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Abstract— We study a single-machine sequencing problem with ~ As a critical step in developing a solution procedure for
both release dates and deadlines to minimize the total weighted JSTIMP, we needed to solve a single-machine sequencing
completion time. We propose a branch-and-bound algorithm for problem that minimizes the total weighted completion ob-

this problem. The algorithm exploits an effective lower bound and .. . . .
a dynamic programming dominance technique. As a byproduct jective, subject to dual constraints, i.e., both release dates

of the lower bound, we have developed a new algorithm for the and deadlines. This problem also serves as a relaxation for
generalized isotonic regression problem; the algorithm can also other job shop problems with flow time or completion time

be used as anO(nlogn)-time timetabling routine in earliness-  gbjectives. We formalize the problem next.

tardiness scheduling. Extensive computational experiments indi- A instance of our sequencing problem comprises)-

cate that the proposed branch-and-bound algorithm competes tunles: (1 v ds.w. i h -1 desi

favorably with a dynamic programming procedure. up es._(r],pj7 jow;) JES W erej_.{ ;---,n} desig-
nates jobs to be scheduled on a machine, an@> 0), p;

. . . . . (> 0), dj (> r; +p;), andw; (> 0) are the release date,
involve multiple machines and resources. The configurations of : - . . . -

such systems may be complex and subject to change over time.PTOCE€SSING time, deadline, and _assomated weight, respe_ctlvely.
Therefore, model-based solution approaches, which aim to solve JOP j€_# is ready to start at time;; once started, the job
scheduling problems for specific configurations, will inevitably will occupy the machine exclusively for the duration pf

run into difficulties. By contrast, decomposition methods are without interruption. The completion time of jopis denoted

much more expressive and extensible. The single-machine prob- by C;, and the collection{C;|; € _#}, is called ascheduleA

lem and its solution procedure studied in this paper will prove . e - . .
useful to a decomposition method that decomposes multiple- schedule that satisfies all the release dates and deadlines is said
machine, mu|tip|e_resource Schedu“ng pr0b|ems into a number to befeasible The ObjeCtive is to find a feasible schedule that
of single-machine problems. The total weighted completion time minimizes the objective functioﬁj}’:1 w;C;. This problem,

objective is relevant to production environments where inventory denoted byl |r;, d;| 3 w;C; with the three-field notation [19],
levels and manufacturing cycle times are key concerns. Future ... pe stated] mz'althemjatil(j:ally as follows

research can be pursued along two directions. First, it seems to

Note to Practitioners—Real-life production systems usually

be necessary to further generalize the problem to consider also R

negative job weights. Second, the solution procedure developed min ijcj

here is ready to be incorporated into a machine-oriented de- j=1

composition method such as the shifting bottleneck procedure. (WCT) s.t.rj +p; <Cj, V7, 1)

o o : Cj < dj, vj, @
Index Terms—scheduling, isotonic regression, timetabling, ) o )
branch-and-bound, weighted completion time. Ci<Cj—p; or C;<C;—pi, Vi, j,i # j. (3)
Even the problem of satisfying constraints (1)(2)(3) is
N P-complete [16], but it can be efficiently dealt with in
. ) practice [8] and [27]. In the literature, only some special
CHEDULING problems with the total WEIghted Comple'cases ofWCT have been considered thus fa.—d]' ijc’j
project to de_zvelop algori'Fhms for scheduling job shop opergpg], [30], [33]. Ahmadi and Bagchi [1] and Chand and
tions. In the job shop environment that we modeled, the centdhneeberger [10] investigate enumerative procedures for
managerial goal is to sustain production with the MiNIMUMy 7. nowait| S w; E;, where E; = d; — C; is the earliness.
level of work-in-process and finished goods inventories whilgianco and Ricciardelli [7], Hariri and Potts [20], and Be-
delivering jobs on time. Ideally, earliness-tardiness objectivg§adah et al. [6] examing|r;| 3" w,C;. Dell’Amico et al.
Woulgl be desirable for this kind of application, but no_practicaﬂ;g] extend the job splitting idea of Posner [29] and apply it
solution procedure_\ was foreseeable. There_fore, we introduggdihe static problem with general weights, while the same
a more computationally tractable alternative called fble problem was also studied by Bard et al. [5]. None of the
shop total inventory minimization proble@STIMP) [32].  apove authors consider both release dates and deadlines. While
. . . , _ Jhey model the dual-constrained situation through a flow shop
This work was supported in part by the National Science Foundation under | h . hi hel
grants DMI-0100220, DMI-0217924, and DMI-0431227, in part by the AiPToPlem, Ahmadi and Bagchi [2] nevertheless assume non-
Force Office of Scientific Research under grant FA9550-04-1-0179, and@e@nstraining release dates in their solution approach. Only

part by John Deere Horicon Works. _ __recently has a solution procedure for the general problem, i.e.,
The authors are with the Department of Industrial & Systems Englne%

ing, University of Wisconsin-Madison, Madison, WI 53706 USA (e-mail: CT, .been propos_ed by@nas e_md Soumis [18]. who use
pany@cae.wisc.edu; leyuan@engr.wisc.edu). dynamic programming and consider general weights. Apart

I. INTRODUCTION



from [18], there are few relevant results f@vCT. Neither is denoted byLR, and the value of the Lagrangian is
lower bounds nor branch-and-bound algorithms have been
proposed folWCT in the scheduling literature. L(a,b) :n

In this paper, we propose a branch-and-bound algorithm ;i wiCi 4 ai(r: +p: —C:) +b:(Ci — di
for solving this problem. In Section I, we derive a new Z 7 (5 s i)+ 0i(C i)

=1
lower bound and then reduce the task of computing the ! n n
lower bound to one of solving a linear programming problem = Z (w; —aj +b;)C; + Z“?’(TJ’ +pj) — b;d,
that has special structure. The problem is shown to be an = O ‘ o

isotone optimization problem. In Section Ill, we discuss the st (1), (3),
preliminaries of isotone optimization problems and propose a

new algorithm for the generalized isotonic regression problefferea = (ai,...,a,) andb = (bs,...,b,) are vectors
with immediate application to our lower bound calculatior@f nonnegative multipliers. Note that we have purposefully
Section IV discusses dominance conditions and a new dgtained the release date constraints (1).fh

namic programming dominance technique. The branch-andlt is easy to see that wita andb fixed, LR (after ignoring
bound algorithm is presented in Section V and then comparé@§ constant terms in the objective function) is of the same
with a dynamic programming algorithm through extensivéorm asl|r;[ > w;C;, but each jobj has a new weight
computational experiments in Section VI. Some concluding

/
remarks are given in Section VII. We begin by deriving a wj = wj = aj +bj. “)
lower bound. For any choice of multipliers satisfying > 0 andb > 0,
L(a,b) is a lower bound on the optimal value of our problem
WCT.
1. AL OWERBOUND To find proper values for our multipliers, we proceed as

follows. First, we can immediately rule out those multiplier

Our lower bounding technique utilizes Lagrangian Relay2lues that cause any; to be negative, as it is shown next
ation and the multiplier adjustment method first introduced B§at their L(a, b) values are always dominated. Consider a
Van Wassenhove [39]. This lower bound can be viewed as;OQJt'CUkJ‘r choice of multipliers denoted g, b) such that
synthesis and extension of those of Hariri and Potts [20] aft, = wjo — @jo + bj, < 0 for some jo. Now define new
Potts and Van Wassenhove [30]. multipliers (&4, b) that are identical tda, b) except thati,
aj, + w},. By construction ), = wj, — aj, + bj, =
and the new multipliers are valid sinég, = a;, + w’,
wj, +bj, > 0. Also, for any fixed schedul¢C;|j € 7} that
satisfies( ) and (3), redefininga;, results in an increase of

Two notions are necessary for our subsequent discussibii, (750 +Pjo — Cj,) (note thatw; <0, rj, +p;, — Cj, < 0)
First, a job sequence is called anondelay sequenci it Minimize over all such schedules and we halia, b) <
implies anondelay schedujavhere the machine is never keptl(&, b). This is repeated until all; > 0.
idle while some job is waiting to be processed [4]. It should Second, we impose an addmonal restriction on the multi-
be noted thatr is generated using only the release datéiers so that the Lagrangian problem can be solved easily by
and processing times, and therefore, may violate some of fgPlying Proposition 1. Assume thatis a given nondelay

S

A. Derivation

deadlines. This does not cause any problems sinceerely Sequence withi blocks, By,..., Bk, and that the jobs are
serves as a stepping stone toward computing the lower boufgilumbered such that= (1,...,n). Based on the above two
Renumber the jobs such that= (1,...,n). Second, we adopt considerations, we restrict our choice of multipliers to those

the notion ofblock [23]. Jobw is called thelast job of a block that satisfy
if C, <rifori=v+1,...,n. Let B = {u,...,v} be a

= . .. ) . £>0, = Uy, Uk, 5
set of jobs in adjacent positions ef B is called ablock if ,wJ -, J =k Uk ©)
(i) job u—1 (provided thatu > 1) and jobwv are the last jobs wf; = Z;:j, J=1ug,...,vp — 1, (6)
of two consecutive blocks, and ) job ¢ is not the last job of o
a block fori = u,...,v — 1. Thus, the nondelay sequenee for each blockBy, = {ug,...,v}. If the multipliersa and

b are chosen as such, then by Proposition 1, the nondelay
sequences is optimal for the Lagrangian problem, with
{C]‘-’|je/} being an optimal schedule. Hence, we have

can be partitioned into a number of blocks.
Omitting the deadlines iWCT yields 1|r;| > w;C;. The
nondelay sequence is optimal for 1|r;| > w;C; if the

following condition by Hariri and Potts [20] is satisfied. n n ~
Proposition 1: The nondelay sequence is optimal for L(ab)= Z (wj —a; +0;)CF + Z%‘(Tj +p;) — bjd;.

1|r;| 3= w,;C; if the jobs within each blockBy, (k =1,..., K) J=1 J=1

are sequenced in nonincreasing ordewgfp;. To get a lower bound as tight as possible, we further require

To derive a lower bound for our problem, we perform ¢hat L(a,b) be maximized whilea andb satisfy (5) and (6).
Lagrangian relaxation of each release date constraint (1) dret y;, be the contribution of the jobs in blodk; to L(a,b).
each deadline constraint (2). The resulting Lagrangian probléiaximizing L(a, b) is then equivalent to maximizing each



yi, independently, which can be accomplished by solving thigherefore,> ", _. th] is a better lower bound o} _, Cﬁl]
following maximization probleniP: than",_. ris) + ppp)- Define

max g, = Y aj(r; +p; — CF) +b;(C7 — dj) +w;C7

o +3 w;C7 4 5;(C7 — dy).
s.t. 4), (5), (6), ;wﬂ J J( J J)
ajzo,bjzo,jzuk,...,vk.

Then,y’ > y. As aresult, we have a strengthened lower bound,

It is interesting to note thatP, is a linear program in which we refer to as LBPS

which the decision variables are the multipliers b;, j =
Uk, ..., v (ignore the constant terms ip,). The solution of B. Three Nondelay Sequences

LP}, degenerates to triviality for the special cases where only\we propose to consider thre@(nlogn) nonpreemptive
release dates or only deadlines are considered, as in [30] aristics, all of which can potentially be employed to generate

[20]. B nondelay sequences for lower bounding purposes. The first two
Let a;,b;, j = ug,..., v denote an optimal solution to are generic ones taken from the literature; they are the earliest-
LP. We define the following lower bound faVCT: due-date (EDD) rule and the weighted-shortest-processing-

time (WSPT) rule. The third is a new heuristic that we
developed specifically fo?WCT . It is outlined next.

We refer to this heuristc as COMP (for “compos-
ite”). Each job je ¢ is associated with a number, =
where the dependency of LBPS eris emphasized. IEP is max {r;,d; — p; }. If a job arrives at a time when the machine
unbounded for somé, then the bound LBPS: oo, indicating IS busy, the job becomes a waiting job. Suppose that a job
that WCT is infeasible. Otherwise, LBPS is a valid lowemeeds to be selected for processing at inden the machine
bound, sincel(a, b) is a valid lower bound. is free. If all jobs have already arrived (i.e;, < ¢ for all j), we

Because all the blocks receive the same treatment, weauence those jobs that have not been processed using Smith’s

only one blockB; with K = 1,u; = 1,v; = n. Accordingly, fime ¢, some of the waiting jobs are bound to be overdue no

we will drop all subscriptsk for indexing blocks; e.g.LP, Matter how they are sequenced. To account for this situation,
and g, becomeLP andy, respectively. we modify Smith’s rule by pretending that deadlines can be
LBPS can be improved using a tightening technique Suaz(tended whenever necessary during the backward scheduling

gested in [20]. Supposed that,b;, j = 1, ..., n is an optimal process. On the othe_r hand, if at timenot all jqbs have
solution toLP. We sort the multipliersi,,j = 1,...,n in &ved, we select a job, for processing according to the
ascending order to get;y,i = 1,...,n. Defined; = ag), follpyvmg rule. Let £ bg the set of all the jobs currently
8 = gy — g1}, i = 2,...,n. Then,d; > 0 for all i, andg, waiting and letE; = {j € Elt; <t}. If E; # 0, then set
can be rewritten as Jjo such thatw,, /p;, = max;cg, {w;/p,;}; otherwise, set

Jo such thatw;, /pj, = maxjcg {w;/p;}. This procedure
can be implemented to run i@(nlogn) time if E and E;

are implemented using two heaps (or priority queues) and a
bitmap of n elements is used to indicate whether a job has
already been processed at timéike EDD and WSPT, COMP
generates a nondelay sequencethat respects the release
dates, but may violate some deadlines. As stated before, this

Note that the term(ZZ:i " +p[h]) in the above equation does nqt pose any problems since the sole purposei®for
is a lower bound or}_;_; C7,, because the completion timescomputing the lower bound LBPS. _
C¢ always satisfy the release date constraints. To obtain dHeuristic COMP is designed to strike a good balance
tighter lower bound, we solve an auxiliary problem of the forrff&tween minimizing the objective function and reducing dead-
1/r;| 3= C;, where there arén—i+1) jobs with unit weights. line V|'olat|on.' Its superior perfor'mance' is later confirmed by
This problem is also known to be’” 2-hard, but its preemp- experimentation (Section VI-B), in relation to the performance
tive version is solved by the shortest—remaining-processin%f—EDD and WSPT.
time rule [4], which permits job preemption. Suppose that
the minimum objective value of the preemptive problem i€. Transformation of the Linear PrograinP

hei Clpp» then

K

k=1

The remaining issue concerning the lower bound calculation
N . . is how to solvelLP efficiently. Before developing a solution
< o< oo procedure, we apply a change of variable based on the
hZ_Zm P = hz:; [p] = hz_:l (] following property ofLP.



Theorem 2:If the linear prograniP is bounded, then there filz;) Filz;)
exists an optimal solution that satisfies :

aj-bj:07j:1,...,n. (7)
Otherwise, for any giver, there exists a solution that satisfies : :
(7) and yields an objective value greater than % zj % z;
Proof: It suffices to show that from any given feasible (@) (b)
solutiona; = a;,b; =b;, j =1,...,n with a;, > 0,b;, >0

for somejo, we can construct a new solution of the requiregig 1. convexity off; (z;): (a) d; — €7 > 0and (b)d; — C7 <0
form without decreasing the objective value. Becatjsep; <
d; for all 7, it is easily verified that the construction below is

valid: functions f;(z;),7 = 1,...,n are assumed to be general con-
a; = &; — min {&j,Bj} b = Bj _ min{&jﬁj}, vex fun.ct|ons, Problem (8) is called tlgeneralized isotonic
regression problenf3].

forj=1,...,n. |
Theorem 2 enables us to perform a change of variable as||. SoLvING THE ISOTONEOPTIMIZATION PROBLEMS
follows: For eachy, define a new variable; = w;/pj (recall

that w} = w; — a; + b;). The pair of variables:; and b; A. Preliminaries

is then replaced by the single variabte usinga; = (w; — The isotone optimization problems have_ begn studied by nu-
pjz;)t,b; = (pjz; — w;)*, wherezt = z if z > 0 and Merous authors (see [3] for a comprehensive I|§t of reference;).
2+ = 0 otherwise. As a result, we get Thus far, the best and most general result is due to Ahuja
" and Orlin [3], who study the generalized isotonic regression
G —z+ Z w;C? problem, where eacfnj(xj) is an arbitrary convex func_:tion. It
= is also assu.med thaif) (eachfj_-(xj) can pe evaluated i (1)
time for a givenz;, and that §f) the optimal values of ali:;
where lie on the intervalzy, ©,p)] (this implies that the minimization
) n problem has to be bounded). LEét= x,;, — z;, and lete be a
z=min z = Z fi(x;) (8) tolerance. These authors improve &2 log(U/e)) running
J=1 time of the Pool Adjacent Violators (PAV) algorithm [31] to
Stz 2.2 Tn, O(nlog(U/e€)) using a scaling technique.
and The scaling PAV algorithm [3] can be adapted to solve

‘ ‘ Problem (8), wheref;(x;) is specified by (10) with3; >
fi(z;)=p; (c;_rj_pj)(&_g;j)++(Jj_057)(g;j_7)+ —a;. We first determine whether Problem (8) is bounded by
Pj Pj ) verifying the conditions of Proposition 3 iD(n) time. A
. : . S : £ ; mapping is then used to modify the problem so thatakhre
is a continuous, piecewise linear functionof with a single mapped onto the integets. . ., . For the modified problem,

kink point atw,/p,;. By definition, C? — r; — p, is always .
point w;/pj- By - o "3 P YS Wwe can set/ = n and fixe to any value less than 1; thus, the
nonnegative, whereas — C'Y can be negative since the given

o may violate the deadling;. Moreover, f;(z;) is convex glgorlthm runs |r0(_n log ) time. (This mapping is s_ugges.ted

. - . in [3] for the special case when; = 3;, but remains valid
since d; — CF > 5+ p; — C7 (see Fig. 1). It should be ¢ “ "6 “general roblem.) A serious handicap of this
noted that Problem (8) had an additional constraint> 0; 9 P i P

. . . approach, however, is that it requires sorting, which enlarges
we dropped this constraint because doing so does not Chaﬂ—seghidden constant in the big-time bound.

the optimal valuez (this can be easily shown using the fac " . : .
. L N To facilitate our subsequent discussion, we introduce the
that w;/p; > 0 for all j). To simplify the notation in (9),

! - - - = - notion of a segment. For any vectt,,...,z,), a segment
\év,e:dtevf.l?;aj-rﬁeﬁj ((% t;agér; e@ ) By = pildi = CF). @nd i jeined as a maximal subset of consecutive indiges +
J I ' 1,...,q} such thatr, = 2,41 = ... = z, = [, wherel is
fi(zj) = aj(c; —x)T + Bj(x; — ;)T (10) called thelevel For example, Fig. 2 shows a feasible solution
, , ] ~ (x1,...,x,) that comprises segments[’y, ..., T, with the
with 3; > —a;. We state without proof the following ObV'OUScorresponding levels being, . .., 1,

property of Problem (8) withy;(z,) defined by (10).
Proposition 3: Problem (8) is bounded, i.eZ > —oo, _
if and only if ', > 0 and >0 ,a; > 0 for all B. ANew Algorithm
i=1,...,n. In order to solve Problem (8) more efficiently, we propose a
In fact, the additivity ofz, convexity of f;(x;), and chain new algorithm that is different than the PAV algorithm. Unlike
constraintss; > ... > x, in Problem (8) together characterizethe latter, which is a dual method from a linear programming
an extensively researched class of problems calledstiiene perspective and achieves primal feasibility only upon termi-
optimization problemswhich find applications in operationsnation [9], the proposed algorithm is a primal method where
research, statistics, and image processing. In particular, if the iterates always maintain primal feasibility (i.e., the chain



I, settingz; := ' for all j € T';. Two cases arise: Either it
I | T, holqls thatz’ < l,_1, in which Case_the updated solution
T —— optimally solves théth subproblem; or it holds that = I,_1,
| in which case segmenis;_; andI'y merge into one. In the
ls_1] T, latter case, we seff,_; := I'y;_; UT,,s := s — 1. At this
I point, if s = 0, then theith subproblem is solvedz(may be
unbounded); otherwise, we once again attempt to mérge
193 n ; andI';_;. The ith subproblem will be solved after a finite

number of mergers since every time two segments merge,
Fig. 2. Segments of a solution to the isotone optimization problems ~ decreases by one. Because the addition of one more variable
x; may trigger a cascade of mergers and the objective value
fj(mj) z associated with an itgra(e:l, . ,azn)_ is nonincreasiqg, we
call the proposed algorithm th@ascading Descerglgorithm.
An algorithmic description of this algorithm is given below.

Algorithm. Cascading Descent

StepO.z':O, s=20, F():@, l():OO.
Step 1.Seti ;=14 + 1. If i > n, then go to 5.

Cj1  Cj2 Cim; T Step 2.Create a new segmenSet s := s + 1, Il =
ZIib, Fs = {Z}
Fig. 3. A continuous, piecewise linear, convex function with more than onstep 3.Apply any method of choice to find am’ that
kink points minimizes F(z) = Y. fi(z) over [lg,l,_1]. If
' <l,_1, setl, ;== 2’ and go to 1.
constraints are satisfied during every iteration). The proposé&dep 4. Merge two segmentsSetI’y_; := I's_1 UT, s :=
algorithm uses fairly simple data structure and can be coded s—1.If s=0, go to 1; otherwise, go to 3.
with very little overhead (hence, the hidden constant in the bigtep 5. PostprocessingFor each segmentt = 0,...,s and
O notation is very small). Another significant advantage of the for eachj ¢ T, setz; := l,. Computez =
proposed algorithm is that it easily generalizes to cases where S fi(x;). STOR
there are any number of kink points fg(x;), as depicted =
in Fig 3. By contrast, the time bound of Ahuja and Orlin's | emma 4:Let (z,,, ..., z,) and(z,;1, .. .,z.) be optimal
algorithm deteriorates under such circumstances, becausedftions to subproblems?? and 2, respectively. Ifr, >
cost of evaluatingf;(z;) at anx; is no longerO(1) (i.e., g, ., then the concatenated solutién,, ..., z,,) is optimal
assumptionij of Ahuja and Orlin is violated), but generallyto subproblemz?®.
depends on the number of kink points. _ Proof: By dropping the constraintz, > z,.1 in
Assume that eaclf;(«;) is a general convex function andspproblem2, we obtain a relaxed problem, which then

u !

that z;;, is a lower bound on the optimal value of, (by gseparates inte?? and 2%, . Hence,z! + z¥,, is a valid

default, z;, = —oc). For any pair ofu andv with u < v, |ower bound for2?¥. Since (z,,...,x,) attains this lower
define a subprobleny”;; of Problem (8) as bound and is feasible, it must be optimal. n
v Lemma 5:Suppose that(z,,...,z,) = (a,...,a) and
zo=min 20 =" f(x)) (Zys1,---,2w) = (b,...,b) are optimal solutions to subprob-
j=u lems &2 and &2}, |, respectively. Ifa < b, then subproblem
Stay >... 2Ty 2 has an optimal solution of the forr,,,...,z,) =
Hence,z'=z. The proposed algorithm sequentially solves B oo C)- )
series ofn subproblems with théth one being2?;. Initially, Proof: Refer to Lemma 1 in [3]. u
we setzy=...=x,=x;. Now, assume that th¢ — 1)th Theorem 6:The proposed Cascading Descent algorithm is
subproblem is already solved with,...,z;_; set to ap- COITect.
propriate values, ang}i: . =T =T, further, suppose that Proof: We show through mathematical induction that (|)
x1,...,z,_1 form s segments denoted by,,...,T, with after theith iteration ¢ = 1,...,n), the algorithm correctly
levelsi; > ... > I,. For convenience, we initially also setsolves subproblen®?]. Furthermore, we show that (Il) for
I'o = 0,1y = oo. To solve theith subproblem, we first createh = 1,..., s, the solution,z; = I, j € I', optimally solves

max{I'y}

a new segment using hence, set := s + 1, I'; := {i}, subproblemZ .\ ""

and I, = x5,. Clearly, the feasibility is satisfied. We thenverified.

attempt to merge the last two segments, il&.,and I";_;. Now, assume that the above Part | and Part Il hold after
To this end, a method of choice is applied to findzdrthat the ¢ — 1)th iteration. Consider the first time when Step 3
minimizes the single-variable convex function, . f;(z) is executed for this particular value (i.e., wherl's = {i}).
over the intervall,,l;_1]; we update the current solution byBy definition, 2’ minimizes F'(z) = f;(z) over [z, 15-1].

The base case when= 1 is easily



In the first case, we have’ < [, ;. We claim thatz’ (remove fromH the element with the smallest key value).
also minimizesF(x) over [z, 00). For the sake of draw- Because there is no need to merge two heaps into a hew heap,
ing contradiction, assume that there exists > I,_; such such a heap data structure can be implemented efficiently as
that F(z"”) < F(2'). By convexity, we haveF'(l;_;) < a complete binary tree stored in an array object (see [12] for
[F(z")(ls—1 — ') + F(2") (2" —ls-1)]/(2” — 2"). Replacing more details). By contrast, heaps that support merge operations
F(z") with F(z') in the right-hand side yield$'(l;_;) < are calledmergeable heapsvhose implementations are much
F(z"), which is a contradiction to the fact that minimizes more tedious and inefficient (for examples of mergeable heap
F(x) over [x,15—1]. Hence,z’ optimally solves subproblem implementations, sebinomial heapand Fibonacci heapin
gzﬁf;)f{{g}} Noting also the induction assumption, it followg12] andleftist heapin [35]).
from Lemma 4 that subprobler®! is optimally solved. Part  In the following algorithm, RHD) represents the right-hand
I evidenﬂy follows. derivative of the functionzjers fj (x) atx = [;.

In the second case, we hawé> [,_; and Step 4 is there-
fore executed to merdé,_; andI’;. The induction assumption
states that before merger, the solution,= I,_1,j € I's_1,  Step 0.Initialization: i = 0, s = 0,y = 0, [y = oo, RHDy =

Algorithm. Specialized Cascading Descent

optimally solves ,@:;‘;f‘{{rr :1}}. From Lemma 5, it can be oo, H = .

seen that subproblem@;‘;’f{{g:l}} still has single-valued Step 1.Set::=i+ 1. If i > n, then go to 5.

optimal solution even after merger. This ensures that the saBgep 2. Create a new segmen8ets := s + 1, [, := —oo,
argument can be used to analyze subsequent executions of T, := {i}, RHD, := f/, (—oc). INSERT each kink
Steps 3 and 4. Since there can be only a finite number point c;; (k =1,...,m;) into the heapH.

of mergers, th_ezth iteration eventually will terminate. This Step 3.Setz’ = I,.

completes the induction step of the proof. | While RHD. < 0 do

A small technicality in the algorithm is the use of the
auxiliary segment’y with level i = co. If s =1 andz’ = [,
in Step 3 of the algorithm, a merger of segmehgsand I'y
will occur. This means that alt;,7 € I'; should take on the
value of co. However, this does not necessarily imply that
z{ = —oo since the single-variable function;_, f;(z) could
be asymptotically a horizontal line.

We now turn to the focus of this subsection, which is to
specialize the above algorithm for situations whegyér;) is

o If H =10, setz’ :=[,_; and terminate the while-
do loop; otherwise, let;;, be the kink point that
corresponds to MINE).

o If ¢j < ls_1, seta’ := ¢ji, RHDs := RHD; —
fi_(¢jr)+ fl(cjr); otherwise, set’ = I,_, and
terminate the while-do loop.

« DELETE-MIN(H).

If ' <I,_q, setl, :== 2’ and go to 1.

not only convex, but also continuous, piecewise linear. Clearl§tep 4. Merge two segmentsSet I';_; := I';_; U I,

the single-variable functiod”(z) = >, f;(x) in Step 3, RHD;_; := RHD,_; + RHD;, s := 5 — 1.

which is the summation of a finite number of such functions, If s =0, go to 1; otherwise, go to 3.

is also a continuous, piecewise linear convex function. For thistep 5. PostprocessingFor each segmerit = 0,...,s and

type of function, it is easy to verify the following fact. for eachj € T, setx; := [,. Computez =
Lemma 7:Let F(x) be a continuous, piecewise linear func- Z;?:l fi(z;). STOP

tion on interval [l5,l;_1] (could be (—o0,)). Let F’ (z)

and F'{ (z) denote the left-hand and right-hand derivatives, To show that this specialized algorithm is correct, we only
respectively. Then, the minimum of'(x) occurs in three need to argue that Step 3 correctly solves the problem of
different scenarios:iY « € (Is,s-1) and F” (z) < 0 and minimizing 3" . f;(x) over intervalll,,l,_1]. When a new

Fi(x) >0, (i) Fi(ls) >0, and (i) F” (Is—1) <0. segmentl’, = {i} is created in Step 2, the levé] is set
Because the values &' (x) andF’, (x) only change at kink to —oco. In the subsequent execution of Step 3, we start with
points, it suffices to restrict our attention to these points. Hetg, = I, = —oo, RHD, = [/, (—00) = lim,_,_ f/, ()

it is assumed that eacfy(x;) hasm,; kink points denoted by and gradually increase’ (“hopping” on kink points) until
Cily- -+ Cimy; letm = 377 m;. Note that for kink point one of the following two scenarios occurs) (f/, (z') > 0
cjk, the left-hand derivativef;_(c;x) is the slope of the line for the first time or §{) =’ = [,_; is reached. If scenario
segment to the left of this point, and the right-hand derivati§ occurs, thenf/, (') > 0 holds either atz’ = I, (i.e., at
7+ (cjx) is the slope of the line segment to the right of thishe left boundary), or at some kink poinf > I, (hence,
point. Hence, all the left-hand and right-hand derivatives a®_(2') = f/, (2’ —¢) < 0 for some sufficiently small
known beforehand. e > 0); by Lemma 7,2’ minimizes f;, (x) over interval

The following Specialized Cascading Descealgorithm [i,1;_1]. Note that the proof so far covers the tie situation
keeps track of kink points usingleap(also called griority when () and (i) hold simultaneously. Now, if scenaridi)
queug data structure. Let the heap be denoted ldy An occurs andf; (ls) < 0, then f/_(ls) < 0, following from
element in H is a kink pointcj, (j = 1,...,mk = the factf/_(I;) < f/,(l); hence, Lemma 7 can be invoked
1,...,m;). Our algorithm performs three types of operationsnce again. Using the same argument, we can also show that
on H, i.e., INSERT (insert an element intd), MIN (return Step 3 correctly solveEjers f;(z) over intervalll,, l,_] for
the element with the smallest key value), and DELETE-MIM segment’, resulting from a merger.



In Step 3, asz’ passes through kink points, these pointthe notationw, denotes the job in théth position of the
are removed fromH and will never be used again; thissequence. The first two of the following theorems extend the
simplifies the problem for later iterations. It is also worthiesults of Bianco and Ricciardelli [7] originally proposed for
pointing out that the kink points that belong to functions|r;| >~ w;C}, so as to take into account the deadlidgsThe
fi(z;),5 € ToU...UTs_; do not interfere with those of proofs of these theorems are straightforward and can be found
segment’,, even though all kink points are stored in the sama Pan [26].
heap. This is because all the kink points associated with aTheorem 9:If w;/p; = max?,{w;/p;} and d; =
segment are always above the current level of the segmenin]_, {JZ} then there exists an optimal solution with job
i.e., during the execution of Step 3, we hayg > [,_; for ¢ preceding jobi fori=1,...,n,i#t andr; > ry.
any c;i, in H with j ¢T,. Theorem 10:If r; 4+ p; = min}* ; {r; + p;}, then for some

Theorem 8:The Specialized Cascading Descent algorithptimal sequence*, 75 # i fori =1,...,n andr; > ri+p;.
runs inO(mlogm) time. Theorem 11:Let 7 = jin! be any feasible sequence with

Proof: Note that there arex INSERTSs and consequently,job ;j and jobs in the initial two positions and let’ = ijx!
no more thann DELETE-MINs. Since both types of opera-be the result of interchanging jgband job: in the sequence
tions takeO(logm) time on a heap with at most. elements r. If 7’ is feasible ancC;F' < CF and w;CT + ij;T' <
[12], the total cost of these operations (§m logm) time. w;CT +w;CT, thent is dominated.

Also, there are)(m) MIN operations, each takin@(1) time. Theorem 11 follows from the principle of optimality. The
The remaining algorithmic steps can be completedim) idea is effectively used in [20] and [30] for their respective
time. B problems. The proof is straightforward and requires no com-

As an immediate application of the specialized algorithnment.
we can use it to solve, i@ (mlog m) time, the isotonic median  Unlike the dominance conditions presented thus far, the next
regression problem, whetg (z;) = 3% |z; —c;jx| forall j.  one does not depend on the objective function. Rather, it is
This time bound is an improvement over that of Pardalos et 8lmply a feasibility check.
[28], which isO(mlog® m). Also, it is a significant advantage Theorem 12:Jobi can be assigned to the first position only
from a practical standpoint that our algorithm does not requiethere exists a feasible sequencewith =, = 1.
merging two heaps (or balanced binary search trees in [28]).The feasibility of the subproblem with job fixed in the
Furthermore, it is difficult to adapt Ahuja and Orlin's scalingirst position can be determined by solving a related problem
algorithm [3] to this problem and achieve a competitive timgf minimizing the maximum lateness. The following corollary
bound. The difficulty stems from the fagt(z;) cannot be s not as strong as Theorem 12 but can be verified quickly.
evaluated inO(1) time, with the exception whem; =1 for  Corollary 13: Consider the subproblem in which jabis
all j (Ahuja and Orlin indeed propose an adaptation for thffed in the first position and the objective is to minimize the
special case with at)(nlogn) time bound). maximum lateness. If an optimal preemptive solution yields
Now, with the specialized algorithm in hand, we can cony positive objective value, then jobcannot be in the first
pute the lower bound LBPS i0)(nlogn) time. Note that in position.
this particular application, the function§(z;),7 =1,...,n
are defined by (10). Therefore;; = 1 for all j, andm = n. L _
The total cost of computing LBPS consists of two part®- Elimination by Recursion
One part is for generating the nondelay sequemgcevhich The above dominance conditions are not very strong after
takesO(nlogn) time. The other part is the cost of executingo much adaptation to our dual-constrained problem. As a

the specialized algorithm for the blockB,..., Bx. The remedy, we developed an elimination technique. It was first

suggested time bound follows from the fact that tried on the static problem, since at the time, we had already
% I implemented Posner’s [29] branch-and-bound algorithm for
> Bkl -log|Bx| <logn > |Bi| = nlogn. 1d;| 3" w;C; to be used as a module in our own algorithm

for WCT, and incorporating this new feature took little effort.

k=1 k=1

To our surprise, the improved algorithm doubled the size of

IV. DOMINANCE CONDITIONS AND AN ELIMINATION problems that can be solved; problems with up to 120 jobs
TECHNIQUE could now be solved efficiently [25]. In the following, we

cuss in detail how to apply this techniquéMCT . We hope
advocate the use of this technique through this example
sgnthat it will eventually become as a standardized element
as dominance conditions to special-purpose branch-and-bound
algorithms.

) N A search tree node corresponds to a feasible partial sequence
A. Dominance Conditions 7 in which jobs in the first positions are fixed. For afl < [,

In our dominance theorems, we implicitly assume that thibe completion time;, of job 7, is also computed. We define
problem is feasible. However, these theorems can be appli#d= {my,...,m} as the set of scheduled jobs afdas the
even if feasibility is undetermined, since nothing is lost iet of unscheduled jobs. Under the partial sequenc® jobs
the problem turns out to be infeasible. For a sequemce in S can start before tim@ = max {Cy,,min;cgr;}. If

We made some straightforward extensions of those in [[%(JS
and [20], which deal withl|r;| > w;C;. It was also noted
that there is no need to consider a node that represents
infeasible instance.



jobs in S can be resequenced such that they finish by tim&tep 2. Find the set of unscheduled jols that can be put in

T, observe their respective release dates and deadlines, and  position/ + 1. Create a new node for each job ih.
make a total contribution to the objective function smallesep 3. Initialize each of the new nodes and, if not fathomed,
than Zi-:1 wx,Cr,, then the node can be eliminated from add it to the search tree. Go to 1.

further consideration. This is a particular application of the ) . ) .

well-known principle of optimality (see [15] for a general Ve discuss the algorithmic details step by step. Preprocess-
discussion of this principle applied to branch-and-bound a|gglg is carried out in Step 0. First, to determine the feasibility of
rithms). Our innovation here, however, is to provide a methdfCT+ We solve thel|r;| Lmax problem (where the due dates

to exploit this powerful property to a much greater extent thdhi = 4 aqd Linax = max; {Cj —d;}) using a ;’Jrocedu.re
what was achieved in the past. suggested in [27], which improves upon Carlier's algorithm

We first recognize that the embedded problem of resequeg%]-' This procedure is adapted such that it exits as soon as

ing jobs inS'is, in fact, an instance &VCT, the exact problem I fln_dbls a ;equeljfceh W'ﬂlLlna?‘hS %(m this Case_,WCles

that we set out to solve. More precisely, the instance consig‘?és' e)._ ext,_ ! _t e algorithm oes_not termmate_ ue to
of [ jobsm,i = 1,...,1, each of which has a release date, proplem |n.fea5|b|llty, precedence rglatlons between jobs are
a deadlinemin {d,,, T}, and a weightu,. We then procéed .de”‘,’ed using the sn_‘npble fact that #f; + p; + p; > d; then

to solve this embedded problem using the same aIgoritH i must precede joby. Meanwhile, additional precedence

developed fofWCT . The node is eliminated if we can disprovée atrilogsdare (_jsd;ged?:‘(r)omA:(nown ones throu%h c?n ugiating
the optimality of the partial sequence with respect to the r_net od described in [30]. AISO, WE Use a metho |n_[ ] to
embedded problem. tighten the constraints: To increase the release «dat# job

What we described above is essentially a recursive proceZSSY.ve IMpose t.h € Teq“"eme'f“ .that ng.r.nUSt start exactly
mer;, and if this results in infeasibility, we set the new

Several measures are taken so as to prevent excessive staﬁ}n L
release date to; + 1. Similarly, we may be able to decrease

inside a recursion. First, the recursion depth is limited e . ’ .
one: ie., the embedded problem is solved by a stripp(;t e deadlinel;. This process is repeated until dates cannot be
&htened any further.

down version of the branch-and-bound algorithm that does r% ) . .

carry out any further recursion. Second, the recursion returnd? Step 1, we seek a feasible sequence (again using the
once an objective value less th@izlwmcm is attained Procedure in [27]). If no feasible sequence can be_found by
for the embedded problem. Third, the recursion returns ont¢ Procedure, the subproblem represented by this node is

the execution inside the recursion exceeds a preset CPU tifigasible and the node is therefore fathomed. If a feasible
limit. Finally, we define a parameter called theretrospect S€duénce is indeed found, we run a standard 2-exchange

depth If | < 7, then the embedded problem involves a@reedy heurilstic to imprqve the sequence by way of swapping
thosel jobs; otherwise, only the most recently fixedjobs pr. pairs. Th|§ helps attain a tight upper bound quickly, thereby
Ti_nt1s...,m are involved, and the release date of jop IMiting the size of the search tree. .

(G =1—n+1,...,0) is set tomax{Cy, s }. Clearly, During the branching in Step 2 is the set of jobs that can
largern gives us a better chance of eliminating a node, buthg put in position(l + 1), i.e., the first free position. To keep

also means longer computation time required for solving tfi@e cardinality oftf small, we first use the fact that only active
subproblem. schedules need to be considered (Theorem 10). Moreover, an

unscheduled joli does not belong td? if putting job i in
position (I + 1) would violate the precedence relations derived
V. A BRANCH-AND-BOUND ALGORITHM in Step 0, or if putting jobi and another unscheduled jgb

In this section, we present a complete branch-and-bouligPositions(l + 1) and (I +2) in that order would cause job

algorithm for solvingWCT. The lower bounds developed in/ 10 violate_ its deadline (Theorem 12). The détis furth_er
Section Il are employed in this algorithm. reduced using Theorems 9 and 11 and Corollary 13. During the

verification of the dominance condition given by Corollary 13,
Algorithm. PS the preemptive EDD rule is applied to the 10 most imminent
jobs (we arrived at this number through experimentation). In
addition, as the completion times of these jobs are determined
by the preemptive EDD rule, they are checked against the

then STOP Otherwise, derive precedence relationgead"nes‘ and there is no need to continue as soon as any

between jobs, tighten the release datgsand the eadl|ne.|s', ,V'Qlat?d' ) ) ]
deadlinesd;, and initialize the root node. Node initialization is carried out in Steps 0 and 3. Before

the initialization begins, it is assumed that jobs in the first

positions are fixed (e.g/, = 0 in Step 0) and that these
jobs are specified by a partial sequencelLet S be the

t of unscheduled jobs. For each jgbc S, its effective

felease date-the earliest time when the job can start under
fe partial sequence—is r; = max {Cr,,r;}. Ifall v}, j € S

ffe equal, then the node represents an instance of the static

problem1|d;| >> w;C; and is subsequently solved using the

Step 0.Determine the feasibility ofWCT by solving the
associatedl|r;|Lmax problem. If the optimalLy,.x
value is positive (meaning thaV/CT is infeasible),

Step 1.Find the node with the smallest lower bound. If th
lower bound meets the upper bound or the CP
time or memory usage reaches a preset limit, th(=B
STOR Otherwise, find a feasible sequence in thi
node. If no feasible sequence exists, discard this no,
and repeat Step 1; otherwise, improve the feasib,
sequence found using a 2-exchange heuristic.



branch-and-bound algorithm of Posner [29]; the node is th@hen, we set the deadlines: For glisetd; := C; +V;, where
fathomed. Otherwise, we generate a nondelay sequencé/; € U0, 3(C; —r;)] with the parameteB € {1,2,4,8,16}.
using the dispatching heuristic of our choosing (to be discusstde deadlines, together with the release dates, processing
in Section VI-B) and in turn calculate the lower bounds LBP8mes, and weights, defined a feasible problem. 10 problems
and LBPS. The node is fathomed if either of the lower bounds/ere created for each combination of the problem sizes (
is greater than or equal to the upper bound. If the sequer{@d, 30, 40,50}), a, and 3. This problem set was specifically
o is feasible and leads to a better upper bound, then tHlesigned to test the algorithms’ responses to different input
same 2-exchange heuristic as mentioned before is appliedd&da characteristics. In addition to varying problem size, the
o, in hope of finding additional improvement. Finally, thalistribution of the release dates was controled by the parameter
node is examined using the node elimination technigue af Imagine that there are two systems that handle comparable
Section IV-B, and it is added to the search tree afterwardsorkloads, but one wittn=0.5 and the other withh=1. On
provided that it is not fathomed. It should be noted thatverage, all jobs will have arrived by the time when half of
during the elimination test, the embedded problem as defindx@m have been finished in the first system. By contrast, the
in Section IV-B is solved as a recursion using a stripped-dowvorkload is distributed more evenly over time in the second
version of algorithm PS. system; jobs arrive within a time interval that is twice as
In the stripped-down version of algorithm PS, no furthdarge as that of the first system. Clearly, jobs in the first
recursion is invoked and no attempt is made to derive asystem are bound to experience longer waiting time, and their
precedence relations or to tighten release dates or deadliniese windows therefore ought to be larger in order to have a
Moreover, in Step 1, we skip the feasibility check and the Zeasible schedule. Finally, it should be pointed out that we have
exchange heuristic. To improve the detection of infeasibilitghosen to only report on the two values & € {0.5,1}) to
Corollary 13 is applied with regard to all the unscheduled jolzsoid an excess of computational results—especially those on
at a node. This also ensures that in the branching step, @agy instances, where deadlines are either very constraining
job in the setH will satisfy its deadline, provided that it is or not constraining at all. The two chosen values are most
scheduled immediately in positiaf + 1). representative of the characteristics of nontrivial instances.
The value of the parameter (see Section IV-B) is found Problem set (Il) was created in a similar fashion as in
by experimentation. Preliminary experiments indicate that tfig8]. We only describe the parameter settings below and
computational results are quite insensitive to the choice @ffer the reader to [18] for more details. The processing
the n value as long ag; is between 8 and 15. The bestimes and weights were generated fréfi, 50] andU[1, 10],
performance is achieved whepis set to 10, which is the respectively. LetiW be a parameter that controls the av-
parameter value assumed in the subsequent numerical expsge of time window widthsl; — r;. W took on values

ments (Section VI). in {150, 200, 250, 300, 400,800}, covering a greater range
of time window widths than in [18]. 10 problems were
VI. COMPUTATIONAL RESULTS generated for each combination of the problem sized

30, 30, 40, 50}) andW. We used this set of problems to study

We coded both our branch-and-bound algorithm (PS) a o : ' i :
e sensitivity of the solution procedures to increase in the time

the dynamic programming method (GS) [18] in Visual c+f

and ran them on a Pentium Il 733 personal computer. TN\@ndOW width. ) . .
version of GS that we implemented exploits the fact that all Problem set (1) consists of problems in which release dates

job weightsw; are nonnegative, and it uses a large hash tatf#d dea_dline_s are uncorrglated. To generate the release dates,
consisting of 500,000 entries to minimize the possibility of Br0Cessing times, and weights, we followed the same scheme
collision. For both procedures, we set the maximum CPU tin@ 1N problem set (1). The deadlineg;) were initially set to
allowed on each test problem to 120 seconds. With regard'@'dom samples df {0, >_;_, p;], wherey € {1,2,4,8,16}

the storage limit, PS abandons a particular test problem if thé?ethe slackness par_ameter. Then, we sol\(ed the associated
are more than 100,000 unexplored nodes, and GS terminateld/if| Lmax Problem with respect to the obtained, p;, and

more than 500,000 labels are required or the number of stafes= @ USing the procedure in [27]. Létdenote the minimum

exceeds 200,000 for states of any given cardinality. Next, W@lue- If the problem instance was infeasible (i 0), we
explain the test problems used in our experiments. extended all the deadlines WYCT by settingd; := d; + 6
for all 5 (thus, the modified instance became feasible). Clearly,

the release dates and deadlines remain uncorrelated. For each

A. Test Problems combination of the problem size (€ {20, 30,40, 50}), o, and

Three sets of problems were created. Infeasible ones werel0 problem instances were created.
ignored because they pose little challenge. Uét, b] be an
integer uniform distribution on intervak, b]. For problem set )
(1), we tookp; € U[1,100] andw; € U[1,10] (see [20], [30]). B- The Choice of the Nondelay Sequence
The release dates ) were generated frory [O,azyzl P, Our first experiment compares the performance of EDD,
where the parameter € {0.5,1}. To generate the deadlinesWSPT, and COMP, discussed in Section II-B for choosing
we followed two steps. First, we computed the earliest jabe nondelay sequenece Combining each of the heuristics
completion times (denoted tﬁj) under the FIFO rule, which with the PS algorithm results in three variants: PS-EDD,
only takes into account the release dates and processing tin:WSPT, and PS-COMP. Problem set (I) is used in this
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experiment. For each combination of the values:pty, and ;1165 . Gs
0, Table | lists the number of unsolved problems, the mean 10.00 —PS
and maximum solution times in seconds, and the mean and g

maximum numbers of nodes. Because the calculation of means g 8.00 1

and maximums takes into account both solved and unsolved & 6.00 -

problems, their values should be interpreted as lower bounds g

on the true values if there are unsolved problems. When an 5 4907 ,

algorithm attempts to solve a difficult problem, it may halt 2.00 - ‘1":39 0.79 1.01
prematurely due to storage overflow, which quite often occurs 0113023 0.4,,«1[31 0.22
long before the CPU time limit is reached. This can make 0.00 357505008 ‘ ‘ ‘ ‘
the mean values and the maximum values look better, which 150 250 350 450 550 650 750
is misleading. For this reason, means and maximums are w

reported only when over half of the test problems for any givqp
parameter setting are solved; otherwise, they are replaced by
“—" (this rule will be followed in our subsequent experiments

as vv'eII). The performance of PS-EDD turns out to be rather\ye aiso tested the algorithms using problem set (Ill), where
poor; the computational results for this algorithm are therefofge release dates are deadlines are not correlated. As indicated
omitted. The results in Table | indicate the overall domlnanqﬁ, the results in Table IV, this set of problems are much more
of PS-COMP over PS-WSPT. Therefore, PS-COMP merif$|ienging for both algorithms. However, the proposed PS

further investigation, and the PS algorithm involved in 0Usigorithm fares considerably better than GS, since the latter
other experiments should be taken as this particular Va”anExperiences difficulty even for 30-job problems.

Algorithms’ Sensitivity to Average Time Window Width = 50)

Overall, it is perhaps fair to say that our algorithm (PS)
C. A Comparative Study of GS vs. PS performs consistently well across different types of instances,
and more importantly, it is more robust when faced with
ifStances that take the dynamic programming algorithm (GS)
elong time to solve.

In our second experiment, we compare the performance
GS vs. our proposed algorithm PS using problem set (I). T
average time window width is measured Byd, —r;)/E(p;),
where E(X) stands for the sample mean of a random variable
X. This ratio is independent of the time unit in which the input
data is given. In this paper, we introduced a lower bound #CT and

The results in Table Il indicate that PS performs consistentiieveloped a fast algorithm to compute it@n logn) time.
well over the entire set of 400 problems. PS is able to solWge also proposed several dominance conditions and used an
all the test problems to optimality, including all the 50-jokeffective node elimination technique, to curtail the size of
problems. By contrast, GS is unable to solve 152 problenthg branch-and-bound search tree. Using these ingredients,
these unsolved problems occur with bets0.5 anda=1, and we constructed a branch-and-bound solution procedure. The
some of them are as small as havtgjobs. The computation procedure was able to effectively solve test problems of up
time required by PS is small and does not have as muh50 jobs within the time limit. Our method proves to be
variability as that required by GS. However, GS has sonugiite robust over a wide range of input data characteristics,
advantage on problems with small time windows. It is almosbmpared to a dynamic programming method in the literature.
always the case that GS either solves a problem in few seco@sarly, the techniques demonstrated here can be used to
or has to abandon it due to excessive memory requirementichieve superior results in solvingr;| > w,;C;—a special

The above experiment is repeated using problem set (itase ofWCT.

Individual problems in this second problem set are similar to Admittedly, the proposed branch-and-bound algorithm fol-
those problems witlu=1 in problem set () in terms of the lows the standard track of combinatorial branch-and-bound
average window width and the distribution of release dateslgorithms (as opposed to LP-based ones). However, our
but are generally less difficult. Because GS is able to solvesaccessful solution dVCT brings this paradigm into unchar-
greater portion of the problems (213 out of 280), more insightsred territories. Combinatorial branch-and-bound previously
can be drawn from the results regarding computation time. Thave not been applied to sequencing problems with nontrivial
results in Table Il indicate that the average time window widtfeasibility issues. Usually, all sequences are feasible, and in
has a much smaller impact on the computation time of PS thsituations where there is infeasibility, all feasible sequences
on the computation time of GS. For example, witHixed at can be enumerated without ever running into infeasible ones
50, the algorithms’ sensitivity to the average time windowe.qg.,1/d;| > w;C;). The implication of infeasibility on lower
width is depicted by Fig. 4. ForW < 300, both algorithms bounds and dominance conditions has never been studied.
perform quite well, but GS is even faster than PS. Howevévleanwhile, there are indications that researchers have at least
this occasional speed advantage of GS over PS occurs ombndered upon this due to its practical relevance (e.g., [2]).
when the computation time is fairly smak (-2 seconds) for  In future research, we would incorporate the lower bound
both algorithms (this observation is also consistent with tland solution method developed f#vCT into solution pro-
results on problem set (1)). cedures for JSTIMP [32] and other job shop problems with

VIl. DIsSCcUsSSION ANDFUTURE RESEARCH
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COMPARISON OFPS-WSPTvs. PS-COMP WING PROBLEM SET (I)

«a No. Unsolved CPU Seconds No. of Nodes
PS-WSPT  PS-COMP PS-WSPT PS-COMP PS-WSPT PS-COMP
Mean (Max) Mean (Max) Mean (Max)  Mean (Max)
20 05 1 0 0 0.02 (0.03) 0.02 (0.03) 119 (337) 84 (333)
2 0 0 0.03 (0.08) 0.02 (0.07) 201 (558) 113 (405)
4 0 0 0.03 (0.18) 0.02 (0.09) 146 (1008) 69 (415)
8 0 0 0.02 (0.06) 0.01 (0.02) 113 (333) 44 (98)
16 0 0 0.01 (0.05) 0.01 (0.02) 58 (296) 31 (51)
1 1 0 0 0.01 (0.01) 0.01 (0.01) 36 (104) 33 (100)
2 0 0 0.00 (0.01) 0.00 (0.01) 39 (116) 38 (113)
4 0 0 0.01 (0.01) 0.01 (0.01) 49 97) a7 97)
8 0 0 0.01 (0.01) 0.01 (0.01) 55 (124) 54 (124)
16 0 0 0.01 (0.01) 0.01 (0.01) 41 (59) 41 (57)
30 0.5 1 0 0 0.26 (0.71) 0.10 (0.26) 734 (1747) 240 (731)
2 0 0 0.77 (1.50) 0.16 0.27) 1992 (4260) 384 (645)
4 0 0 2.75 (13.16) 0.10 (0.19) 7402 (31734) 257 (486)
8 0 0 0.73 (4.58) 0.07 (0.13) 2025 (10527) 188 (341)
16 0 0 211 (18.51) 0.08 (0.18) 6300 (54500) 197 (419)
1 1 0 0 0.04 (0.11) 0.04 (0.12) 179 (502) 132 (342)
2 0 0 0.11 (0.72) 0.07 (0.26) 412 (2003) 266 (832)
4 0 0 0.18 (1.35) 0.05 (0.13) 671 (4984) 190 (488)
8 0 0 0.06 (0.14) 0.05 (0.14) 240 (510) 192 (408)
16 0 0 0.03 (0.05) 0.04 (0.06) 142 (218) 135 (209)
40 0.5 1 0 0 5.30 (19.08) 0.57 (1.80) 10206 (41959) 1072 (2900)
2 0 0 13.51 (32.12) 1.02 (4.05) 24967 (59500) 1553 (5499)
4 0 0 12.52 (74.71) 0.36 (1.26) 23806  (146577) 642 (2249)
8 1 0 11.14 (48.00) 0.59 (3.92) 29533  (117399) 908 (5825)
16 0 0 6.54 (53.27) 0.32 (0.79) 17148  (145573) 605 (2176)
1 1 0 0 0.10 (0.47) 0.09 (0.38) 377 (2109) 279 (1395)
2 0 0 0.18 (0.57) 0.18 (0.56) 578 (1860) 497 (1565)
4 0 0 0.29 (0.82) 0.27 (0.68) 923 (2239) 769 (2064)
8 0 0 0.20 (0.49) 0.19 (0.55) 670 (1945) 563 (1938)
16 0 0 0.28 (0.82) 0.31 (0.89) 784 (1642) 774 (1640)
50 05 1 4 0 48.83 (120.00) 14.33 (75.56) 98824 (162634) 21882 (139057)
2 3 0 77.04 (120.00) 2.35 (7.26) 120419 (229314) 2789 (9245)
4 7 0 — 4.04 (15.14) — 5314 (17678)
8 4 0 34.07 (120.00) 4.03 (28.58) 66947 (176218) 3990 (26063)
16 2 0 13.93 (38.83) 1.05 (2.03) 35150 (117276) 1361 (2567)
1 1 0 0 0.37 (0.96) 0.27 (0.60) 970 (2360) 609 (1390)
2 0 0 4.14 (35.01) 0.63 (2.01) 7488 (60635) 1226 (3892)
4 0 0 12.84 (99.93) 244 (9.10) 20621 (156388) 3739 (13628)
8 0 0 3.80 (24.91) 226 (12.63) 6613 (41385) 3751 (19131)
16 0 0 0.95 (3.11) 1.01 (3.09) 1979 (5158) 1885 (5054)
TABLE I
RESULTS OFGSVS. PSON PROBLEM SET (1)
E(dj*T‘j) No. CPU E(dj*T‘j) No. CPU
oo E(p;)  Unsolved Seconds oo E(p;)  Unsolved Seconds
GS PS GS PS GS PS GS PS
Mean (Max) Mean (Max) Mean (Max) Mean (Max)
20 05 1 9.42 0 0 0.01 (0.05) 0.02(0.03) |40 05 1 18.06 3 0 9.85 (24.95) 0.57 (1.80)
2 11.44 0 0 0.03 (0.14)  0.02 (0.07) 2 22.13 8 0 — 1.02 (4.05)
4 16.00 0 0 0.29 (0.99) 0.02 (0.09) 4 33.70 10 0 — 0.36 (1.26)
8 31.04 0 0 1.99 (7.01) 0.01 (0.02) 8 61.08 10 0 — 0.59 (3.92)
16 57.48 0 0 5.58 (12.61)  0.01 (0.02) 16 96.89 10 0 — 0.32 (0.79)
1 1 4.65 0 0 0.00 (0.01)  0.01 (0.01) 1 1 5.34 0 0 0.07 (0.68) 0.09 (0.38)
2 5.39 0 0 0.00 (0.00) 0.00 (0.01) 2 8.04 0 0 0.09 (0.80) 0.18 (0.56)
4 7.96 0 0 0.01 (0.05) 0.01 (0.01) 4 12.02 1 0 1.96 (8.56) 0.27 (0.68)
8 12.80 0 0 0.02 (0.07)  0.01 (0.01) 8 21.69 5 0 — 0.19 (0.55)
16 20.82 0 0 0.23 (0.80)  0.01 (0.01) 16 32.25 8 0 — 0.31 (0.89)
30 05 1 12.19 0 0 0.17 (1.37) 0.10(0.26) |50 05 1 20.43 7 0 — 14.33 (75.56)
2 18.30 0 0 6.01 (13.89)  0.16 (0.27) 2 2729 10 0 — 2.35 (7.26)
4 27.64 7 0 — 0.10 (0.19) 4 4278 10 0 — 4.04 (15.14)
8 43.64 8 0 — 0.07 (0.13) 8 66.47 10 0 — 4.03 (28.58)
16 80.73 10 0 — 0.08 (0.18) 16 123.11 10 0 — 1.05 (2.03)
1 1 6.27 0 0 0.01 (0.03) 0.04 (0.12) 1 1 7.13 0 0 0.04 (0.25) 0.27 (0.60)
2 7.41 0 0 0.09 (0.71) 0.07 (0.26) 2 8.57 0 0 0.72 (4.70) 0.63 (2.01)
4 11.07 0 0 0.35(2.89)  0.05 (0.13) 4 17.30 5 0 — 2.44 (9.10)
8 15.49 0 0 1.50 (9.63)  0.05 (0.14) 8 24.11 5 0 — 2.26 (12.63)
16 31.08 5 0 — 0.04 (0.06) 16 4465 10 0 — 1.01 (3.09)
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TABLE IlI
RESULTS ONPROBLEM SET (II): ALGORITHMS' SENSITIVITY TO TIME WINDOW WIDTH

E(dj—rj) No. CPU E(dj—rj) No. CPU
now E(p)) Unsolved Seconds n W E(p)) Unsolved Seconds
GS PS GS PS GS PS GS PS
Mean (Max) Mean (Max) Mean (Max) Mean (Max)
20 150 5.96 0 0 0.00 (0.01) 0.01 (0.01) | 40 150 6.08 0 o0 0.00 (0.01)  0.06 (0.11)
200 7.87 0 0 0.01 (0.02) 0.00 (0.01) 200 7.87 0 0 0.01 (0.02) 0.12 (0.29)
250 10.65 0 0 0.02 (0.07) 0.00 (0.01) 250 9.53 0 0 0.06 (0.14) 0.21 (0.84)
300 11.64 0 0 0.25 (2.11)  0.01 (0.01) 300 11.21 0 o0 0.26 (0.70)  0.19 (0.42)
400 15.86 0 0 0.66 (1.68) 0.01 (0.01) 400 16.66 4 0 7.29 (16.86) 0.15 (0.34)
600 21.49 0 0 2.28 (10.85) 0.00 (0.01) 600 23.20 9 0 — 0.14 (0.39)
800 30.06 0 0 4.83 (15.33) 0.00 (0.01) 800 32.38 10 0 — 0.06 (0.17)
30 150 5.59 0 o0 0.00 (0.01)  0.02 (0.04) | 50 150 5.93 0 o0 0.01 (0.01)  0.13 (0.18)
200 7.76 0 0 0.00 (0.01) 0.03 (0.07) 200 7.87 0 0 0.02 (0.04) 0.23 (0.58)
250 10.05 0 0 0.05 (0.29) 0.03 (0.06) 250 9.41 0 0 0.08 (0.16) 0.40 (0.87)
300 11.56 0 0 0.34 (1.62)  0.05 (0.11) 300 11.93 0 o0 1.31(6.76)  1.39 (5.22)
400 16.33 0 0 1.98 (6.22) 0.06 (0.20) 400 16.84 4 0 11.65 (25.81) 0.79 (2.96)
600 2495 10 0 — 0.02 (0.07) 600 2384 10 0 — 1.01 (6.14)
800 30.68 10 0 — 0.02 (0.05) 800 31.17 10 0 — 0.22 (0.42)
TABLE IV
RESULTS ONPROBLEM SET (II1): U NCORRELATED RELEASE DATES AND DEADLINES
E(d;—r;) No. CPU E(dj—r;) No. CPU
"% 7 " E(p;)  Unsolved Seconds "% 7 " E(p)  Unsolved Seconds
GS PS GS PS GS PS GS PS
Mean (Max) Mean (Max) Mean (Max) Mean (Max)
20 05 1 12.51 0 0 0.24 (0.68) 0.03 (0.10) |40 05 1 25.76 9 0 — 6.05 (45.76)
2 18.63 0 0 1.16 (5.87) 0.02 (0.04) 2 42.45 10 0 — 1.35 (3.07)
4 3613 0 0 3.93 (10.82)  0.01 (0.02) 4 7918 10 O — 0.77 (2.39)
8 7517 0 O 8.27 (15.78)  0.01 (0.02) 8 163.04 10 O — 0.36 (1.46)
16 167.08 1 0 26.07 (38.02)  0.01 (0.02) 16 317.80 10 0 — 0.37 (1.19)
1 1 1581 0 O 1.18 (4.20)  0.02 (0.09) 1 1 3415 10 O — 0.49 (1.48)
2 2403 0 O 1.65 (6.48) 0.01 (0.02) 2 5213 10 O — 1.06 (7.13)
4 4030 O 0 5.12 (11.75)  0.01 (0.02) 4 80.41 10 0 — 0.39 (2.21)
8 7768 0 0 9.66 (29.36)  0.01 (0.01) 8 15358 10 O — 0.36 (1.21)
16 162.15 0 0 12.38 (30.81) 0.01 (0.02) 16 310.17 10 0 — 0.27 (0.74)
30 05 1 20.36 8 0 — 0.99 (6.37) |50 05 1 3145 10 3 — 46.39 (120.01)
2 30.81 10 0 — 0.18 (0.57) 2 56.08 10 1 — 16.05 (120.00)
4 50.01 10 0 — 0.15 (0.57) 4 100.57 10 0 — 9.10 (51.28)
8 116.51 10 0 — 0.09 (0.20) 8 197.80 10 0 — 0.86 (1.59)
16 249.62 10 0 — 0.09 (0.26) 16 393.73 10 0 — 1.89 (5.66)
1 1 24.45 9 0 — 0.16 (0.69) 1 1 41.90 10 0 — 1.05 (2.24)
2 3456 10 0 — 0.09 (0.18) 2 59.47 10 0 — 2.49 (16.60)
4 58.38 10 0 — 0.11 (0.41) 4 109.72 10 0 — 3.61 (11.10)
8 120.28 10 0 — 0.07 (0.20) 8 196.81 10 0 — 1.35 (5.52)
16 246.35 10 0 — 0.06 (0.16) 16 387.60 10 0 — 1.27 (5.05)

inventory and cycle time-related objectives. Another promisinggorithm. Two-Pass
direction is to utilize our tailored algorithm within a mathe—S
matical programming framework based on the Dantzig-Wolfe
decomposition and column generation (e.g., [11], [36]-[38]).
Additionally, the isotone optimization problem defined in
(8) can be extended by adding the following bound constrainfep 1. Setz,, := max{xz,, 0 }.

on the variables: Step 2.Forj =n—1,...,1, setz; := max{x;, x;11,29}.

tep O.Let x4, ..., z, be an optimal solution to the problem
without bound constraints.

Backward Pass:

Forward Pass:
Step 3.Setx; := min{w,z1}.

are given lower and upper bounds on theStep 4.For j = 2,...,n, setx; := min{z;,z; 1, z}}. If
z; < zg for any j, the chain constraints and bound

where z) and
variablez;. It turns out that these bound constraints do not
complicate the problem and can be handled easily. Specifically, constraints as a whole are not consistent, i.e., the
we first solve the problem without taking into account the problem is infeasible.

bounds; letzy,...,z, be the optimal solution found. The This procedure clearly runs ifi(n) time, and its correctness
solution to the problem with bounds can be obtained in twzan be shown by a fairly elementary argument.

passes: Finally, we would like to shed some light on the relationship



between the isotone optimization problems and the timetabling
algorithms in scheduling theory. The timetabling algorithms
are also extensively researched and play an important rpé
in scheduling withnonregularobjectives. Take the earliness-
tardiness problemi|| >" 11;(d; — C;)* +v;(C; —d;) ™, as an
example, where for each job 1; > 0, v; > 0, andd; denotes
the due date(which can be violated at a penalty). Supposg
without loss of generality that we are given a sequence
(1,...,n). The task of timetabling is to compute optimal
completion timesCj,j = 1,...,n, that solve the following

problem (C;’s are variables here). 1]

(2]

min Y pi(d; — Cy)* +v;(Cy — dj)*
. 3

st.o<Cy — D1,
Ci-1<Cj—pj, 7=2,...,n.

12)

[4]

Quite a number of authors have studied variations of thg;
timetabling problem (see [21] for an extensive list of refer-
ences)O(n?)-time timetabling algorithms are straightforward (6]
(e.g., the algorithm of Szwarc and Mukhopadhyay [34]).
O(nlogn)-time implementations are often adapted from that
of Garey et al. [17], who study the unit-weight case wheré’]
pu; =v; =1 for all j.

In fact, the timetabling problem defined above can bé8]
converted into one just like (8) by the following linear trans-[gl
formation

n+l—j

2j=Chi1j— Y pi Vi. [10]
i=1

This is a remarkable coincidence, considering the distiniét!
origins of the isotone optimization problems and timetabling
problem. It should be noted that tife(z;) function associated [12]
with the timetabling problem corresponds to the special caﬁg]
depicted in Fig. 1(a), becauge; > 0 andv; > 0 in the
objective function. Consequently, the optimal objective value
of the timetabling problem is bounded, whereas the isotoHél
problem originated from our lower bound calculation can bgs;
unbounded. After the conversion, constraint (12) results in a
lower bound constraint om,,, which can be handled using the 16
backward pass discussed above. As a result, our Speciali&eb
Cascading Descent algorithm, together with the backwand]
pass, offers a new(nlogn) procedure for timetabling.
Although our algorithm is not the firg(n log n) procedure [1g
for timetabling, it does offer a more practical alternative to the
algorithm of Garey et al. and its variations. This is becau?](_eg]
Garey et al’s algorithm (th®(n log n)-time version) requires
the so-called “meld” operation—i.e., the merger of two heaps
to form a new heap. Because there can be as many(a (20!
melds, each meld has to be done (Hlogn) in order to
achieve theD(nlog n)-time bound. Unfortunately, this meang21]
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