α2 = α20 = 0.05 andD21 with α = 0.05 and correlation
ρ = 0.77.
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Figure B6. Rejection regions of̄χ2 with α1 = α2 = α20 = 0.05 andD21 with α = 0.05 and correlation
ρ = −0.5.

C. Appendix. The Monte Carlo design

A suitable class of income distribution functions from which to draw repeated samples should ideally provide
a good fit to real income data, with a simple parametric form. The family ofSMincome distribution functions
(also known as Burr XII in the statistics literature, see e.g. Johnson and Kotz (1972, p. 31)) has two essential
parameters; we will say thatY ∼ SM(a,q) when itscdfcan be written as:

P(y) = 1− (1+ ya)−q, y ≥ 0,

with q > 1/a > 0. In a detailed study on fitting several distribution functions to US income data, McDonald
(1984) came to the conclusion that theSMperforms very well in terms of goodness of fit. McDonald also
fits theSMdistribution to a sample of US census income data for 1980, and findsa = 1.697 andq = 8.368:
we will take these values to defineH0 in our simulation.

A criterion to construct pairs ofSMdistributions that satisfyH1−0 or H2−1 is provided by Theorem 1
of Wilfling and Kramer (1993): letSM(a1,q1) andSM(a2,q2) be twoSMdistribution such thata1 ≤ a2,
then the first distribution Lorenz-dominates the second if and only ifa1q1 ≤ a2q2.

Because thecdfof aSMvariable has a simple inverse

Y = P−1(U ) = {−1+ (1−U )−1/q}1/a, for U ∈ (0,1),
a sample from theSM distribution may be generated by transforming as above a random sample from
the uniform distribution on(0,1). Moreover, the inverse function may also be used to compute accurate
approximations of the trueβ and� in the populations of interest. For a reasonably larget , taket equally
spaced points in(0,1), transform into the relevantSM distributions and compute any quantity of interest
from these data. We have used this technique, witht = 20 000, for the judicious choice of the parametersai
andqi as explained below, and also to obtain a very accurate approximation to the true weights underH0.
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Table C.1.

ai , i = 1,2,3 qi , i = 1,2,3

Low power 1.7970 1.8970 1.9970 4.6370 3.2190 2.4770

High power 1.8470 1.9970 2.1470 3.7240 2.4380 1.7950

Below we describe in detail our experiments withm = 2 andm = 4. In both cases we use a constant
sample sizeni = 2000 and compare Lorenz curves at the level of deciles(k = 9). Each sample is replicated
10 000 times whenm= 2 and 5000 times whenm= 4.

C.1. Comparing two populations

Let the base populationcd f P0 be distributed asSM(a0,q0). Under H1−0 we let P1 be distributed as
SM(a0 + c,q0) with c > 0 and compare repeated pairs of samples of size 2000 drawn fromP0 and P1
respectively. We usedc = 0.07 andc = 0.14 which correspond approximately to max(zi ), i = 1, . . . ,9
equal to 1.6 and 3.2, respectively. These can be thought of as situations of low and high power, and this
impression is confirmed by the values of the statisticD02 in the populations which equal to 2.83 and 11.73,
respectively.

The basic idea forH2−1 has been to construct situations with a single clear crossing of the Lorenz
curves. Formally we letP0 be as above andP1 beSM(a1,q1) with a1 > a0, and search for aq1 such that
−minzi is approximately equal to maxzi , i = 1, . . . ,9. Here again we consider two versions ofP1, one
havinga1 = 1.817 andq1 = 4.1996 and the other witha1 = 2.057 andq1 = 2.1397. In both cases their
respective Lorenz curves cross once with that ofP0, and−minzi ≈ maxzi ≈ 1 and−minzi ≈ maxzi ≈ 3
respectively. Thus, they correspond roughly to situations of low and high power. The true value of the statistic
D02 is equal to 3.34 and 23.46, respectively.

C.2. Comparing four populations

The case of four populations is basically similar to the previous one. Given theSM(a0,q0) base population,
under H1−0 we let Pi , i = 1, . . . ,3, be distributed asSM(a0 + ic,q0) and compare repeated pairs of
samples of size 2000 drawn fromPi , i = 0, . . . ,3. We usedc = 0.03 and 0.05 leading respectively to
max(zi ) ≈ 0.7 and 1.5 with the true value ofD02 being 5.25 and 22.14.

Under H2−1 we construct situations with a single clear crossing of each consecutive pair of Lorenz
curves. More precisely, givenP0 as above andPi distributed asSM(ai ,qi ), i = 1, . . . ,3, we search over
possible values ofai andqi such that when comparing two consecutivecd f ’s Pi and Pi−1, i = 1, . . . ,3,
−minzi is about equal to maxzi . Here again we consider two versions: one of low power, with maxzi ≈
0.8, andD02 = 19.14, and a situation of high power with maxzi ≈ 1.3 andD02 = 38.88. The actual values
of the parameters are summarized in Table C.1.

C.3. The computation of critical values

The critical values for the distance testD21 and those for the multiple comparison procedure may be derived
easily from any table of thecdfof the standard normal distribution. The corresponding task for the joint chi-
bar-squared procedures is not entirely trivial. First, one needs an estimate of the probability weights under
H0. For a given variance matrix�o, the probability weights can be found by projecting a reasonable number
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Table C.2.

Population p0 p20 p1 p21 p22

Two populations

H0 0.0015 0.0002 0.0025 0.0012 0.0000

H1−0 0.0020 0.0003 0.0036 0.0018 0.0000

H2−1 0.0031 0.0004 0.0049 0.0018 0.0000

Four populations

H0 0.0034 0.0009 0.0040 0.0007 0.0000

H1−0 0.0030 0.0009 0.0036 0.0009 0.0000

H2−1 0.0037 0.0009 0.0048 0.0008 0.0001

of N(0,�o) random vectors onRv+, and counting the proportion of times where exactlyi coordinates of
these projections are positive. Then one can use the following algorithm:

1. set the values ofα1, α2;

2. set the value ofα20 which should be much larger thanα2 but less than 1− Pr(D12 = 0);

3. computey0 as the solution toF(∞, y0) = 1− α20;

4. computex as the solution toF(x, y0) = 1− α20− α1;

5. computey1 as the solution toF(x, y1) = 1− α1− α2;

6. if the last equation has no solution, decrease the value ofα20 and go back to step 3.

We setα1 = α2 = 0.05 andα20 = 0.6 for two populations and 0.55 for four populations. The equations
above may be solved only by numerical inversion; the secant method which we implemented is reasonably
fast and reliable but requires an initial guess and some supervision.

For the purposes of our simulation, the critical values for the least favourable distributionG+ need to
be computed only once because the corresponding probability weights are known (see Robertson, Wright
and Dykstra 1988, p. 444). On the other hand, the critical values based on�̂o have to be recomputed within
each simulated sample. Due to the difficulty of making this automatic, we have used instead the critical
values computed only once for each assumed population, using the weights estimated from the true�o.

Dardanoni and Forcina (1998, p. 1118) show, in a similar context, that replacing unknown parameters
with their ML estimates has negligible effects on thep-values of theχ̄2 distribution. To examine whether a
similar result holds in this context, we compare the true probabilities that determine the critical values of the
joint χ̄2 procedure, with the corresponding probabilities which result when usingw(�̂o), estimated with
500 replicates.

In Table C.2, we letp0 = Pr(D01 ≤ x, D12 ≤ y1), p1 = Pr(D01 > x, D12 ≤ y0), p20 = Pr(D01 ≤
x, D12 > y1), p21 = Pr(D01 > x, y0 < D12 ≤ y1) andp22 = Pr(D01 > x, D12 > y1). For each of these
cases, we calculated the distribution of the absolute error between the true and estimated probabilities, and
reported the upper 95% quantiles. Note thatH1−0 andH2−1 refer only to the situations of high power, as
defined above.

These data seem to indicate that the critical values computed within each sample will differ, in most
cases, only very slightly from the corresponding true values. Thus, we can conjecture that the probability
that the sample falls exactly in between the two regions will be very small.
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C.4. Results

We consider first the case of two populations. It is convenient to compare the performance of the various
procedures in terms of power and error rates by concentrating first on those that, when they rejectH0,
differentiate between the hypothesesH1−0 and H2−1. Five such procedures are analysed in Figures C1
and C2, which display the rejection rates in favour ofH1−0 on the left side and those in favour ofH2−1 on
the right. In Figures C1–C6, thetrue stateis marked at the bottom of the histogram, and ‘f’ and ‘c’ represent
situations far and close to the null respectively. The estimated probabilities plotted are to be interpreted as
error rates to the left ofH0, and as power to the right.

In order to assess the performance of theD21 procedure, in Figure C3 below we compare its rejection
rates with those achieved by the best jointχ̄2 procedure and the simpler procedure based on theD01statistics.

Finally, the results for the case of four populations are summarized in the same way as in Figures C4–C6.
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Figure C1. Rejection rates towardsH1−0 andH2−1 of three joint chi-bar-squared procedures (from light
to dark shade): a joint̄χ2 with α1 = α2 = α20 = 0.05; b as before butα20 = 0.60; c joint χ̄2 underG+
and withα20 = 0.40.
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Figure C2. Rejection rates towardsH1−0 andH2−1 of three procedures (from light to dark shade): a ‘best’
joint χ̄2; b multiple comparisons withα = 0.05; c sample comparisons.
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Figure C3. Rejection rates towardsH1−0 of three procedures (from light to dark shade) a jointχ̄2 with
α1 = α2 = α20 = 0.60; b D01 with α = 0.05; c D21 with α = 0.05.
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Figure C4. Rejection rates towardsH1−0 andH2−1 of three procedures (from light to dark shade): a joint
χ̄2 with α1 = α2 = α20 = 0.05; b as before butα20 = 0.60; c jointχ̄2 underG+ and withα20 = 0.40.
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Figure C5. Rejection rates towardsH1−0 andH2−1 of three procedures (from light to dark shade): a ‘best’
joint χ̄2; b multiple comparisons withα = 0.05; c sample comparisons.
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Figure C6. Rejection rates towardsH1−0 of three procedures (from light to dark shade): a best jointχ̄2; b
D01 with α = 0.05; c D21 with α = 0.05.
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