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Summary In this paper we consider the issue of performing statistical inference for Lorenz
curve orderings. This involves testing for an ordered relationship in a multivariate context
and making comparisons among more than two population distributions. Our approach is
to frame the hypotheses of interest as sets of linear inequality constraints on the vector of
Lorenz curve ordinates, and apply order-restricted statistical inference to derive test statistics
and their sampling distributions. We go on to relate our results to others which have appeared
in recent literature, and use Monte Carlo analysis to highlight their respective properties and
comparative performances. Finally, we discuss in general terms the issue and problems of
framing hypotheses, and testing them, in the context of the study of income inequality, and
suggest ways in which the distributional analyst could best proceed, illustrating with empirical
examples.
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1. INTRODUCTION

Suppose you were to draw 1000 observations from a population distribution, say a lognormal or
Singh—Maddala, and then plot the decile Lorenz curve from this sample. Suppose you then draw
another sample of 1000 observatidrmsn the same population distributipand compare the two
sample Lorenz curves. Suppose you then repeat the exercise many times. In what proportion of
cases do you think you would find Lorenz dominance, of one sample curve over the other, even
though both have come from the same population distribution? 5% of cases? 10%? The answer
can be as high as 50% of case$his demonstrates the need for statistical inference procedures
— and if we need them to test for equality of two empirical Lorenz curves, théortiori, we
also need them to test the hypothesis that one empirical curve comes from a Lorenz-dominant
population, or that the underlying population Lorenz curves intersect.

This paper concerns: how to set up the null hypothesis, and the alternative(s), and how to
say with confidence that, for example, inequality increased steadily in the 1980s in the USA (or
that it did not). Namely, we shall consider three types of hypothesis: (1) that the Lorenz curves

1Details will be given later. This result, which may seem quite surprising at first sight, is simply due to the fact that
empirical Lorenz curve ordinates are typically strongly positively correlated.
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(of the underlying populations) are equal; (2) that there is a chain of dominance, of one curve
over another, and the other over the next, and so on (allowing explicitly for multiple populations
throughout); and (3) that the Lorenz curves are unrestricted. The relevant testing procedures will
be described, and contrasted with related results already in the literature. Next, we summarize
the results of some Monte Carlo experiments designed to compare size and power properties, and
address the questions arising for the practitioner: which test or battery of tests should be engaged,
and in what contexts? Finally, we give two illustrative applications, one of which compares
US family incomes at two-year intervals throughout the 1980s, and another which compares the
income inequality in two Italian regions. The final section contains concluding remarks and some
practical advice for the applied researcher.

Since we wrote the first draft of this paper, two very valuable contributions of Davidson and
Duclos (1997, 1998) have appeared. These authors significantly extend the seminal contribution
of Beach and Davidson (1983) which derived the asymptotic distribution of the Lorenz curve
sample ordinates. Davidson and Duclos derive the asymptotic sample distribution of quantile-
based estimators needed for both the measurement of progressivity, redistribution and horizontal
equity, and the ranking of distributions in terms of poverty, inequality and stochastic orders of
any order. These results can obviously be applied in conjunction with the methods discussed in
this paper: the researcher has simply to reshape the ordering of interest as a multivariate normal
model subject to linear inequality constraints, and then apply the results presented in our paper
to investigate these more general contexts.

2. NOTATION AND OVERVIEW

Let the income earned by individuals or families be a random vardblehose properties within
a given population are described by the cumulative distribution funétiofi P (y); this function
we assume to be strictly monotone and twice continuously differentiable. Fgr an®, 1), this
implies the existence of thguantile function @p) = P~1(p); the corresponding Lorenz curve
ordinate is defined as

6(p) =E{Y Y = Q(p}/E(Y).

Given a sample of sizs, let Y(j) denote thejth order statistic; sample estimates@{p) and
6(p) will be defined in the usual way

Q(p) =Y, wheres—1l<np<s

S
0(p) = [ZYU')}/(S\?)
1

whereY is the sample average.

Assume now that we want to compamneseparate populations by taking independent samples,
the one coming from thigh population having size;,i = 1, ..., m. Given a set ok population
fractions 0 < p1 < --- < px < 1, write 6 for 6;(pj), that is, the Lorenz curve ordinate
corresponding to théth fraction in theith population. We also writé for thek x 1 vector of
Lorenz curve ordinates in theh population withé; being the corresponding vector of sample
estimates.
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Beach and Davidson (1983) show that, under the above monotonicity and differentiability
assumptions, the vectqyn; (éi — 6;) has an asymptotically joint normal distribution with co-
variance matrix, sayx; whose entries are functions of quantiles, conditional expectations and
variances. They also show that a consistent estimate&Zpfcan be obtained by replacing the
population quantiles, expectations and variances by the corresponding sample estimates (Beach
and Davidson1983, p. 729). This is essentially a distribution-free result from which they derive a
simple Wald statistic to test the hypothesis that two populations have the same Lorenz curve; the
fact that such a hypothesis can be safely rejected may provide strong evidence about the conjecture
that the structure of income (or wealth) inequality is essentially different in the two contexts.

However, in many cases the applied researcher in the field may be more interested in knowing
whether one Lorenz curve lies above or below another, and may also want to compare simultane-
ously more than two populations, to establish that, for instance, due to certain economic policies,
inequality has steadily increased during a sequence of years. In other circumstances economic
theory may lead to expect a more complex pattern of change in the inequality of income or wealth
so that the various Lorenz curves should have one or more points of intersection. One way of
putting this more formally would be to say that we are faced witke hypothesesHp, which
specifies that then Lorenz curves of interest are equéli, which specifies that the Lorenz
curves are completely ordered in a given direction, Bdwhich indicates that then Lorenz
curves are unrestricted.

We are interested in distribution-free inferential techniques for testing these hypotheses. These
will be derived by using results from the theory of order restricted statistical inference, after
reframing H1 as a hypothesis concerning a set of inequality constraints on the parameters of
interest, and put into the framework of distance tests. An alternative procedure will be derived
from the idea of multiple comparison suitably adjusted.

3. HYPOTHESES TESTING

For the chosen set of proportions0p; < --- < px < 1, define first a discretized version of the
partial order induced by comparison of two Lorenz curves. Given two vectors of Lorenz curve
ordinates, sayy, and#;, we will say thatd, Lorenz dominate$;, written 6, > 6;, whenever

6hj = 6 for j =1, ..., k. Now, given an ordered set of populations, §y. .., Py, define:

e Ho: 61 = --- = 6, meaning that then Lorenz curves are indistinguishable at the level of
discretization adopted. It is important to notice thitis acompositenypothesis, because
it does not specify the true value of the common Lorenz curve ordinates. Thus, we assume
the existence of a common true (up to an irrelevant scale parameter) irmbmeay
Po=P1 == Pp;

e Hi: 01 > --- > 0y, meaning that then Lorenz curves are completely ordered;

¢ H, to indicate that then Lorenz curves are unrestrictéd.

2Convergence to normality holds for a fixed sekgfopulation fractions when each goes to infinity. This means
that, whenever each; is not too small relative t&, one can expect the actual distribution to be reasonably close to
normality. However, having both a finer discretization of the Lorenz curves (a Ikygard a greater accuracy in the
normal approximation are conflicting requirements.

Sitis worth noting that a convenient feature of this problem is that the hypothiesisalways true. This implies that
in our testing procedures we do not have to worry about the potential problem in the case that neither the null nor the
alternative is true.

(© Royal Economic Society 1999
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Sometimes it is convenient to work with a slightly different version of the same problem, so let
Hi_o = H1 — Ho denote the hypothesis that at least one of the inequalities defining the partial
order is strict andHz_1 = Hz — Hj the hypothesis that at least one of the same inequalities is
not true, in which case we say that the curgess(though they might actually be ordered in the
direction opposite to the one specifiedy). Our strategy will be to transform these hypotheses
into systems of linear inequalities, and use results from the literature on statistical inference for
testing multivariate inequalities.

Let 8 be themk x 1 vector obtained by stacking the vectérone below the other, and let
the matrixD be a(m — 1) x m differencematrix having 1 on the main diagonak1 on the
diagonal above and 0 elsewhere. Let the— 1)k x mkmatrixR = (D®I), with Iy being the
k-dimensional identity matrix an® the Kronecker product. Define the parameter vegtarr’,
with v := (m — 1Dk, as:

B =Ré.

The various hypotheses of interest can be written in terms of linear inequalities invgleaind,
from now on, they will also denote the corresponding parameter sets sdghat(g : g = 0),
Hi=B:B>20 =R}, Ho=BeR"), HLo=(B:8=0#0),andH 1 = (B:
min(B) < 0).

Letn=>"n; bethe overallsample size andiet (r1,r2, ..., rm) be alxmvector such that
=n; /nisthe relative size of theh sample. The various hypotheses of interest specify restrictions
on the mean of an asymptotically multivariate normal variapffe8 = /nR8 ~ N(/nB, ),
wheref denotes the sample estimate#péind

Q@ = Rdiag(Z1/r1, ... Tm/rm)R’. (1)

3.1. Tests based on distance statistics

Letd(x, S, V) denote the distance between a veatar R and a seS C RV in the metric of a
v X v positive definite matriy/,

d(x, S,V) = infyes(x —y) V71 (x — y).

In general terms, iH,, Ha C R denote the parameter spaces under the null and alternative
hypotheses respectively, the distance stati3tjg can be written as:

Dna = N{d(B, Hn, ) — d(B, Hn U Ha, 2)}

and is equal to zero whenever the sample valug bélongs to the null hypothesis. A sensible
test procedure is then to reject the null hypothesis for large valuBg of

The distance statistic for testitdp (equality) againsHo (the unrestricted alternative) is equal
to the usual chi-squared statistic

N
Doz = nB 8.
4The subject of testing the hypothesis concerning a set of inequalities goes also under the ditiles-fstricted
inference, one-sided testing, isotonic regression a detailed introduction see Barlogt al. (1972, ) and Robertson,

Wright and Dykstra (1988). Most of the results needed in this paper are contained in Kodde and Palm (1986) and Wolak
(1989).
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The one-sidedlistance statistics for testindg (equality) against; (Lorenz ordering) andH;
againstH; (the unrestricted alternative) are easily derived from the definition above and are
respectively equal to

Do1=nB Q'8 - min nB-y) e B-y,
D1z =minn(B—y) 2B - ).

Note that these statistics satisfy the equatiy» = Do1 + D12, and there are several efficient
algorithms to solve these quadratic programming problems; see e.g. Dykstra (1983) or Goldman
and Ruud (1993) and references therein.

In our context, howevef? is unknown and has to be replaced by a consistent estimate. Because
the distributional results that we will be using (see Lemmas 1-3 below) hold thglere replace
Q with ﬁo wheref, denotes the variance matrix.gihg under the trued f Ry, and is obtained by
lettingX; = --- = X1y = X0, SaY, in equation (1). A reasonable procedure to obtain a consistent
estimate ofY, is as follows. Divide incomes within each sample by the corresponding arithmetic
mean to remove possible scale effects, and then pool all samples together. An asymptotically
equivalent estimate may be obtained by replacing &dh (1) with the corresponding estimate
from theith sample. This version dDo, for comparing two populations is exactly the statistic
used by Beach and Davidson (1983, p. 731).

The problem of testinddp against the alternativel; would make sense for example when
economic theory predicts that the population Lorenz curves of interest should be ordered (due to,
say, changes in taxation and benefit policies), so that the crossing of the Lorenz cur¥gs gi)e.
is an unlikely event. Then we can effectively restrict the parameter spdd¢edad take a large
value of Do1 as reliable evidence to support the assumed population ordering.

In order to derive the asymptotic distribution@f; underHg, we recall thatHg is acomposite
hypothesis. Because of the functional dependencg,adn Py, it follows that underHg there
are infinitely many chi-bar-squared distributions which can describe the asymptotic distribution
of Do1, one for each hypothesized valueRj. In particular, as we show in the lemma below,
the asymptotic distribution oDg; will depend on,. In the same lemma we also give the
least favourable distributionf the test statistic, that is the distribution with the smallest rejection
region. This is the distribution required in the formal approach to testing composite hypotheses
(see, e.g. Lehmann, 1988).

Lemma 1. Under the assumption that as n increasgsr= 1, ..., m, converges to a positive
constant, the asymptotic distribution os such that, for any » 0,

Pr(Do1 > X | Po) = ) wh(Ro)Ch(X) < ) wn{Ddiagr)~*D'}Chy-mt1(X),

v m—1
h=0 h=0

wherewh (£2o) and wp{Ddiag(r)~1D’} are nonnegative probability weights that sum to 1 and
Ch(x) denotes the probability that a® with h degrees of freedom is greater than x.

Proof. The first equality follows trivially from the application of known results (see, for instance,
Shapiro, 1988); in the interest of completeness, we provide a sketch of the proof in the Appendix.

5This is equivalent to estima® underHy; the corresponding estimate undgy is a very difficult problem, beyond
the scope of this paper.
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In the Appendix we prove also the inequality defining the least favourable distribution, which
essentially follows when the Lorenz vector ordinates uridigare perfectly correlated.

The result above states that the limiting distribution of the test stafigfids like that of a
chi-bar-squaredandom variable, denotegf. A chi-bar-squared random variable is essentially
a mixture of chi-squared variables, where the mixing weightV) is the probability that the
projection of aN(0, V) onto the positive orthant has exactiypositive elements. The basic
properties of this distribution are defined in the appendix; for a detailed treatment see Shapiro
(1988) and Robertson, Wright and Dykstra (1988).

A useful result shown in the Appendix is that the Weighjstiag(r)‘lD’}, j=0,...,m-—
1, which determine the asymptotic least favourable distributioDgf are the same as thevel
probabilitiesused in the context of order-restricted inference (see Robertson, Wright and Dykstra
(1988)). In the special case when the sample sizeme equal in then populations ¢niform
marging, the resulting weights may be easily calculated for an arbitrary number of populations
by arecursive formula discussed, e.g. by Robertson, Wright and Dykstra (1988, p. 82); this allows
an easy computation of the upper bound distribution.

In order to approach the least favourable distributiBn should be such that the elements
of 6, are almost perfectly correlated. Intuitively, this would happen when the variability of
incomes within a given intervah] b] is negligible relative to the variability of incomes less then
a, or equivalently if the density function increases exponentially at an extremely high rate. A
distribution of this type is so unusual that in many practical cases there is sufficient evidence
against using such a distribution. Under the least favourable distribution, however, computation
of the probability weights is much easier so that one could start by computing the related upper
bound to the critical value for this test and then, if the sample valugyefis above this bound,
the null can be safely rejected without further computations. In the case where the value of the
test statistic falls below this critical value, an asymptotically correct procedure is then to compute
the critical values using the weights (2,). Although exact formulae for the calculation of
these weights exist only far < 4, whenv > 4, they can be estimated by projecting a reasonable
number ofN (0, £,) random vectors ont&®, and counting the proportion of times where exactly
i coordinates of these projections are positive.

3.2. Joint distribution of [3; and Dj2

It is actually possible to derive the joint asymptotic distribution of the two test statBtgcand
D12 underHg with little effort as in the following lemma.

Lemma 2. Under the assumption that as n increasgdgr= 1, ..., m, converges to a positive

constant and that blholds, it follows that the asymptotic joint distribution ohDand Dj» is
such that, forany x> Oand y> 0,

Pr(Do1 > X, D12 > y | Po) = ) wn(R6)Ch(X)Cyh(Y).
0

Proof. This result also follows trivially from application of known results on the chi-bar-squared
distribution. For the sake of completeness, however, we prove it in the Appendix.
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Denote now byF (x, y) the joint distribution function of oDg; and D12 underPy and by
G(X, y) the corresponding survival function, i.e.

G(X,y) = Pr(Do1 > X, D12 > y | Po)
and recall the following identity which is useful below
F(X,y) =1—-G(x,00) — G(o0,y) + G(X, y),

whereG(x, co) andG (oo, y) denote respectively the two marginals@(Xx, y).
We now propose to use the joint distributionla; andD1, determined above in the construc-
tion of a testing procedure that partitions the sample space into three disjoint regions so that the
error probabilities of rejectinglg in favour ofH1_g or of Hy_1 may be controlled simultaneously.
Our testing procedure is defined as follows:

e acceptHp if Dp1 < x andD12 < y1 whereF(X, y1) =1 — a1 — ag;
e rejectHp in favour of Hi_g if Dg1 > X andD12 < Yo, WwhereF (oo, yo) — F (X, Yo) = o1;
e reject Hp in favour of Ho_1 when D12 > y1 or whenD1> > yg and Dg1 > X, with

1- F(Xv yl) - F(Oo, yO) + F(X, YO) =0o2.

This procedure permits the setting of a different size for the error probabilities of rejédgimg
favour of H1_g (1) andH>_1 (@2). Moreover, to reduce rejection in favour Bif_g in areas of
the sample space outsi®, and far away from the origin, where acceptancédgfis ruled out,
we allow the critical valug/g to be much smaller thayy. The procedure based on a valueygf
as small as possible may be useful if one feels that, because the assumption of Lorenz dominance
has a constructive content, it should be submitted to a stricter scrutiny. The price for this choice
is the somehovedd shapeof the rejection region towardd,_1. This shape makes it possible
that, if Doy increases whild 12 remains constant or even decreases slightly, initial acceptance of
Ho changes into rejection towardiy_1 rather thanH;_o. Clearly this may be justified only if
we consider acceptance Hf or rejection towards$,_1 to be much safer statements.

To take a conservative approach one should search féy &hich is least favourabldan
the sense that, under the corresponding joint distribution uirgethe probability of rejecting in
favour ofH1_g is minimized while that in favour ofl>_1 is maximized. Note that this application
of the idea of a least favourable distribution stems from the desire to be protected against rejecting
in favour of H1_g when it is not true. Alternatively, one could search for the greatest protection
towards rejecting in favour dfl,_1 when false, but this route is not pursued here.

Consider then the joint asymptotic survival functionif; and D12 underHg obtained using
the ‘least favourable’ weights’ vector employed in Lemma 2:

m—1

G (x,y) = Y wn{Ddiagr) 'D'}Chyy—mt1(X)Cm-1-n(y).
h=0
The next lemma states that, undéy, G is alsoleast favourabldor the joint testing procedure.
Lemma 3. Forany x> O0and y> 0, we have
Pr(Do1 > X, D12 <y | Ho) < Pr(Do1 > x, D12 <y | G™)
and

Pr(Do1 < X, D12 > y | Ho) > Pr(Do1 < X, D12 > y | G)
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Proof. See the Appendix. Note that because the weights’ vector involved in the computation
of GT(x, y) is easily computable, this lemma allows simple calculation of conservative upper
bounds to the joint test procedure.

3.3. Using crossing Lorenz curves as the null hypothesis

On the other hand, as mentioned before, the only way to effectively reduce the advantage given
to Hy_g is to take the hypothesidi+ that min(8) > 0 as thealternative and its complement
Ho_1+, that is min(B) < 0, as thenull. This means that the researcher is not prepared to engage
in a statement that the Lorenz curves are strictly ordered unless there is strong evidence in its
favour. If we denote wittHg+ = {8 : min(B) = 0} the boundaryof the null, D21, the distance
statistic for testingH,_1+ against the alternatively«, is equal to 0, unlesg > 0, in which case

D21 = infyery. (B—y) @B - y).

Sasabuchi (1980, Lemma 3.1) shows that,ii‘ap 0, the element oHy+ that minimizesD,1 is
actually among the projections bn each of the subspaceg8 : 8 = 0},i = 1,..., v, though,

clearly, some of these projections may not belongige. By exploiting the simple form of the
projection onto a linear subspace, and under the assumption of a multivariate normal distribution,
Sasabuchi shows (Theorem 3.1) that the critical region under the least favourable distribution has
a surprisingly simple solution. Under asymptotic normality?}d;ﬁs results apply immediately to

our problem and we have:

Lemma 4. Given the null hypothesis Hy+ and the alternative ki, the critical region derived
from the D, statistic reduces to:

rejectifz; > z,, Vi,

wherez = /ﬁBi/ Qoii, and z denotes thex% critical value from the standard 0, 1)
distribution.

Intuitively, because thaull allows us to assign for the trygany value outsidéd1+, we should
search for a critical region having rejection probability not greater théor any choice offf
along the boundary. Consider then any of thextreme null hypotheses such thgat= 0 for
i =jandg; > 0fori # j. It easily follows that Pz; > z,) equalsx fori = j and converges
to 1 otherwise. Thus the test achieves the desired asymptotic size whenever the set of population
Lorenz curves are strictly ordered, except for two curves that touch only at one point.
This test will have low power against alternatives of the fam=¢,i = 1, ..., v, wheree
is a suitably small quantity. This is a consequence of the fact that the actual rejection probability
of the test is typically much smaller than its nominal leveHat for example, if thed;’s were
independent the test would have a rejection probability equal tavhich for reasonably large
v is a very small number for all conventional choicesoof Of course, with a composite null
hypothesis, any test procedure will often have particular points with extremely low rejection
probability. However, it is of concern that a case of special interesHikis among such points.
Finally it is interesting to note that the rejection region definedby z,, Vi coincides with
that stemming from the application of the so-calle@rsection-uniomrinciple: according to this
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approach, which has been implemented by Howes (1994) for comparing two Lorenz curves, the
null hypotheses can be written as the union ofitsubhypothesig; < 0, while the alternative

can be written as the intersection of theubhypotheseg > 0. A result of Berger (1982) then
states that the test that takes as the rejection region the intersection of rejection regions of the
a-sized test for each of the subhypotheses has unddp_1+ overall rejection probability not
greater tharm.

3.4. The multiple comparison approach

The so-callednultiple comparison approagcliruitfully employed for the case of testing for the
Lorenz ordering of two populations in a series of papers by Bightah. (1991, 1992, 1994) and
Beachet al(1994) may be seen as a simplified version of our joint distance testing procedure.
Our analysis can be adapted to extend the multiple comparison approach to the case of more than
two populations, and to achieve a tighter control of some error probabilities of interest.

With the multiple comparison procedure, while the asymptotic normal distributigruatier
Ho is still the starting point, one tries to make inferential statements that are correct irrespective of
the correlation between differefit. Beach and Richmond (1985) utilize this approach to derive
joint confidence intervals for the Lorenz curve ordinates and income shares; multiple comparison
technigues have since been extensively employed in a series of papers investigating the Lorenz
and related orderings in various settings (e.g. geographical inequality comparison (8isthop
1992), inequality trends in US over time (Bishetal., 1991), the effects of truncation bias (Bishop
et al, 1994), single-crossing Lorenz curves (Beatlal, 1994), various stochastic dominance
concepts (Anderson, 1996)).

The multiple comparison approach is based on deep and elegant results by Richmond (1982)
and requires use of theudentized maximum moduldistribution. Given the asymptotic nature
of the problem, in practice it can be reframed into the following procedure that is very simple to

apply:

e acceptHoif B e Ag={B: max(| z |) < z};
e rejectHp in favour of Hi g if B € A1_g = {B: maxZj) > zs and minz) > —zs};
e rejectHp in favour of Ho_1 otherwise;

where P(Z > z;) = § and(1 — 28)” = (1 — 2«). This procedure relies on Sidak’s inequality
which states that the probability that a multivariate normal vector with zero mean and arbitrary
correlations falls in a cube centred at the origin is always at least as large as the corresponding
probability under independence (see Savin (1984) for a discussion of this and related inequalities)
so that

Pr(Ao | Ho) = Pr{max(| % |} <z | Ho) = [ [Pr(l 2 |< 25 | Ho) = (1 - 28)";
1

hence the probability of erroneous rejectionsHgfis bounded above byu2

The consequence of the simplicity of this procedure is that, precisely because the information
contained in the covariance matrix is not used, we cannot split the total error probailitio2
separate error probabilities of rejecting in favourktf o or Ho_;. However we can establish
that, sayp; = Pr(,B € A1-o0 | Ho) (which is the more crucial becauga_o suggests a specific
relationship among the Lorenz curves) cannot be greater than
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This follows from the symmetry of the normal distribution

Pr(B € Az_1 | Ho) = Prany2 < —zs | Ho) = Prany2 > z; | Ho) >

Pri(anyz > zs) and(all z > —z;) | Ho} = 1.

4. ILLUSTRATION AND APPLICATIONS
4.1. Monte Carlo comparison

Properties of the power functions of the various procedures discussed in this paper could, at
least in principle, be derived under the corresponding asymptotic distribution. Useful results in
this direction have been derived by Goldberger (1992), who considers testing linear inequality
constraints in the simple bivariate case. Goldberger’s main conclusion jtbatsed procedures,

by taking into account the covariance between the parameter estimates, can provide a clear
improvement on the multiple comparison procedure mainly when these estimates are negatively
correlated. Itseems natural to expectthatthese results hold also for the gedierahsional case.
Because Lorenz curve ordinates are typically positively correlated, in many practical situations
there will be quite a strong positive correlation among the elemerds ¢lowever, given that

R, is proportional tox, whenm = 2, while 2, has blocks of negative elements far> 2, we

may expect that the relative performance of the various procedures should change dramatically
according to whether we are comparing two or more than two populations.

Reasonably accurate estimates of power may be obtained from the relative frequency of
rejection in favour ofH;_g and Ho_1 in a set of suitably designed Monte Carlo experiments.
Those briefly reported here are aimed to provide enough evidence about the conjecture outlined
above, and also to assess how accurate the approximations are, as provided by the asymptotic
distribution used to compute the critical values. Full details are contained in the Appendix.

Briefly, we drew repeated pairs of samples from Singh—Madd&ii4 {ncome distributions,
having selected benchmark parameter values to fit the US census data for 1980 (McDonald,
1984). To construct pairs @M distributions that satisfyH1_o or Hz_1, the results of Wilfling
and Kramer (1993) may be used. Wilfling and Kramer state a simple necessary and sufficient
condition for Lorenz curve dominance in terms of the two characterizing parameters®ifithe
distribution, which will be used in the following to generate samples of Lorenz curves biadegr
andHo_1.

The basic idea foH2_1 has been to construct situations with a single clear crossing of the
Lorenz curves, and to use two different sets of parameters which correspond roughly to situations
of low and high power (that is, corresponding to population Lorenz curves close to and far apart
from each other respectively). Undéi_owe also consider two different sets of parameters which
guarantee that the corresponding population Lorenz curves are strictly ordered, in situations of
low and high power, respectively.

In order to evaluate the relative performance of the different procedures, we recall that our
inferential problem does not involve the usual dichotomy between a null and an alternative
hypothesis, but three nested hypotheses. In the discussion belowHyhgis the true state of
affairs, the power of each procedure will be evaluated as the probability of infetliing while
the error rate will be evaluated as the probability of inferrihg 1. Alternatively, whenHo_; is
the true state of affairs, the power of each procedure is the probability of infdtking, while

(© Royal Economic Society 1999



Inference for Lorenz curve orderings 59

the error rate is the probability of inferring;_o. Because of the asymmetric nature of the two
hypotheses, and becaude_ is actually the more ‘assertive’ one, particular attention should be
paid to the relative performance of each procedure in terms of power thidgrand error rates
underHo_1.

Form = 2, the main conclusions were:

e Aprocedure that would infer dominan¢e; o) of the first curve over the second whenever
the sample estimate of the two curves were to be ordered in this direction results in extremely
high error rates. For example, undég, almost 23% of the samples were actually ordered
in the direction implied byH; and in about 45% of the cases the samples exhibited strict
dominance in either direction.

e We tried two joint;? procedures both witlr; = a» = 0.05, one withyy = y; and the
other using the smallest possible value ygr Of these procedures, the one with a smaller
value ofyp is superior in terms of power and of error rates whén ; is the true state
of affairs. UnderH;_g the same procedure has again higher power, but a slightly larger
error rate due to its effort to control for the advantage$igf On the whole the second
procedure outperforms the first, and this result is confirmed by additional experiments based
on different values of&; anda, which we omit reporting in detail for the sake of brevity.
Hence we recommend that, after setting the relevant values gorda,, one should always
choose the smallest possible valueyef

e Under Hg the rejection rates of thg? procedures are very close to the nominal value
0.05, which indicates that the asymptotic approximation is reasonably accurate. On the
other hand, the actual significance level for the multiple comparison procedure is well
below its nominal value in both directions, and fffeprocedure under the least favourable
distribution is quite biased in favour éf,.

e The %2 procedure based 0B* does very well wherH,_1 is true. However, the larger
power underH,_1 is achieved at the cost of a significantly reduced power uttiep.
Nonetheless the computational simplicity of this procedure might make it quite appealing.

e The multiple comparison procedure, when considered against the besbcedure, ap-
pears to be inferior both in terms of power and error rates uhtier, while its higher
power undeH;_g is not as substantial; hence the heavier computational burden gfthe
procedure may be worth the effort whenever greater precision is required.

e The best jointy 2 procedure achieves higher power and lower error rates both thder
andH»_1 than the procedure based on the marginal distributidDgf and thus is unam-
biguously better.

e Ascould have been easily predicted, the procedure basBd gibecause of its highly con-
servative nature towardd; g, brings down to negligible levels the probability of detecting
erroneous evidence in favour bf,_g. However, this is paid for with a large reduction in
power whenH1_g is actually true.

As we had conjectured before, the results for the case 4 were quite different. The proce-

dure which infers that then true Lorenz curves are related exactly as the corresponding sample
estimates now becomes much more conservative towards the ordering hypothesis, and is charac-
terized by both low power and high error rates under o and high power and low error rates
underH,_1. The Dy; test never rejects its null hypothesis. Thus this procedure in this case is
useless as it pays no attention to sample evidence and is blindly conservative. As concerns the
multiple comparison procedure, although its actual significance level remains at about half its
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nominal level, in this case it seems to have extremely low power in both directions. Hence we
may tentatively conclude that there will be serious competitors to the jdimgrocedure only
when the covariance matr® exhibits strong positive correlations, which is typically the case
whenm = 2.

4.2. A simple illustration of the rejection regions

Procedures for testing one-sided multivariate hypotheses are in general neither very well known
nor treated in much detail in most textbooks in statistics and econometrics, even at the graduate
level. Readers unfamiliar with the subject can achieve a direct appreciation of the properties
and the functioning of these procedures by looking at plots of the rejection regions in the simple
bivariate case. These are giveninthe Appendix. More detailed plots including the power functions
are given by Goldberger (1992), who however considers only the marginal distributi@rg of
andDj,. Of course, the bivariate nature of these examples means that these pictures are in general
not directly applicable to our problem, but we believe that they are nevertheless very useful to
appreciate the properties of these inferential procedures.

Figures B1-B6 compare rejection regions of the various procedures in the simplified situation
Whereii has dimension 2 and can be plotted on the plane. In particular, in Figures B1 and B2 we
plot the rejection regions of the joiff® procedure withr; = a» andyg set at its smallest possible
value against that of the usual chi-squaig test witha = 0.10. Figure B1 considers the case
of positive correlatior{p = 0.77). This value for the correlation coefficient was chosen because
it arises when comparing two benchmark (US 198B®)Lorenz curves witlk = 2 (hences = 2).

Any point in the positive orthant denotes a sample observation such that both empirical ordinates
of the first Lorenz curve lie above those of the second, while the second and fourth quadrant
denote a single crossing and the third quadrant denotes that the second curve lies above the first.
Of course, a typical application would use a much higher valuk,fbut looking at the rejection

region is instructive anyway.

In Figure B1, the boundary of the rejection region towaktis ¢ is highlighted in darker
grey. We see that the joirt? procedure rejectblg in favour of H1_q in virtually all the positive
guadrant, minus the ellipsoid along the main diagonal. The boundary of the rejection region
towardsH,_1 is highlighted in a lighter shade of grey. We see that the bulk of the rejection region
is contained in the second, third and fourth quadrant. For comparison, the rejection region for
the usual chi-squareBg; test is given by the area outside the ellipsoid centred in the origin.

In Figure B2 we consider the case of negative correlation; —0.5, which would arise for
example whemim = 3,k = 1 (v = 2). Again, the darker and lighter shades of grey denote the
rejection regions towardsl; o andHy_1 respectively, and the ellipsoid centred along the main
counterdiagonal defines the usual rejection region of the chi-squared test.

Recall from Section 3 that the joig? procedure may lead to rejeld in favour ofHy_g even
if the sample estimates of the Lorenz curves are not actually ordered. However, the appropriate
choice ofyg prevents the corresponding rejection region from going much below-thés and
to the left of they-axis, under either positive or negative correlation. Finally, note that with both
positive and negative correlation tié procedure accepts the nidy more often than the usual
chi-squared in areas which are closeHa

In Figures B3 and B4 we compare the rejection regions of the joint chi-bar-squared and the
multiple comparison procedure with= 0.05 for the cases of positive and negative correlation.
The boundary of the rejection regions for the multiple comparison procedure are highlighted in
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the darkest grey (towards,_1) and the second darker shade of grey (towatgsg). Note that,
precisely because the multiple comparison procedure does not use the covariance information,
these rejection regions are identical in both figures. From looking at the figures, it emerges that
the two procedures have substantial areas of disagreement, but in different directions according
to the sign of the correlation. In particular, under positive correlation the multiple comparison
procedure acceptdp in areas where the joint chi-bar-squared procedure rejects in favblsr of

but also rejects in favour dfl;_g in areas where the joint chi-bar-squared rejects in favour of
H2_1. On the other hand, under negative correlation the multiple comparison procedure accepts
Ho in large areas near the origin where the joint chi-bar-squared procedure rejects in favour of
Hi_o (in the positive orthant) oH,_1 (in the negative orthant), but also rejects in favouHef o

in large areas in the second and fourth quadrants were the joint chi-bar-squared rejects in favour
of Ho_1.

Finally, in Figures B5 and B6 the darkest shade of grey highlights the boundary of the rejection
region of theD2; procedure. It is interesting to note that while with positive correlation this
rejection region has a slight intersection with the rejection region towklrdg of the joint
chi-bar-squared procedure, under negative correlation it lies entirely inside it.

4.3. lllustrative examples

Income inequality in two Italian regions. In this section we compare the extent of income
inequality as recorded by the Lorenz curve in two Italian regions, Veneto and Sicily. Itis generally
agreed that income inequality is greater in the less developed south as compared with the more
developed north. We use a sample of net family incomes, contained in a survey carried out by
the Bank of Italy in 1991. There are 359 families in the Venetian sample, and 476 in the Sicilian
one. Sample estimates of the Lorenz ordinates and their covariance matrix are easily obtained
from Beach and Davidson’s (1983) results, using deckes v = 9).

Plotting the two sample Lorenz curves, it emerges that the one for Veneto indeed lies above
that for Sicily at all the decile points. This is why in this case the test stafigtic= 12.0472=
Dg2. Note that equality is definitely accepted against the unrestricted alternativé 2 Br
120472 = 0.211. The marginal chi-bar-squared procedure may be implemented computing the
p-value as RiDp1 > 12.0472. This is equal to 0.180 under the least favourable distribution and
to 0.147 if the covariance matrix is estimated from the data. Finallyptti@lue corresponding
to rejection towards$1; o with the bestjoint chi-bar-squared procedure is equal to 0.073.

Inthis example the evidence towards the dominance hypothesis is not strong enough. However,
it is worth noting that théestjoint procedure implies a much smallpwvalue than the usual chi-
squared procedure and this is an indirect indication of the gain in power that may be achieved by
looking at the specific alternative of interd$i;_o) rather than to all possible deviations from
equality.

Finally, we note that in this sampledB56< z < 1.992(i =1,...,9). Therefore, both the
multiple comparison approach and the distance@egtead to the acceptance of their respective
nulls at the 10% level.

Income inequality in the US in the 1980s.We consider the sample of US family incomes

from 1979 to 1989 as contained in the CPS microdata (March tape). Because about 40% of
households are in the sample in consecutive years, we use only data from alternate years. Consider
then the hypothesisly : (L79 = Lgs > Lg3 > Lgs > Lg7 > Lgg), thatis, income inequality has
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progressively increased in the USA during the 1980s. lere 6 and we take agaik = 9 so
thatv = 45. Each sample contains more than 40 000 observations.

The test statistic®o; and D12 are respectively equal to 588.08 and 4.61. Intuitively, the
large value oDo; is in itself quite strong evidence against the assumption of unchanging income
inequality while the relatively small value of the test statidligy seems to indicate that if the
samples are not perfectly ordered, this may well be caused by random fluctuations. More formally,
one can easily compute@o1 > 58808, D1, < 4.61 | G™) whichislessthan 0.0001 and may be
interpreted as thp-value under the least favourable distribution for the joint procedure discussed
in Lemma 3 and thus provides strong evidence for increased inequality.

It is interesting to note that the lowest valuezfi = 1, ..., 45), is equal in this sample to
—0.78, while its maximum is equal to 7.55. Thus, the multiple comparison approach also leads to
the rejection oHp in favour ofH1_g. On the other hand, observing the sample of Lorenz curves,
we note that there is some crossing among the later years (1985, 1987 and 1989). This implies
that the distance test statistidy; equals zero; thus, if the researcher is not prepared to accept
the ordering hypothesis unless there is overwhelming evidence in its favour, the null hypothesis
‘nothing can be said’ will be maintained under this approach.

5. CONCLUDING REMARKS

Performing statistical inference for Lorenz curve orderings involves intricate statistical issues of
testing for an ordered relationship in a multivariate context. Our approach has been to frame
the hypotheses of interest as sets of linear inequality constraints on the vector of Lorenz curve
ordinates, and apply order-restricted statistical inference to derive useful testing procedures.

One peculiarity of our inferential problem is that it does not involve the usual dichotomy be-
tween a null and an alternative hypothesis, but three nested hypottgddsandH,. Applying
known results on the joint distribution of the statistigg; andD12, we proposed a new procedure
which partitions the sample space into three regions, of acceptamtg ahd rejection towards
Hy_o and Hy_1. This procedure, which we callgdint chi-bar-squared gives the applied re-
searcher some flexibility depending on which type of error he wants to be protected against, and
on where he wishes to have greater power in detecting departuredifgothprotection against
erroneously believing that the sample Lorenz curves are ordered, when in fact they are not, is
considered of primary importance, we also proposedDbetesting procedure which simply
takes the hypothesis of the absence of ordering as the null. Interestingly, this distance testing
procedure coincides with that proposed by Howes (1994) in the context of ranking two Lorenz
curves, which stems from the application of the intersection-union principle.

We also discussed the multiple comparison procedure which can be seen as a simplified
version of the joint chi-bar-squared procedure. This procedure has been very popular in recent
applications involving the comparison of two Lorenz curves in different contexts. We have shown
how the procedure can be easily extended to consider more than two Lorenz curve at once, and
how to achieve a tighter control of some probabilities of interest.

We have also performed a Monte Carlo experiment to compare the empirical performance of
the three procedures, analysed their properties with the help of simple graphs of rejection regions,
and given some illustrative examples of application. The general conclusions from the theoretical
and empirical results appear to be the following.
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e The greater difficulty of applying the joint chi-bar-squared procedure over the multiple
comparison procedure seems to be worthwhile in terms of a substantially improved per-
formance. This is really not surprising in view of the fact that the multiple comparison
procedure ignores precisely the covariance information of the sample ordinates.

e The joint chi-bar-squared does not protect tightly and under all circumstances against the
error of believing that the sample of Lorenz curves are ordered when actually they are
not. If protection against this error is considered of overwhelming importance, then the
D»j procedure is the obvious candidate. However, this choice could carry a price in terms
of lower power in some regions of the parameter space. Thus, for example, if economic
theory strongly predicts that a set of Lorenz curves should be ordered (say given some
change in the taxation or benefit policy), so that the researcher could reasonably restrict the
parameter space to the positive orthant, then the possible increase in power could make the
joint chi-bar-squared a preferred alternative. The computational simpliciDg pfiowever
could again tip the balance in its favour, at least in the case of comparing two Lorenz curves.
However, when there are more than two Lorenz curves to compare, the joint chi-bar-squared
procedure does seem to be the only viable alternative.
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A. APPENDIX. PROOF OF LEMMAS
A.1. Brief review of results on thg? distribution

Let§(V, C) denote the projection of a vectyire R onto a convex coné in the V1 metric; §(V, C) is
the solution to the problem

minyec @ —y)' V1@ - y).
Under the assumption thiat~ N (0, V), the distribution of the chi-bar-squared random variable, defined as

X2V, 0) =9V, 0) VYV, 0) )
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is well known and depends on the cahand the matriXx/; whenC is the positive orthant, we simply write
%2(V). Also, let us define theual of C in theV—1 metric asc® = (y%: y'V~1y® < 0,Vy € C).

Convex cones share many duality properties with linear subspaces: the following is in a sense a version
of Pythagoras’ theorem (see e.g. Shapiro, 1988, p. 50)

YV — -9V, 0N VI -9V, 0) =9V, 0 Vv, o). @A)

For anyr x v matrix A of full row rank letC(A) denote the polyhedral co&A) = {x : Ax > 0} andV
be av x v positive definite matrix. By applying appropriate linear transformations (see e.g. Shapiro, 1988,
pp. 54-55), the following identity holds

22V, CA)) = x2, + x2(AVA) (4)

Where)(uz_r is identically O wherA is nonsingular and thus=r.
Finally, given two convex cong%; C Co C RV and any positive definite matriX, from the definition
of theV-projection it follows that for any real-valued

Prx2(V,C1) > X} < Pi{x2(V,Cp) = X}. (5)

A.2. Proof of Lemmas 1 and 2

Letk = JﬁB Then undeHg, whenPy is the truecd f, in the limit, whenﬁo — Qo andX —~ N(0, £o),
Dg1 reduces to

£ 5% — ming g% — ' g1 - x),
thus, from equations (2) and (3), it follows that the asymptotic distributiddafis %2(R0), which proves
the first part of Lemma 1. By the same reasoniDgp asymptotically reduces to

Ming=0(X — %) g 1% —x),

and using equations (3.3) and (5.4) from Shapiro (1988) it follows Ehagt will tend asymptotically to
the random variablg 2(Ro, O°) where©° denotes the dual of the positive orthant. The asymptotic joint
distribution ofDg1 andD12 underPy, considered in Lemma 2, follows by applying Theorem 3.4 in Raubertas
et al, (1986) or Theorem 1 in Wolak (1989).

To prove the second part of Lemma 1, which establishes the asymptotic least favourable distribution for
Doz, notice that if we putA = Ddiag(r)~1D’, the variance matrif2, can be written as

R = A®To = (Im-18Lo)(AIK) (Im-1®Lo)
wherel o denotes the Cholesky decompositiony, i.e. LOLO/ = ¥o. Then, using equation (4), in the
limit
Do1 ~ %%(R0) = ¥*{A&lk, Clm-18Lo)}. (6)

When X, tends to the case of perfect correlatibn, tends to the limiting formrek/ whereg is a vector of
positive constants anﬁt/ is thek x 1 vector(1, 0, ..., 0). Note that the coné(aek’) is the same a@(ek/),
and also that(Im—1®Lo) C C(l m—1®ek/) because the first (upper left) entry b, must be positive.
Therefore, using equation (5), for any real-valued

PH{2(R0) = X} = PIx%(A8lk. Clm-18L0)} = X] < Pr{x3{A&lk. C(Im_186 )} = X]
and the actual expression of the weights follows from (4) by putirgl m_1®a<'.
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A.3. Connection between probability weights and level probabilities
Use equation (4) again with = D to get:
wj_1(A) = wj{diagr) 1, cD)}, forj=1...,m—-1,
which is the probability that the projection of a normal vecyor~ N(O, diag(r)_l) onto the cone of
nonincreasing vectod(D) = {x : x; > --- > xm} falls on a subspace of dimensipnthus havingj distinct

elements. This is precisely the definition of level probabilities given in Robertson, Wright and Dykstra
(1988, p. 69).

A.4. Proof of Lemma 3

Above we have essentially shown that, wHp is replaced by its true value in the limiDg1 and D12
are equal to the square of the norm of the projection of a random vN¢®rA ®ly) respectively onto the
convex con€ (I ,_1®L o) and its dual. Moreover, because of duality relations

Cllm-18Lo) C Clm_1®&) and COUm_1®e&) C C°Um_1®Lo),

under the least favourable distributi®g)q is associated to the largest cone dng to the smallest, so that
the result follows from direct geometrical considerations.

B. APPENDIX. REJECTION REGIONS

b J

2| J

_3 1 1 1 1 1 1 1
=3 -2 -1 0 1 2 3 4 5

Figure B1. Rejection regions of 2 with a1 = a» = ag = 0.05 andDg3 test withe = 0.10 and correlation
o =0.77.
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_3 1 1 1 1 1 1 1
-3 —2 -1 0 1 2 3 4 5

Figure B2. Rejection regions of 2 with a1 = ap = apg = 0.05 andDg; test withe = 0.10 and correlation
p=-05.
5 T T T T T T T

4t i

_3 Il Il Il Il Il Il Il
-3 —2 -1 0 1 2 3 4 5

Figure B3. Rejection regions of2 with a1 = a» = a = 0.05 and multiple comparison procedure with
a = 0.05 and correlatiop = 0.77.
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-3 —2 -1 0 1 2 3 4 5

Figure B4. Rejection regions of2 with a1 = a» = a9 = 0.05 and multiple comparison procedure with
a = 0.05 and correlatiop = —0.5.
5 T T T T T T T

4 L i

-3 —2 -1 0 1 2 3 4 5

Figure B5. Rejection regions of 2 with a1 = ap = apg = 0.05 andD24 with « = 0.05 and correlation
p =0.77.
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_3 L L L L L L L
-3 —2 -1 0 1 2 3 4 5

Figure B6. Rejection regions oﬁz with @1 = o = apg = 0.05 andD»1 with @ = 0.05 and correlation
p=-05.

C. APPENDIX. THE MONTE CARLO DESIGN

A suitable class of income distribution functions from which to draw repeated samples should ideally provide
agood fitto realincome data, with a simple parametric form. The famBMihcome distribution functions

(also known as Burr Xll in the statistics literature, see e.g. Johnson and Kotz (1972, p. 31)) has two essential
parameters; we will say that ~ SM(a, q) when itscdf can be written as:

Py=1-@1+y»H 9 y=o0

withg > 1/a > 0. In a detailed study on fitting several distribution functions to US income data, McDonald
(1984) came to the conclusion that t8M performs very well in terms of goodness of fit. McDonald also
fits theSMdistribution to a sample of US census income data for 1980, anddird$.697 andq = 8.368:
we will take these values to defirdy in our simulation.

A criterion to construct pairs dMdistributions that satisfyd1_q or Hy_1 is provided by Theorem 1
of Wilfling and Kramer (1993): leEM(a1, 1) andSM(ap, g») be twoSMdistribution such thad; < ap,
then the first distribution Lorenz-dominates the second if and orydgf < adp.

Because thedfof a SMvariable has a simple inverse

Y=PlU)=(-1+@1-U)yVala forU e (0, 1),

a sample from theSM distribution may be generated by transforming as above a random sample from
the uniform distribution o0, 1). Moreover, the inverse function may also be used to compute accurate
approximations of the trug and €2 in the populations of interest. For a reasonably ldrgaket equally
spaced points 0, 1), transform into the relevar8M distributions and compute any quantity of interest
from these data. We have used this technique, i4th20 000, for the judicious choice of the parametgrs
andg; as explained below, and also to obtain a very accurate approximation to the true weightklginder
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Table C.1.
a,i =123 g,i=123
Low power 1.7970 1.8970 1.9970 4.6370 3.2190 2.4770
High power 1.8470 1.9970 2.1470 3.7240 2.4380 1.7950

Below we describe in detail our experiments with= 2 andm = 4. In both cases we use a constant
sample siz&; = 2000 and compare Lorenz curves at the level of de¢les 9). Each sample is replicated
10000 times whem = 2 and 5000 times whem = 4.

C.1. Comparing two populations

Let the base populatioad f R, be distributed as$s M(ag, qg). UnderH;_g we let P, be distributed as
SM(ag + ¢, qg) with ¢ > 0 and compare repeated pairs of samples of size 2000 drawnHgoamd Py
respectively. We used = 0.07 andc = 0.14 which correspond approximately to nia®,i = 1,...,9

equal to 1.6 and 3.2, respectively. These can be thought of as situations of low and high power, and this
impression is confirmed by the values of the statiBg in the populations which equal to 2.83 and 11.73,
respectively.

The basic idea foH,_1 has been to construct situations with a single clear crossing of the Lorenz
curves. Formally we lePg be as above an®y be SM(az, q1) with a; > ag, and search for g; such that
—mingz is approximately equal to max, i = 1,...,9. Here again we consider two versionsRaf, one
havinga; = 1.817 andg; = 4.1996 and the other wita; = 2.057 andg; = 2.1397. In both cases their
respective Lorenz curves cross once with tha&gfand— minz, ~ maxz ~ 1and— minz ~ maxz ~ 3
respectively. Thus, they correspond roughly to situations of low and high power. The true value of the statistic
Dg> is equal to 3.34 and 23.46, respectively.

C.2. Comparing four populations

The case of four populations is basically similar to the previous one. Gived\eg, qg) base population,
underHi_g we letR, i = 1,..., 3, be distributed aSM(ag + ic, qg) and compare repeated pairs of
samples of size 2000 drawn froR, i = 0,...,3. We usecc = 0.03 and 0.05 leading respectively to
max(z) ~ 0.7 and 1.5 with the true value @g» being 5.25 and 22.14.

Under Ho_1 we construct situations with a single clear crossing of each consecutive pair of Lorenz
curves. More precisely, giveRy as above and, distributed asSM(a;, gj), i = 1, ..., 3, we search over
possible values of; andg; such that when comparing two consecutivef’s B andP_1,i = 1,...,3,
—ming is about equal to maz. Here again we consider two versions: one of low power, with max
0.8, andDgy = 19.14, and a situation of high power with max~ 1.3 andDg, = 38.88. The actual values
of the parameters are summarized in Table C.1.

C.3. The computation of critical values

The critical values for the distance té3#1 and those for the multiple comparison procedure may be derived
easily from any table of thedfof the standard normal distribution. The corresponding task for the joint chi-
bar-squared procedures is not entirely trivial. First, one needs an estimate of the probability weights under
Ho. For a given variance matr®,, the probability weights can be found by projecting a reasonable number
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Table C.2.

Population  po P20 P1 P21 P22

Two populations
Ho 0.0015 0.0002 0.0025 0.0012 0.0000
Hi_o 0.0020 0.0003 0.0036 0.0018 0.0000
Ho_1 0.0031 0.0004 0.0049 0.0018 0.0000

Four populations
Ho 0.0034 0.0009 0.0040 0.0007 0.0000
Hi_o 0.0030 0.0009 0.0036 0.0009 0.0000
Ho_1 0.0037 0.0009 0.0048 0.0008 0.0001

of N(0, £,) random vectors ofRY_, and counting the proportion of times where exactioordinates of
these projections are positive. Then one can use the following algorithm:

1. setthe values af1, a2;

set the value ofiog which should be much larger thas but less than - Pr(D1, = 0);
computeyg as the solution td- (co, yg) = 1 — a20;

computex as the solution td- (X, yg) = 1 — a9 — «o1;

computey; as the solution td=(x, y1) =1 — a1 — ag;

o g M w N

if the last equation has no solution, decrease the valueg®énd go back to step 3.

We seta1 = ap = 0.05 andwpg = 0.6 for two populations and 0.55 for four populations. The equations
above may be solved only by numerical inversion; the secant method which we implemented is reasonably
fast and reliable but requires an initial guess and some supervision.

For the purposes of our simulation, the critical values for the least favourable distril@tiareed to
be computed only once because the corresponding probability weights are known (see Robertson, Wright
and Dykstra 1988, p. 444). On the other hand, the critical values baﬁd bave to be recomputed within
each simulated sample. Due to the difficulty of making this automatic, we have used instead the critical
values computed only once for each assumed population, using the weights estimated fromS#e true

Dardanoni and Forcina (1998, p. 1118) show, in a similar context, that replacing unknown parameters
with their ML estimates has negligible effects on fhealues of the; 2 distribution. To examine whether a
similar result holds in this context, we compare the true probabilities that determine the critical values of the
joint %2 procedure, with the corresponding probabilities which result when us'(tfgo), estimated with
500 replicates.

In Table C.2, we lepp = Pr(Dp1 < X, D12 < y1), p1 = Pr(Do1 > X, D12 < Yo), P20 = Pr(Do1 =<
X, D12 > Y1), p21 = Pr(Dg1 > X, Yo < D12 < y1) andpo = Pr(Dg1 > X, D12 > y1). For each of these
cases, we calculated the distribution of the absolute error between the true and estimated probabilities, and
reported the upper 95% quantiles. Note thlat o andH>_1 refer only to the situations of high power, as
defined above.

These data seem to indicate that the critical values computed within each sample will differ, in most
cases, only very slightly from the corresponding true values. Thus, we can conjecture that the probability
that the sample falls exactly in between the two regions will be very small.
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C.4. Results

We consider first the case of two populations. It is convenient to compare the performance of the various
procedures in terms of power and error rates by concentrating first on those that, when thelgeject
differentiate between the hypothedds_g and Ho_1. Five such procedures are analysed in Figures C1
and C2, which display the rejection rates in favouiHaf g on the left side and those in favour Bb_; on
the right. In Figures C1-C6, thrie statds marked at the bottom of the histogram, and ‘f’ and ‘c’ represent
situations far and close to the null respectively. The estimated probabilities plotted are to be interpreted as
error rates to the left oflg, and as power to the right.

In order to assess the performance of g procedure, in Figure C3 below we compare its rejection
rates with those achieved by the bestj(jﬁlprocedure and the simpler procedure based oDestatistics.

Finally, the results for the case of four populations are summarized in the same way as in Figures C4—C6.

1 1
a b
09 : : : : : : 109+ : : : : : : 1
0.8 . . . . . . 108+ . . . . - - E
0.7 | . . . . . . 107} . . . . - - E
0.6 | . . . . . . 106} . . . . - - E
05 : : : : : : 105+ : : : : : : 1
04 . . . . . . 104+ . . . . . - E
03 . . . . . . 103+ . . . . - E
02t - - - - 102+t - - - - : 1
01 . . . 101+ . . . . I E
H2f H2c HO ch Hlf Hlf ch HO HZC H2f
TowardsH,_, TowardsH, _;

Figure C1. Rejection rates towardd;_g andH,_1 of three joint chi-bar-squared procedures (from light
to dark shade): a joing? with a1 = ap = ag = 0.05; b as before butyg = 0.60; ¢ joint x2 underG™*
and withaog = 0.40.
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a b
09f - 09F ]
08f 08F ]
07 O7F o .
06f 06f ]
05F - 05F o ]
04f 04f ]
03} 03F ]
02 02t - - i
01} I 01} I I ]
’ Hac ° 1 Ho Hzc

TowardsH,_, TowardsH, _;

Figure C2. Rejection rates towardd;_g andH,_ 4 of three procedures (from light to dark shade): a ‘best’
joint x2; b multiple comparisons witk = 0.05; ¢ sample comparisons.
1

09}
08 |-
0.7 |-
06 |-
05}
04}
03}
02}
01t I
° Hyx Hx Ho
Towards H1—o

Figure C3. Rejection rates towards;_g of three procedures (from light to dark shade) a jgiRtwith
a1 = ap = apg = 0.60; b Dg1 with « = 0.05; ¢ Do with « = 0.05.
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09 {09

0.8 -

o7t Mozt B R
06 o MMogE o ml - BB
05 o MBI osE M B
04t B4l - |
0B - Mlost - | F
02F o o BRq{oz2f - |t
e 0 om Lol

HO ch Hlf Hlf ch H0 H2c HZf

TowardsH,_, TowardsH, _;

Figure C4. Rejection rates towardd,_g andHy_1 of three procedures (from light to dark shade): a joint
72 with a1 = ap = apg = 0.05; b as before butyg = 0.60; ¢ joint 2 underG™ and withayg = 0.40.

1 1
a b
09f o dogt R R R
o8f o dost K B B B
o7b o dorb - B B K N
] R Y N . N |
05 oL o5} N . N !
04t ot oal N . . |
03f ~ Hgi 03} N . N |
02f BB o2} N . N |
O.l-l S I 4 0.1 BEE B . I
Ho Hy Hy i M Ho

Hy  Hx

H Ho  Hy

C

TowardsH,_, TowardsH, _4

Figure C5. Rejection rates towardd,_g andHo_4 of three procedures (from light to dark shade): a ‘best’
joint %2; b multiple comparisons with = 0.05; ¢ sample comparisons.
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Figure C6. Rejection rates towardd;_g of three procedures (from light to dark shade): a best jy'o?mb
Doy with = 0.05; ¢ D21 with « = 0.05.
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