
1

Dual Constrained Single Machine Sequencing to
Minimize Total Weighted Completion Time

Yunpeng Pan and Leyuan Shi,Member, IEEE

Abstract— We study a single-machine sequencing problem with
both release dates and deadlines to minimize the total weighted
completion time. We propose a branch-and-bound algorithm for
this problem. The algorithm exploits an effective lower bound and
a dynamic programming dominance technique. As a byproduct
of the lower bound, we have developed a new algorithm for the
generalized isotonic regression problem; the algorithm can also
be used as anO(n log n)-time timetabling routine in earliness-
tardiness scheduling. Extensive computational experiments indi-
cate that the proposed branch-and-bound algorithm competes
favorably with a dynamic programming procedure.

Note to Practitioners— Real-life production systems usually
involve multiple machines and resources. The configurations of
such systems may be complex and subject to change over time.
Therefore, model-based solution approaches, which aim to solve
scheduling problems for specific configurations, will inevitably
run into difficulties. By contrast, decomposition methods are
much more expressive and extensible. The single-machine prob-
lem and its solution procedure studied in this paper will prove
useful to a decomposition method that decomposes multiple-
machine, multiple-resource scheduling problems into a number
of single-machine problems. The total weighted completion time
objective is relevant to production environments where inventory
levels and manufacturing cycle times are key concerns. Future
research can be pursued along two directions. First, it seems to
be necessary to further generalize the problem to consider also
negative job weights. Second, the solution procedure developed
here is ready to be incorporated into a machine-oriented de-
composition method such as the shifting bottleneck procedure.

Index Terms— scheduling, isotonic regression, timetabling,
branch-and-bound, weighted completion time.

I. I NTRODUCTION

SCHEDULING problems with the total weighted comple-
tion objective first caught our attention during an industrial

project to develop algorithms for scheduling job shop opera-
tions. In the job shop environment that we modeled, the central
managerial goal is to sustain production with the minimum
level of work-in-process and finished goods inventories while
delivering jobs on time. Ideally, earliness-tardiness objectives
would be desirable for this kind of application, but no practical
solution procedure was foreseeable. Therefore, we introduced
a more computationally tractable alternative called thejob
shop total inventory minimization problem(JSTIMP) [32].

This work was supported in part by the National Science Foundation under
grants DMI-0100220, DMI-0217924, and DMI-0431227, in part by the Air
Force Office of Scientific Research under grant FA9550-04-1-0179, and in
part by John Deere Horicon Works.

The authors are with the Department of Industrial & Systems Engineer-
ing, University of Wisconsin-Madison, Madison, WI 53706 USA (e-mail:
pany@cae.wisc.edu; leyuan@engr.wisc.edu).

As a critical step in developing a solution procedure for
JSTIMP, we needed to solve a single-machine sequencing
problem that minimizes the total weighted completion ob-
jective, subject to dual constraints, i.e., both release dates
and deadlines. This problem also serves as a relaxation for
other job shop problems with flow time or completion time
objectives. We formalize the problem next.

An instance of our sequencing problem comprisesn 4-
tuples:

〈
rj , pj , d̄j , wj

〉
, j∈J , whereJ = {1, . . . , n} desig-

nates jobs to be scheduled on a machine, andrj (≥ 0), pj

(> 0), d̄j (≥ rj + pj), and wj (≥ 0) are the release date,
processing time, deadline, and associated weight, respectively.
Job j∈J is ready to start at timerj ; once started, the job
will occupy the machine exclusively for the duration ofpj

without interruption. The completion time of jobj is denoted
by Cj , and the collection,{Cj |j ∈ J }, is called aschedule. A
schedule that satisfies all the release dates and deadlines is said
to befeasible. The objective is to find a feasible schedule that
minimizes the objective function

∑n
j=1 wjCj . This problem,

denoted by1|rj , d̄j |
∑

wjCj with the three-field notation [19],
can be stated mathematically as follows.

min
n∑

j=1

wjCj

(WCT) s.t. rj + pj ≤ Cj , ∀j, (1)

Cj ≤ d̄j , ∀j, (2)

Ci≤Cj−pj or Cj≤Ci−pi, ∀i, j, i 6= j. (3)

Even the problem of satisfying constraints (1)(2)(3) is
N P-complete [16], but it can be efficiently dealt with in
practice [8] and [27]. In the literature, only some special
cases ofWCT have been considered thus far.1|d̄j |

∑
wjCj

has been studied by numerous authors, including [14],
[29], [30], [33]. Ahmadi and Bagchi [1] and Chand and
Schneeberger [10] investigate enumerative procedures for
1|d̄j , nowait|∑ wjEj , whereEj = d̄j − Cj is the earliness.
Bianco and Ricciardelli [7], Hariri and Potts [20], and Be-
louadah et al. [6] examine1|rj |

∑
wjCj . Dell’Amico et al.

[13] extend the job splitting idea of Posner [29] and apply it
to the static problem with general weights, while the same
problem was also studied by Bard et al. [5]. None of the
above authors consider both release dates and deadlines. While
they model the dual-constrained situation through a flow shop
problem, Ahmadi and Bagchi [2] nevertheless assume non-
constraining release dates in their solution approach. Only
recently has a solution procedure for the general problem, i.e.,
WCT , been proposed by Ǵelinas and Soumis [18] who use
dynamic programming and consider general weights. Apart

2

from [18], there are few relevant results forWCT . Neither
lower bounds nor branch-and-bound algorithms have been
proposed forWCT in the scheduling literature.

In this paper, we propose a branch-and-bound algorithm
for solving this problem. In Section II, we derive a new
lower bound and then reduce the task of computing the
lower bound to one of solving a linear programming problem
that has special structure. The problem is shown to be an
isotone optimization problem. In Section III, we discuss the
preliminaries of isotone optimization problems and propose a
new algorithm for the generalized isotonic regression problem
with immediate application to our lower bound calculation.
Section IV discusses dominance conditions and a new dy-
namic programming dominance technique. The branch-and-
bound algorithm is presented in Section V and then compared
with a dynamic programming algorithm through extensive
computational experiments in Section VI. Some concluding
remarks are given in Section VII. We begin by deriving a
lower bound.

II. A L OWER BOUND

Our lower bounding technique utilizes Lagrangian Relax-
ation and the multiplier adjustment method first introduced by
Van Wassenhove [39]. This lower bound can be viewed as a
synthesis and extension of those of Hariri and Potts [20] and
Potts and Van Wassenhove [30].

A. Derivation

Two notions are necessary for our subsequent discussion.
First, a job sequenceσ is called anondelay sequenceif it
implies anondelay schedule, where the machine is never kept
idle while some job is waiting to be processed [4]. It should
be noted thatσ is generated using only the release dates
and processing times, and therefore, may violate some of the
deadlines. This does not cause any problems sinceσ merely
serves as a stepping stone toward computing the lower bound.
Renumber the jobs such thatσ = (1, . . . , n). Second, we adopt
the notion ofblock [23]. Jobv is called thelast job of a block
if Cv ≤ ri for i = v + 1, . . . , n. Let B = {u, . . . , v} be a
set of jobs in adjacent positions ofσ. B is called ablock if
(i) job u−1 (provided thatu > 1) and jobv are the last jobs
of two consecutive blocks, and (ii) job i is not the last job of
a block for i = u, . . . , v − 1. Thus, the nondelay sequenceσ
can be partitioned into a number of blocks.

Omitting the deadlines inWCT yields 1|rj |
∑

wjCj . The
nondelay sequenceσ is optimal for 1|rj |

∑
wjCj if the

following condition by Hariri and Potts [20] is satisfied.
Proposition 1: The nondelay sequenceσ is optimal for

1|rj |
∑

wjCj if the jobs within each blockBk (k = 1, . . . ,K)
are sequenced in nonincreasing order ofwj/pj .

To derive a lower bound for our problem, we perform a
Lagrangian relaxation of each release date constraint (1) and
each deadline constraint (2). The resulting Lagrangian problem

is denoted byLR , and the value of the Lagrangian is

L(a,b) =

min
n∑

j=1

wjCj + aj(rj + pj − Cj) + bj(Cj − d̄j)

=
n∑

j=1

(wj − aj + bj)Cj +
n∑

j=1

aj(rj + pj)− bj d̄j

s.t. (1), (3),

where a = (a1, . . . , an) and b = (b1, . . . , bn) are vectors
of nonnegative multipliers. Note that we have purposefully
retained the release date constraints (1) inLR .

It is easy to see that witha andb fixed, LR (after ignoring
the constant terms in the objective function) is of the same
form as1|rj |

∑
wjCj , but each jobj has a new weight

w′j = wj − aj + bj . (4)

For any choice of multipliers satisfyinga ≥ 0 and b ≥ 0,
L(a,b) is a lower bound on the optimal value of our problem
WCT .

To find proper values for our multipliers, we proceed as
follows. First, we can immediately rule out those multiplier
values that cause anyw′j to be negative, as it is shown next
that their L(a,b) values are always dominated. Consider a
particular choice of multipliers denoted by(a, b) such that
w′j0 = wj0 − aj0 + bj0 < 0 for somej0. Now define new
multipliers (â, b̂) that are identical to(a,b) except that̂aj0 =
aj0 + w′j0 . By construction,ŵ′j0 = wj0 − âj0 + b̂j0 = 0,
and the new multipliers are valid sincêaj0 = aj0 + w′j0 =
wj0 + bj0 ≥ 0. Also, for any fixed schedule{Cj |j ∈ J } that
satisfies(1) and (3), redefiningaj0 results in an increase of
w′j0(rj0 +pj0 −Cj0) (note thatw′j0 < 0, rj0 +pj0 −Cj0 ≤ 0).
Minimize over all such schedules and we haveL(a,b) ≤
L(â, b̂). This is repeated until allw′j ≥ 0.

Second, we impose an additional restriction on the multi-
pliers so that the Lagrangian problem can be solved easily by
applying Proposition 1. Assume thatσ is a given nondelay
sequence withK blocks, B1, . . . , BK , and that the jobs are
renumbered such thatσ = (1, . . . , n). Based on the above two
considerations, we restrict our choice of multipliers to those
that satisfy

w′j ≥ 0, j = uk, . . . , vk, (5)
w′j
pj
≥ w′j+1

pj+1
, j = uk, . . . , vk − 1, (6)

for each blockBk = {uk, . . . , vk}. If the multipliers a and
b are chosen as such, then by Proposition 1, the nondelay
sequenceσ is optimal for the Lagrangian problem, with{
Cσ

j |j∈J
}

being an optimal schedule. Hence, we have

L(a,b) =
n∑

j=1

(wj − aj + bj)Cσ
j +

n∑

j=1

aj(rj + pj)− bj d̄j .

To get a lower bound as tight as possible, we further require
that L(a,b) be maximized whilea andb satisfy (5) and (6).
Let yk be the contribution of the jobs in blockBk to L(a,b).
Maximizing L(a,b) is then equivalent to maximizing each

3

yk independently, which can be accomplished by solving the
following maximization problemLPk:

ȳk =

max yk =
vk∑

j=uk

aj(rj + pj − Cσ
j) + bj(Cσ

j − d̄j) + wjC
σ
j

s.t. (4), (5), (6),

aj ≥ 0, bj ≥ 0, j = uk, . . . , vk.

It is interesting to note thatLPk is a linear program in
which the decision variables are the multipliersaj , bj , j =
uk, . . . , vk (ignore the constant terms inyk). The solution of
LPk degenerates to triviality for the special cases where only
release dates or only deadlines are considered, as in [30] and
[20].

Let āj , b̄j , j = uk, . . . , vk denote an optimal solution to
LPk. We define the following lower bound forWCT :

LBPS(σ) =
K∑

k=1

ȳk = L(ā, b̄),

where the dependency of LBPS onσ is emphasized. IfLPk is
unbounded for somek, then the bound LBPS= ∞, indicating
that WCT is infeasible. Otherwise, LBPS is a valid lower
bound, sinceL(ā, b̄) is a valid lower bound.

Because all the blocks receive the same treatment, we
hereafter assume, without loss of generality, thatσ comprises
only one blockB1 with K = 1, u1 = 1, v1 = n. Accordingly,
we will drop all subscriptsk for indexing blocks; e.g.,LPk

and ȳk becomeLP and ȳ, respectively.
LBPS can be improved using a tightening technique sug-

gested in [20]. Supposed thatāj , b̄j , j = 1, . . . , n is an optimal
solution to LP. We sort the multipliers̄aj , j = 1, . . . , n in
ascending order to get̄a[i], i = 1, . . . , n. Define δ1 = ā[1],
δi = ā[i] − ā[i−1], i = 2, . . . , n. Then,δi ≥ 0 for all i, and ȳ1

can be rewritten as

ȳ =
n∑

i=1

δi

[(
n∑

h=i

r[h] + p[h]

)
−

n∑

h=i

Cσ
[h]

]

+
n∑

j=1

wjC
σ
j + b̄j(Cσ

j − dj).

Note that the term
(∑n

h=i r[h] + p[h]

)
in the above equation

is a lower bound on
∑n

h=i Cσ
[h], because the completion times

Cσ
j always satisfy the release date constraints. To obtain a

tighter lower bound, we solve an auxiliary problem of the form
1|rj |

∑
Cj , where there are(n−i+1) jobs with unit weights.

This problem is also known to beN P-hard, but its preemp-
tive version is solved by the shortest-remaining-processing-
time rule [4], which permits job preemption. Suppose that
the minimum objective value of the preemptive problem is∑n

h=i C ′[h], then

n∑

h=i

r[h] + p[h] ≤
n∑

h=i

C ′[h] ≤
n∑

h=i

Cσ
[h].

Therefore,
∑n

h=i C ′[h] is a better lower bound on
∑n

h=i Cσ
[h]

than
∑n

h=i r[h] + p[h]. Define

ȳ′ =
n∑

i=1

δi

[(
n∑

h=i

C ′[h]

)
−

n∑

h=i

Cσ
[h]

]

+
n∑

j=1

wjC
σ
j + b̄j(Cσ

j − dj).

Then,ȳ′ ≥ ȳ. As a result, we have a strengthened lower bound,
which we refer to as LBPS′.

B. Three Nondelay Sequences

We propose to consider threeO(n log n) nonpreemptive
heuristics, all of which can potentially be employed to generate
nondelay sequences for lower bounding purposes. The first two
are generic ones taken from the literature; they are the earliest-
due-date (EDD) rule and the weighted-shortest-processing-
time (WSPT) rule. The third is a new heuristic that we
developed specifically forWCT . It is outlined next.

We refer to this heuristic as COMP (for “compos-
ite”). Each job j∈J is associated with a numbertj =
max

{
rj , d̄j − pj

}
. If a job arrives at a time when the machine

is busy, the job becomes a waiting job. Suppose that a job
needs to be selected for processing at timet when the machine
is free. If all jobs have already arrived (i.e.,rj ≤ t for all j), we
sequence those jobs that have not been processed using Smith’s
backward scheduling rule [33]. There is a chance that at this
time t, some of the waiting jobs are bound to be overdue no
matter how they are sequenced. To account for this situation,
we modify Smith’s rule by pretending that deadlines can be
extended whenever necessary during the backward scheduling
process. On the other hand, if at timet not all jobs have
arrived, we select a jobj0 for processing according to the
following rule. Let E be the set of all the jobs currently
waiting and letE1 = {j ∈ E|tj ≤ t}. If E1 6= ∅, then set
j0 such thatwj0/pj0 = maxj∈E1 {wj/pj}; otherwise, set
j0 such thatwj0/pj0 = maxj∈E {wj/pj}. This procedure
can be implemented to run inO(n log n) time if E and E1

are implemented using two heaps (or priority queues) and a
bitmap of n elements is used to indicate whether a job has
already been processed at timet. Like EDD and WSPT, COMP
generates a nondelay sequenceσ that respects the release
dates, but may violate some deadlines. As stated before, this
does not pose any problems since the sole purpose ofσ is for
computing the lower bound LBPS.

Heuristic COMP is designed to strike a good balance
between minimizing the objective function and reducing dead-
line violation. Its superior performance is later confirmed by
experimentation (Section VI-B), in relation to the performance
of EDD and WSPT.

C. Transformation of the Linear ProgramLP

The remaining issue concerning the lower bound calculation
is how to solveLP efficiently. Before developing a solution
procedure, we apply a change of variable based on the
following property ofLP.

4

Theorem 2:If the linear programLP is bounded, then there
exists an optimal solution that satisfies

aj · bj = 0, j = 1, . . . , n. (7)

Otherwise, for any given∆, there exists a solution that satisfies
(7) and yields an objective value greater than∆.

Proof: It suffices to show that from any given feasible
solutionaj = ãj , bj = b̃j , j = 1, . . . , n with ãj0 > 0, b̃j0 > 0
for somej0, we can construct a new solution of the required
form without decreasing the objective value. Becauserj+pj ≤
d̄j for all j, it is easily verified that the construction below is
valid:

aj = ãj −min
{

ãj , b̃j

}
, bj = b̃j −min

{
ãj , b̃j

}
,

for j = 1, . . . , n.
Theorem 2 enables us to perform a change of variable as

follows: For eachj, define a new variablexj = w′j/pj (recall
that w′j = wj − aj + bj). The pair of variablesaj and bj

is then replaced by the single variablexj using aj = (wj −
pjxj)+, bj = (pjxj − wj)+, wherex+ = x if x ≥ 0 and
x+ = 0 otherwise. As a result, we get

ȳ = −z̄ +
n∑

j=1

wjC
σ
j ,

where

z̄ = min z =
n∑

j=1

fj(xj) (8)

s.t. x1 ≥ . . . ≥ xn,

and

fj(xj)=pj

[
(Cσ

j −rj−pj)(
wj

pj
−xj)++(d̄j−Cσ

j)(xj−wj

pj
)+

]

(9)
is a continuous, piecewise linear function ofxj with a single
kink point at wj/pj . By definition, Cσ

j − rj − pj is always
nonnegative, whereas̄dj−Cσ

j can be negative since the given
σ may violate the deadlinēdj . Moreover,fj(xj) is convex
since d̄j − Cσ

j ≥ rj + pj − Cσ
j (see Fig. 1). It should be

noted that Problem (8) had an additional constraintxn ≥ 0;
we dropped this constraint because doing so does not change
the optimal valuēz (this can be easily shown using the fact
that wj/pj > 0 for all j). To simplify the notation in (9),
we defineαj = pj(Cσ

j − rj − pj), βj = pj(d̄j − Cσ
j), and

cj = wj/pj . Then, (9) becomes

fj(xj) = αj(cj − xj)+ + βj(xj − cj)+ (10)

with βj ≥ −αj . We state without proof the following obvious
property of Problem (8) withfj(xj) defined by (10).

Proposition 3: Problem (8) is bounded, i.e.,̄z > −∞,
if and only if

∑i
j=1 βj ≥ 0 and

∑n
j=i αj ≥ 0 for all

i = 1, . . . , n.
In fact, the additivity ofz, convexity offj(xj), and chain

constraintsx1 ≥ . . . ≥ xn in Problem (8) together characterize
an extensively researched class of problems called theisotone
optimization problems, which find applications in operations
research, statistics, and image processing. In particular, if the

(a) (b)

xj xj

fj(xj) fj(xj)

wj
pj

wj
pj

Fig. 1. Convexity offj(xj): (a) d̄j − Cσ
j ≥ 0 and (b)d̄j − Cσ

j < 0

functionsfj(xj), j = 1, . . . , n are assumed to be general con-
vex functions, Problem (8) is called thegeneralized isotonic
regression problem[3].

III. SOLVING THE ISOTONEOPTIMIZATION PROBLEMS

A. Preliminaries

The isotone optimization problems have been studied by nu-
merous authors (see [3] for a comprehensive list of references).
Thus far, the best and most general result is due to Ahuja
and Orlin [3], who study the generalized isotonic regression
problem, where eachfj(xj) is an arbitrary convex function. It
is also assumed that (i) eachfj(xj) can be evaluated inO(1)
time for a givenxj , and that (ii) the optimal values of allxj

lie on the interval[xlb, xub] (this implies that the minimization
problem has to be bounded). LetU = xub−xlb and letε be a
tolerance. These authors improve theO(n2 log(U/ε)) running
time of the Pool Adjacent Violators (PAV) algorithm [31] to
O(n log(U/ε)) using a scaling technique.

The scaling PAV algorithm [3] can be adapted to solve
Problem (8), wherefj(xj) is specified by (10) withβj ≥
−αj . We first determine whether Problem (8) is bounded by
verifying the conditions of Proposition 3 inO(n) time. A
mapping is then used to modify the problem so that allcj are
mapped onto the integers1, . . . , n. For the modified problem,
we can setU = n and fix ε to any value less than 1; thus, the
algorithm runs inO(n log n) time. (This mapping is suggested
in [3] for the special case whenαj = βj , but remains valid
for our more general problem.) A serious handicap of this
approach, however, is that it requires sorting, which enlarges
the hidden constant in the big-O time bound.

To facilitate our subsequent discussion, we introduce the
notion of a segment. For any vector(x1, . . . , xn), a segment
is defined as a maximal subset of consecutive indices{p, p +
1, . . . , q} such thatxp = xp+1 = . . . = xq = l, where l is
called thelevel. For example, Fig. 2 shows a feasible solution
(x1, . . . , xn) that comprisess segments,Γ1, . . . , Γs, with the
corresponding levels beingl1, . . . , ls.

B. A New Algorithm

In order to solve Problem (8) more efficiently, we propose a
new algorithm that is different than the PAV algorithm. Unlike
the latter, which is a dual method from a linear programming
perspective and achieves primal feasibility only upon termi-
nation [9], the proposed algorithm is a primal method where
the iterates always maintain primal feasibility (i.e., the chain

5

!1

!2

!s!1

!s

xj

l1
l2

ls!1

ls

j12 n3

Fig. 2. Segments of a solution to the isotone optimization problems

cj1 cj2 cjmj xj

fj(xj)

Fig. 3. A continuous, piecewise linear, convex function with more than one
kink points

constraints are satisfied during every iteration). The proposed
algorithm uses fairly simple data structure and can be coded
with very little overhead (hence, the hidden constant in the big-
O notation is very small). Another significant advantage of the
proposed algorithm is that it easily generalizes to cases where
there are any number of kink points forfj(xj), as depicted
in Fig 3. By contrast, the time bound of Ahuja and Orlin’s
algorithm deteriorates under such circumstances, because the
cost of evaluatingfj(xj) at an xj is no longerO(1) (i.e.,
assumption (i) of Ahuja and Orlin is violated), but generally
depends on the number of kink points.

Assume that eachfj(xj) is a general convex function and
that xlb is a lower bound on the optimal value ofxn (by
default, xlb = −∞). For any pair ofu and v with u ≤ v,
define a subproblemPv

u of Problem (8) as

z̄v
u = min zv

u =
v∑

j=u

fj(xj)

s.t. xu ≥ . . . ≥ xv.

Hence,z̄n
1 =z̄. The proposed algorithm sequentially solves a

series ofn subproblems with theith one beingPi
1. Initially,

we set x1= . . . =xn=xlb. Now, assume that the(i − 1)th
subproblem is already solved withx1, . . . , xi−1 set to ap-
propriate values, andxi= . . . =xn=xlb; further, suppose that
x1, . . . , xi−1 form s segments denoted byΓ1, . . . , Γs with
levels l1 > . . . > ls. For convenience, we initially also set
Γ0 = ∅, l0 = ∞. To solve theith subproblem, we first create
a new segment usingi; hence, sets := s + 1, Γs := {i},
and ls = xlb. Clearly, the feasibility is satisfied. We then
attempt to merge the last two segments, i.e.,Γs and Γs−1.
To this end, a method of choice is applied to find anx′ that
minimizes the single-variable convex function

∑
j∈Γs

fj(x)
over the interval[ls, ls−1]; we update the current solution by

setting xj := x′ for all j ∈ Γs. Two cases arise: Either it
holds thatx′ < ls−1, in which case the updated solution
optimally solves theith subproblem; or it holds thatx′ = ls−1,
in which case segmentsΓs−1 and Γs merge into one. In the
latter case, we setΓs−1 := Γs−1 ∪ Γs, s := s − 1. At this
point, if s = 0, then theith subproblem is solved (z̄ may be
unbounded); otherwise, we once again attempt to mergeΓs

and Γs−1. The ith subproblem will be solved after a finite
number of mergers since every time two segments merge,s
decreases by one. Because the addition of one more variable
xi may trigger a cascade of mergers and the objective value
z associated with an iterate(x1, . . . , xn) is nonincreasing, we
call the proposed algorithm theCascading Descentalgorithm.
An algorithmic description of this algorithm is given below.

Algorithm. Cascading Descent

Step 0. i = 0, s = 0, Γ0 = ∅, l0 = ∞.

Step 1.Set i := i + 1. If i > n, then go to 5.

Step 2.Create a new segment:Set s := s + 1, ls :=
xlb, Γs := {i}.

Step 3.Apply any method of choice to find anx′ that
minimizes F (x) =

∑
j∈Γs

fj(x) over [ls, ls−1]. If
x′ < ls−1, set ls := x′ and go to 1.

Step 4.Merge two segments:Set Γs−1 := Γs−1 ∪ Γs, s :=
s− 1. If s = 0, go to 1; otherwise, go to 3.

Step 5.Postprocessing: For each segmenth = 0, . . . , s and
for each j ∈ Γs, set xj := lh. Compute z̄ =∑n

j=1 fj(xj). STOP.

Lemma 4:Let (xu, . . . , xv) and(xv+1, . . . , xw) be optimal
solutions to subproblemsPv

u andPw
v+1, respectively. Ifxv ≥

xv+1, then the concatenated solution(xu, . . . , xw) is optimal
to subproblemPw

u .
Proof: By dropping the constraintxv ≥ xv+1 in

subproblemPw
u , we obtain a relaxed problem, which then

separates intoPv
u and Pw

v+1. Hence,z̄v
u + z̄w

v+1 is a valid
lower bound forPw

u . Since (xu, . . . , xw) attains this lower
bound and is feasible, it must be optimal.

Lemma 5:Suppose that(xu, . . . , xv) = (a, . . . , a) and
(xv+1, . . . , xw) = (b, . . . , b) are optimal solutions to subprob-
lemsPv

u andPw
v+1, respectively. Ifa ≤ b, then subproblem

Pw
u has an optimal solution of the form(xu, . . . , xw) =

(c, . . . , c).
Proof: Refer to Lemma 1 in [3].

Theorem 6:The proposed Cascading Descent algorithm is
correct.

Proof: We show through mathematical induction that (I)
after theith iteration (i = 1, . . . , n), the algorithm correctly
solves subproblemPi

1. Furthermore, we show that (II) for
h = 1, . . . , s, the solution,xj = lh, j ∈ Γh, optimally solves
subproblemP

max{Γh}
min{Γh} . The base case wheni = 1 is easily

verified.
Now, assume that the above Part I and Part II hold after

the (i − 1)th iteration. Consider the first time when Step 3
is executed for this particulari value (i.e., whenΓs = {i}).
By definition, x′ minimizes F (x) = fi(x) over [xlb, ls−1].

6

In the first case, we havex′ < ls−1. We claim thatx′

also minimizesF (x) over [xlb,∞). For the sake of draw-
ing contradiction, assume that there existsx′′ > ls−1 such
that F (x′′) < F (x′). By convexity, we haveF (ls−1) ≤
[F (x′)(ls−1 − x′) + F (x′′)(x′′ − ls−1)]/(x′′ − x′). Replacing
F (x′′) with F (x′) in the right-hand side yieldsF (ls−1) <
F (x′), which is a contradiction to the fact thatx′ minimizes
F (x) over [xlb, ls−1]. Hence,x′ optimally solves subproblem
P

max{Γs}
min{Γs} . Noting also the induction assumption, it follows

from Lemma 4 that subproblemPi
1 is optimally solved. Part

II evidently follows.
In the second case, we havex′ ≥ ls−1 and Step 4 is there-

fore executed to mergeΓs−1 andΓs. The induction assumption
states that before merger, the solution,xj = ls−1, j ∈ Γs−1,
optimally solvesP

max{Γs−1}
min{Γs−1} . From Lemma 5, it can be

seen that subproblemPmax{Γs−1}
min{Γs−1} still has single-valued

optimal solution even after merger. This ensures that the same
argument can be used to analyze subsequent executions of
Steps 3 and 4. Since there can be only a finite number
of mergers, theith iteration eventually will terminate. This
completes the induction step of the proof.

A small technicality in the algorithm is the use of the
auxiliary segmentΓ0 with level l0 = ∞. If s = 1 andx′ = l0
in Step 3 of the algorithm, a merger of segmentsΓ0 and Γ1

will occur. This means that allxi, i ∈ Γ1 should take on the
value of ∞. However, this does not necessarily imply that
z̄i
1 = −∞ since the single-variable function

∑i
j=1 fj(x) could

be asymptotically a horizontal line.
We now turn to the focus of this subsection, which is to

specialize the above algorithm for situations wherefj(xj) is
not only convex, but also continuous, piecewise linear. Clearly,
the single-variable functionF (x) =

∑
j∈Γs

fj(x) in Step 3,
which is the summation of a finite number of such functions,
is also a continuous, piecewise linear convex function. For this
type of function, it is easy to verify the following fact.

Lemma 7:Let F (x) be a continuous, piecewise linear func-
tion on interval [ls, ls−1] (could be (−∞,∞)). Let F ′−(x)
and F ′+(x) denote the left-hand and right-hand derivatives,
respectively. Then, the minimum ofF (x) occurs in three
different scenarios: (i) x ∈ (ls, ls−1) and F ′−(x) ≤ 0 and
F ′+(x) ≥ 0, (ii) F ′+(ls) ≥ 0, and (iii) F ′−(ls−1) ≤ 0.

Because the values ofF ′−(x) andF ′+(x) only change at kink
points, it suffices to restrict our attention to these points. Here,
it is assumed that eachfj(xj) hasmj kink points denoted by
cj1, . . . , cjmj ; let m =

∑n
j=1 mj . Note that for kink point

cjk, the left-hand derivativef ′j−(cjk) is the slope of the line
segment to the left of this point, and the right-hand derivative
f ′j+(cjk) is the slope of the line segment to the right of this
point. Hence, all the left-hand and right-hand derivatives are
known beforehand.

The following Specialized Cascading Descentalgorithm
keeps track of kink points using aheap(also called apriority
queue) data structure. Let the heap be denoted byH. An
element in H is a kink point cjk (j = 1, . . . , n; k =
1, . . . ,mj). Our algorithm performs three types of operations
on H, i.e., INSERT (insert an element intoH), MIN (return
the element with the smallest key value), and DELETE-MIN

(remove fromH the element with the smallest key value).
Because there is no need to merge two heaps into a new heap,
such a heap data structure can be implemented efficiently as
a complete binary tree stored in an array object (see [12] for
more details). By contrast, heaps that support merge operations
are calledmergeable heaps, whose implementations are much
more tedious and inefficient (for examples of mergeable heap
implementations, seebinomial heapand Fibonacci heapin
[12] and leftist heapin [35]).

In the following algorithm, RHDs represents the right-hand
derivative of the function

∑
j∈Γs

fj(x) at x = ls.

Algorithm. Specialized Cascading Descent

Step 0. Initialization: i = 0, s = 0, Γ0 = ∅, l0 = ∞, RHD0 =
∞, H = ∅.

Step 1.Set i := i + 1. If i > n, then go to 5.

Step 2.Create a new segment:Set s := s + 1, ls := −∞,
Γs := {i}, RHDs := f ′i+(−∞). INSERT each kink
point cik (k = 1, . . . , mj) into the heapH.

Step 3.Setx′ := ls.
While RHDs < 0 do

• If H = ∅, setx′ := ls−1 and terminate the while-
do loop; otherwise, letcjk be the kink point that
corresponds to MIN(H).

• If cjk ≤ ls−1, setx′ := cjk, RHDs := RHDs −
f ′i−(cjk)+f ′i+(cjk); otherwise, setx′ = ls−1 and
terminate the while-do loop.

• DELETE-MIN(H).

If x′ < ls−1, set ls := x′ and go to 1.

Step 4.Merge two segments:Set Γs−1 := Γs−1 ∪ Γs,
RHDs−1 := RHDs−1 + RHDs, s := s− 1.
If s = 0, go to 1; otherwise, go to 3.

Step 5.Postprocessing: For each segmenth = 0, . . . , s and
for each j ∈ Γs, set xj := lh. Compute z̄ =∑n

j=1 fj(xj). STOP.

To show that this specialized algorithm is correct, we only
need to argue that Step 3 correctly solves the problem of
minimizing

∑
j∈Γs

fj(x) over interval[ls, ls−1]. When a new
segmentΓs = {i} is created in Step 2, the levells is set
to −∞. In the subsequent execution of Step 3, we start with
x′ = ls = −∞, RHDs = f ′i+(−∞) = limx→−∞ f ′i+(x)
and gradually increasex′ (“hopping” on kink points) until
one of the following two scenarios occurs: (i) f ′i+(x′) ≥ 0
for the first time or (ii) x′ = ls−1 is reached. If scenario
(i) occurs, thenf ′i+(x′) ≥ 0 holds either atx′ = ls (i.e., at
the left boundary), or at some kink pointx′ > ls (hence,
f ′i−(x′) = f ′i+(x′ − ε) < 0 for some sufficiently small
ε > 0); by Lemma 7,x′ minimizes f ′i+(x) over interval
[ls, ls−1]. Note that the proof so far covers the tie situation
when (i) and (ii) hold simultaneously. Now, if scenario (ii)
occurs andf ′i+(ls) < 0, then f ′i−(ls) < 0, following from
the factf ′i−(ls) ≤ f ′i+(ls); hence, Lemma 7 can be invoked
once again. Using the same argument, we can also show that
Step 3 correctly solves

∑
j∈Γs

fj(x) over interval[ls, ls−1] for
a segmentΓs resulting from a merger.

7

In Step 3, asx′ passes through kink points, these points
are removed fromH and will never be used again; this
simplifies the problem for later iterations. It is also worth
pointing out that the kink points that belong to functions
fj(xj), j ∈ Γ0 ∪ . . . ∪ Γs−1 do not interfere with those of
segmentΓs, even though all kink points are stored in the same
heap. This is because all the kink points associated with a
segment are always above the current level of the segment;
i.e., during the execution of Step 3, we havecjk > ls−1 for
any cjk in H with j 6∈Γs.

Theorem 8:The Specialized Cascading Descent algorithm
runs inO(m log m) time.

Proof: Note that there arem INSERTs and consequently,
no more thanm DELETE-MINs. Since both types of opera-
tions takeO(log m) time on a heap with at mostm elements
[12], the total cost of these operations isO(m log m) time.
Also, there areO(m) MIN operations, each takingO(1) time.
The remaining algorithmic steps can be completed inO(m)
time.

As an immediate application of the specialized algorithm,
we can use it to solve, inO(m log m) time, the isotonic median
regression problem, wherefj(xj) =

∑mj

i=1 |xj−cjk| for all j.
This time bound is an improvement over that of Pardalos et al.
[28], which isO(m log2 m). Also, it is a significant advantage
from a practical standpoint that our algorithm does not require
merging two heaps (or balanced binary search trees in [28]).
Furthermore, it is difficult to adapt Ahuja and Orlin’s scaling
algorithm [3] to this problem and achieve a competitive time
bound. The difficulty stems from the factfj(xj) cannot be
evaluated inO(1) time, with the exception whenmj = 1 for
all j (Ahuja and Orlin indeed propose an adaptation for this
special case with anO(n log n) time bound).

Now, with the specialized algorithm in hand, we can com-
pute the lower bound LBPS inO(n log n) time. Note that in
this particular application, the functionsfj(xj), j = 1, . . . , n
are defined by (10). Therefore,mj = 1 for all j, andm = n.
The total cost of computing LBPS consists of two parts.
One part is for generating the nondelay sequenceσ, which
takesO(n log n) time. The other part is the cost of executing
the specialized algorithm for the blocksB1, . . . , BK . The
suggested time bound follows from the fact that

K∑

k=1

|Bk| · log |Bk| ≤ log n

K∑

k=1

|Bk| = n log n.

IV. D OMINANCE CONDITIONS AND AN ELIMINATION

TECHNIQUE

We made some straightforward extensions of those in [6]
and [20], which deal with1|rj |

∑
wjCj . It was also noted

that there is no need to consider a node that represents an
infeasible instance.

A. Dominance Conditions

In our dominance theorems, we implicitly assume that the
problem is feasible. However, these theorems can be applied
even if feasibility is undetermined, since nothing is lost if
the problem turns out to be infeasible. For a sequenceπ,

the notationπk denotes the job in thekth position of the
sequence. The first two of the following theorems extend the
results of Bianco and Ricciardelli [7] originally proposed for
1|rj |

∑
wjCj , so as to take into account the deadlinesd̄j . The

proofs of these theorems are straightforward and can be found
in Pan [26].

Theorem 9:If wt/pt = maxn
i=1 {wi/pi} and d̄t =

minn
i=1

{
d̄i

}
, then there exists an optimal solution with job

t preceding jobi for i = 1, . . . , n, i 6= t andri ≥ rt.
Theorem 10:If rt + pt = minn

i=1 {ri + pi}, then for some
optimal sequenceπ∗, π∗1 6= i for i = 1, . . . , n andri ≥ rt+pt.

Theorem 11:Let π = jiπ1 be any feasible sequence with
job j and jobi in the initial two positions and letπ′ = ijπ1

be the result of interchanging jobj and jobi in the sequence
π. If π′ is feasible andCπ′

j ≤ Cπ
i and wiC

π′
i + wjC

π′
j ≤

wjC
π
j + wiC

π
i , thenπ is dominated.

Theorem 11 follows from the principle of optimality. The
idea is effectively used in [20] and [30] for their respective
problems. The proof is straightforward and requires no com-
ment.

Unlike the dominance conditions presented thus far, the next
one does not depend on the objective function. Rather, it is
simply a feasibility check.

Theorem 12:Jobi can be assigned to the first position only
if there exists a feasible sequenceπ with π1 = i.

The feasibility of the subproblem with jobi fixed in the
first position can be determined by solving a related problem
of minimizing the maximum lateness. The following corollary
is not as strong as Theorem 12 but can be verified quickly.

Corollary 13: Consider the subproblem in which jobi is
fixed in the first position and the objective is to minimize the
maximum lateness. If an optimal preemptive solution yields
a positive objective value, then jobi cannot be in the first
position.

B. Elimination by Recursion

The above dominance conditions are not very strong after
so much adaptation to our dual-constrained problem. As a
remedy, we developed an elimination technique. It was first
tried on the static problem, since at the time, we had already
implemented Posner’s [29] branch-and-bound algorithm for
1|d̄j |

∑
wjCj to be used as a module in our own algorithm

for WCT , and incorporating this new feature took little effort.
To our surprise, the improved algorithm doubled the size of
problems that can be solved; problems with up to 120 jobs
could now be solved efficiently [25]. In the following, we
discuss in detail how to apply this technique toWCT . We hope
to advocate the use of this technique through this example
so that it will eventually become as a standardized element
as dominance conditions to special-purpose branch-and-bound
algorithms.

A search tree node corresponds to a feasible partial sequence
π in which jobs in the firstl positions are fixed. For alli ≤ l,
the completion timeCπi of job πi is also computed. We define
S = {π1, . . . , πl} as the set of scheduled jobs andS̄ as the
set of unscheduled jobs. Under the partial sequenceπ, no jobs
in S̄ can start before timeT = max

{
Cπl

, minj∈S̄ rj

}
. If

8

jobs in S can be resequenced such that they finish by time
T , observe their respective release dates and deadlines, and
make a total contribution to the objective function smaller
than

∑l
i=1 wπi

Cπi
, then the node can be eliminated from

further consideration. This is a particular application of the
well-known principle of optimality (see [15] for a general
discussion of this principle applied to branch-and-bound algo-
rithms). Our innovation here, however, is to provide a method
to exploit this powerful property to a much greater extent than
what was achieved in the past.

We first recognize that the embedded problem of resequenc-
ing jobs inS is, in fact, an instance ofWCT , the exact problem
that we set out to solve. More precisely, the instance consists
of l jobsπi, i = 1, . . . , l, each of which has a release daterπi

,
a deadlinemin

{
d̄πi , T

}
, and a weightwπi . We then proceed

to solve this embedded problem using the same algorithm
developed forWCT . The node is eliminated if we can disprove
the optimality of the partial sequenceπ with respect to the
embedded problem.

What we described above is essentially a recursive process.
Several measures are taken so as to prevent excessive stalling
inside a recursion. First, the recursion depth is limited to
one; i.e., the embedded problem is solved by a stripped-
down version of the branch-and-bound algorithm that does not
carry out any further recursion. Second, the recursion returns
once an objective value less than

∑l
i=1 wπiCπi is attained

for the embedded problem. Third, the recursion returns once
the execution inside the recursion exceeds a preset CPU time
limit. Finally, we define a parameterη called theretrospect
depth. If l ≤ η, then the embedded problem involves all
those l jobs; otherwise, only the most recently fixedη jobs
πl−η+1, . . . , πl are involved, and the release date of jobπi

(i = l − η + 1, . . . , l) is set tomax
{
Cπl−η

, rπi

}
. Clearly,

largerη gives us a better chance of eliminating a node, but it
also means longer computation time required for solving the
subproblem.

V. A B RANCH-AND-BOUND ALGORITHM

In this section, we present a complete branch-and-bound
algorithm for solvingWCT . The lower bounds developed in
Section II are employed in this algorithm.

Algorithm. PS

Step 0.Determine the feasibility ofWCT by solving the
associated1|rj |Lmax problem. If the optimalLmax

value is positive (meaning thatWCT is infeasible),
then STOP. Otherwise, derive precedence relations
between jobs, tighten the release datesrj and the
deadlinesd̄j , and initialize the root node.

Step 1.Find the node with the smallest lower bound. If the
lower bound meets the upper bound or the CPU
time or memory usage reaches a preset limit, then
STOP. Otherwise, find a feasible sequence in this
node. If no feasible sequence exists, discard this node
and repeat Step 1; otherwise, improve the feasible
sequence found using a 2-exchange heuristic.

Step 2.Find the set of unscheduled jobsH that can be put in
position l + 1. Create a new node for each job inH.

Step 3. Initialize each of the new nodes and, if not fathomed,
add it to the search tree. Go to 1.

We discuss the algorithmic details step by step. Preprocess-
ing is carried out in Step 0. First, to determine the feasibility of
WCT , we solve the1|rj |Lmax problem (where the due dates
dj = d̄j and Lmax = maxj {Cj − dj}) using a procedure
suggested in [27], which improves upon Carlier’s algorithm
[8]. This procedure is adapted such that it exits as soon as
it finds a sequence withLmax ≤ 0 (in this case,WCT is
feasible). Next, if the algorithm does not terminate due to
problem infeasibility, precedence relations between jobs are
derived using the simple fact that ifrj + pj + pi > d̄i then
job i must precede jobj. Meanwhile, additional precedence
relations are deduced from known ones through an updating
method described in [30]. Also, we use a method in [24] to
tighten the constraints: To increase the release daterj of job
j, we impose the requirement that jobj must start exactly
at time rj , and if this results in infeasibility, we set the new
release date torj + 1. Similarly, we may be able to decrease
the deadlined̄j . This process is repeated until dates cannot be
tightened any further.

In Step 1, we seek a feasible sequence (again using the
procedure in [27]). If no feasible sequence can be found by
the procedure, the subproblem represented by this node is
infeasible and the node is therefore fathomed. If a feasible
sequence is indeed found, we run a standard 2-exchange
greedy heuristic to improve the sequence by way of swapping
job pairs. This helps attain a tight upper bound quickly, thereby
limiting the size of the search tree.

During the branching in Step 2,H is the set of jobs that can
be put in position(l + 1), i.e., the first free position. To keep
the cardinality ofH small, we first use the fact that only active
schedules need to be considered (Theorem 10). Moreover, an
unscheduled jobi does not belong toH if putting job i in
position(l+1) would violate the precedence relations derived
in Step 0, or if putting jobi and another unscheduled jobj
in positions(l + 1) and (l + 2) in that order would cause job
j to violate its deadline (Theorem 12). The setH is further
reduced using Theorems 9 and 11 and Corollary 13. During the
verification of the dominance condition given by Corollary 13,
the preemptive EDD rule is applied to the 10 most imminent
jobs (we arrived at this number through experimentation). In
addition, as the completion times of these jobs are determined
by the preemptive EDD rule, they are checked against the
deadlines, and there is no need to continue as soon as any
deadline is violated.

Node initialization is carried out in Steps 0 and 3. Before
the initialization begins, it is assumed that jobs in the first
l positions are fixed (e.g.,l = 0 in Step 0) and that these
l jobs are specified by a partial sequenceπ. Let S̄ be the
set of unscheduled jobs. For each jobj ∈ S̄, its effective
release date—the earliest time when the job can start under
the partial sequenceπ—is r′j = max {Cπl

, rj}. If all r′j , j ∈ S̄
are equal, then the node represents an instance of the static
problem1|d̄j |

∑
wjCj and is subsequently solved using the

9

branch-and-bound algorithm of Posner [29]; the node is then
fathomed. Otherwise, we generate a nondelay sequenceσ
using the dispatching heuristic of our choosing (to be discussed
in Section VI-B) and in turn calculate the lower bounds LBPS
and LBPS′. The node is fathomed if either of the lower bounds
is greater than or equal to the upper bound. If the sequence
σ is feasible and leads to a better upper bound, then the
same 2-exchange heuristic as mentioned before is applied to
σ, in hope of finding additional improvement. Finally, the
node is examined using the node elimination technique of
Section IV-B, and it is added to the search tree afterwards,
provided that it is not fathomed. It should be noted that
during the elimination test, the embedded problem as defined
in Section IV-B is solved as a recursion using a stripped-down
version of algorithm PS.

In the stripped-down version of algorithm PS, no further
recursion is invoked and no attempt is made to derive any
precedence relations or to tighten release dates or deadlines.
Moreover, in Step 1, we skip the feasibility check and the 2-
exchange heuristic. To improve the detection of infeasibility,
Corollary 13 is applied with regard to all the unscheduled jobs
at a node. This also ensures that in the branching step, any
job in the setH will satisfy its deadline, provided that it is
scheduled immediately in position(l + 1).

The value of the parameterη (see Section IV-B) is found
by experimentation. Preliminary experiments indicate that the
computational results are quite insensitive to the choice of
the η value as long asη is between 8 and 15. The best
performance is achieved whenη is set to 10, which is the
parameter value assumed in the subsequent numerical experi-
ments (Section VI).

VI. COMPUTATIONAL RESULTS

We coded both our branch-and-bound algorithm (PS) and
the dynamic programming method (GS) [18] in Visual C++
and ran them on a Pentium III 733 personal computer. The
version of GS that we implemented exploits the fact that all
job weightswj are nonnegative, and it uses a large hash table
consisting of 500,000 entries to minimize the possibility of a
collision. For both procedures, we set the maximum CPU time
allowed on each test problem to 120 seconds. With regard to
the storage limit, PS abandons a particular test problem if there
are more than 100,000 unexplored nodes, and GS terminates if
more than 500,000 labels are required or the number of states
exceeds 200,000 for states of any given cardinality. Next, we
explain the test problems used in our experiments.

A. Test Problems

Three sets of problems were created. Infeasible ones were
ignored because they pose little challenge. LetU [a, b] be an
integer uniform distribution on interval[a, b]. For problem set
(I), we tookpj ∈ U [1, 100] andwj ∈ U [1, 10] (see [20], [30]).
The release dates (rj) were generated fromU [0, α

∑n
j=1 pj],

where the parameterα ∈ {0.5, 1}. To generate the deadlines,
we followed two steps. First, we computed the earliest job
completion times (denoted bỹCj) under the FIFO rule, which
only takes into account the release dates and processing times.

Then, we set the deadlines: For allj, setd̄j := C̃j +Vj , where
Vj ∈ U [0, β(C̃j − rj)] with the parameterβ ∈ {1, 2, 4, 8, 16}.
The deadlines, together with the release dates, processing
times, and weights, defined a feasible problem. 10 problems
were created for each combination of the problem size (n ∈
{20, 30, 40, 50}), α, andβ. This problem set was specifically
designed to test the algorithms’ responses to different input
data characteristics. In addition to varying problem size, the
distribution of the release dates was controled by the parameter
α. Imagine that there are two systems that handle comparable
workloads, but one withα=0.5 and the other withα=1. On
average, all jobs will have arrived by the time when half of
them have been finished in the first system. By contrast, the
workload is distributed more evenly over time in the second
system; jobs arrive within a time interval that is twice as
large as that of the first system. Clearly, jobs in the first
system are bound to experience longer waiting time, and their
time windows therefore ought to be larger in order to have a
feasible schedule. Finally, it should be pointed out that we have
chosen to only report on the twoα values (α ∈ {0.5, 1}) to
avoid an excess of computational results—especially those on
easy instances, where deadlines are either very constraining
or not constraining at all. The two chosen values are most
representative of the characteristics of nontrivial instances.

Problem set (II) was created in a similar fashion as in
[18]. We only describe the parameter settings below and
refer the reader to [18] for more details. The processing
times and weights were generated fromU [1, 50] andU [1, 10],
respectively. LetW be a parameter that controls the av-
erage of time window widths̄dj − rj . W took on values
in {150, 200, 250, 300, 400, 800}, covering a greater range
of time window widths than in [18]. 10 problems were
generated for each combination of the problem size (n ∈
{20, 30, 40, 50}) andW . We used this set of problems to study
the sensitivity of the solution procedures to increase in the time
window width.

Problem set (III) consists of problems in which release dates
and deadlines are uncorrelated. To generate the release dates,
processing times, and weights, we followed the same scheme
as in problem set (I). The deadlines (d̄j) were initially set to
random samples ofU [0, γ

∑n
j=1 pj], whereγ ∈ {1, 2, 4, 8, 16}

is the slackness parameter. Then, we solved the associated
1|rj |Lmax problem with respect to the obtainedrj , pj , and
dj = d̄j using the procedure in [27]. Letδ denote the minimum
value. If the problem instance was infeasible (i.e.,δ > 0), we
extended all the deadlines ofWCT by settingd̄j := d̄j + δ
for all j (thus, the modified instance became feasible). Clearly,
the release dates and deadlines remain uncorrelated. For each
combination of the problem size (n ∈ {20, 30, 40, 50}), α, and
γ, 10 problem instances were created.

B. The Choice of the Nondelay Sequenceσ

Our first experiment compares the performance of EDD,
WSPT, and COMP, discussed in Section II-B for choosing
the nondelay sequenceσ. Combining each of the heuristics
with the PS algorithm results in three variants: PS-EDD,
PS-WSPT, and PS-COMP. Problem set (I) is used in this

10

experiment. For each combination of the values ofn, α, and
β, Table I lists the number of unsolved problems, the mean
and maximum solution times in seconds, and the mean and
maximum numbers of nodes. Because the calculation of means
and maximums takes into account both solved and unsolved
problems, their values should be interpreted as lower bounds
on the true values if there are unsolved problems. When an
algorithm attempts to solve a difficult problem, it may halt
prematurely due to storage overflow, which quite often occurs
long before the CPU time limit is reached. This can make
the mean values and the maximum values look better, which
is misleading. For this reason, means and maximums are
reported only when over half of the test problems for any given
parameter setting are solved; otherwise, they are replaced by
“—” (this rule will be followed in our subsequent experiments
as well). The performance of PS-EDD turns out to be rather
poor; the computational results for this algorithm are therefore
omitted. The results in Table I indicate the overall dominance
of PS-COMP over PS-WSPT. Therefore, PS-COMP merits
further investigation, and the PS algorithm involved in our
other experiments should be taken as this particular variant.

C. A Comparative Study of GS vs. PS

In our second experiment, we compare the performance of
GS vs. our proposed algorithm PS using problem set (I). The
average time window width is measured byÊ(d̄j−rj)/Ê(pj),
whereÊ(X) stands for the sample mean of a random variable
X. This ratio is independent of the time unit in which the input
data is given.

The results in Table II indicate that PS performs consistently
well over the entire set of 400 problems. PS is able to solve
all the test problems to optimality, including all the 50-job
problems. By contrast, GS is unable to solve 152 problems;
these unsolved problems occur with bothα=0.5 andα=1, and
some of them are as small as having30 jobs. The computation
time required by PS is small and does not have as much
variability as that required by GS. However, GS has some
advantage on problems with small time windows. It is almost
always the case that GS either solves a problem in few seconds
or has to abandon it due to excessive memory requirement.

The above experiment is repeated using problem set (II).
Individual problems in this second problem set are similar to
those problems withα=1 in problem set (I) in terms of the
average window width and the distribution of release dates,
but are generally less difficult. Because GS is able to solve a
greater portion of the problems (213 out of 280), more insights
can be drawn from the results regarding computation time. The
results in Table III indicate that the average time window width
has a much smaller impact on the computation time of PS than
on the computation time of GS. For example, withn fixed at
50, the algorithms’ sensitivity to the average time window
width is depicted by Fig. 4. ForW ≤ 300, both algorithms
perform quite well, but GS is even faster than PS. However,
this occasional speed advantage of GS over PS occurs only
when the computation time is fairly small (<1–2 seconds) for
both algorithms (this observation is also consistent with the
results on problem set (I)).

11.65

1.31

0.080.020.01

1.39

0.400.230.13

1.010.79
0.22

0.00

2.00

4.00

6.00

8.00

10.00

12.00

150 250 350 450 550 650 750

W

M
e
a
n

 C
P

U
 S

e
c
.

GS

PS

Fig. 4. Algorithms’ Sensitivity to Average Time Window Width (n = 50)

We also tested the algorithms using problem set (III), where
the release dates are deadlines are not correlated. As indicated
by the results in Table IV, this set of problems are much more
challenging for both algorithms. However, the proposed PS
algorithm fares considerably better than GS, since the latter
experiences difficulty even for 30-job problems.

Overall, it is perhaps fair to say that our algorithm (PS)
performs consistently well across different types of instances,
and more importantly, it is more robust when faced with
instances that take the dynamic programming algorithm (GS)
a long time to solve.

VII. D ISCUSSION ANDFUTURE RESEARCH

In this paper, we introduced a lower bound forWCT and
developed a fast algorithm to compute it inO(n log n) time.
We also proposed several dominance conditions and used an
effective node elimination technique, to curtail the size of
the branch-and-bound search tree. Using these ingredients,
we constructed a branch-and-bound solution procedure. The
procedure was able to effectively solve test problems of up
to 50 jobs within the time limit. Our method proves to be
quite robust over a wide range of input data characteristics,
compared to a dynamic programming method in the literature.
Clearly, the techniques demonstrated here can be used to
achieve superior results in solving1|rj |

∑
wjCj—a special

case ofWCT .
Admittedly, the proposed branch-and-bound algorithm fol-

lows the standard track of combinatorial branch-and-bound
algorithms (as opposed to LP-based ones). However, our
successful solution ofWCT brings this paradigm into unchar-
tered territories. Combinatorial branch-and-bound previously
have not been applied to sequencing problems with nontrivial
feasibility issues. Usually, all sequences are feasible, and in
situations where there is infeasibility, all feasible sequences
can be enumerated without ever running into infeasible ones
(e.g.,1|d̄j |

∑
wjCj). The implication of infeasibility on lower

bounds and dominance conditions has never been studied.
Meanwhile, there are indications that researchers have at least
pondered upon this due to its practical relevance (e.g., [2]).

In future research, we would incorporate the lower bound
and solution method developed forWCT into solution pro-
cedures for JSTIMP [32] and other job shop problems with

11

TABLE I

COMPARISON OFPS-WSPTVS. PS-COMP USING PROBLEM SET (I)

n α β No. Unsolved CPU Seconds No. of Nodes
PS-WSPT PS-COMP PS-WSPT PS-COMP PS-WSPT PS-COMP

Mean (Max) Mean (Max) Mean (Max) Mean (Max)
20 0.5 1 0 0 0.02 (0.03) 0.02 (0.03) 119 (337) 84 (333)

2 0 0 0.03 (0.08) 0.02 (0.07) 201 (558) 113 (405)
4 0 0 0.03 (0.18) 0.02 (0.09) 146 (1008) 69 (415)
8 0 0 0.02 (0.06) 0.01 (0.02) 113 (333) 44 (98)

16 0 0 0.01 (0.05) 0.01 (0.02) 58 (296) 31 (51)
1 1 0 0 0.01 (0.01) 0.01 (0.01) 36 (104) 33 (100)

2 0 0 0.00 (0.01) 0.00 (0.01) 39 (116) 38 (113)
4 0 0 0.01 (0.01) 0.01 (0.01) 49 (97) 47 (97)
8 0 0 0.01 (0.01) 0.01 (0.01) 55 (124) 54 (124)

16 0 0 0.01 (0.01) 0.01 (0.01) 41 (59) 41 (57)

30 0.5 1 0 0 0.26 (0.71) 0.10 (0.26) 734 (1747) 240 (731)
2 0 0 0.77 (1.50) 0.16 (0.27) 1992 (4260) 384 (645)
4 0 0 2.75 (13.16) 0.10 (0.19) 7402 (31734) 257 (486)
8 0 0 0.73 (4.58) 0.07 (0.13) 2025 (10527) 188 (341)

16 0 0 2.11 (18.51) 0.08 (0.18) 6300 (54500) 197 (419)
1 1 0 0 0.04 (0.11) 0.04 (0.12) 179 (502) 132 (342)

2 0 0 0.11 (0.72) 0.07 (0.26) 412 (2003) 266 (832)
4 0 0 0.18 (1.35) 0.05 (0.13) 671 (4984) 190 (488)
8 0 0 0.06 (0.14) 0.05 (0.14) 240 (510) 192 (408)

16 0 0 0.03 (0.05) 0.04 (0.06) 142 (218) 135 (209)

40 0.5 1 0 0 5.30 (19.08) 0.57 (1.80) 10206 (41959) 1072 (2900)
2 0 0 13.51 (32.12) 1.02 (4.05) 24967 (59500) 1553 (5499)
4 0 0 12.52 (74.71) 0.36 (1.26) 23806 (146577) 642 (2249)
8 1 0 11.14 (48.00) 0.59 (3.92) 29533 (117399) 908 (5825)

16 0 0 6.54 (53.27) 0.32 (0.79) 17148 (145573) 605 (2176)
1 1 0 0 0.10 (0.47) 0.09 (0.38) 377 (2109) 279 (1395)

2 0 0 0.18 (0.57) 0.18 (0.56) 578 (1860) 497 (1565)
4 0 0 0.29 (0.82) 0.27 (0.68) 923 (2239) 769 (2064)
8 0 0 0.20 (0.49) 0.19 (0.55) 670 (1945) 563 (1938)

16 0 0 0.28 (0.82) 0.31 (0.89) 784 (1642) 774 (1640)

50 0.5 1 4 0 48.83 (120.00) 14.33 (75.56) 98824 (162634) 21882 (139057)
2 3 0 77.04 (120.00) 2.35 (7.26) 120419 (229314) 2789 (9245)
4 7 0 — 4.04 (15.14) — 5314 (17678)
8 4 0 34.07 (120.00) 4.03 (28.58) 66947 (176218) 3990 (26063)

16 2 0 13.93 (38.83) 1.05 (2.03) 35150 (117276) 1361 (2567)
1 1 0 0 0.37 (0.96) 0.27 (0.60) 970 (2360) 609 (1390)

2 0 0 4.14 (35.01) 0.63 (2.01) 7488 (60635) 1226 (3892)
4 0 0 12.84 (99.93) 2.44 (9.10) 20621 (156388) 3739 (13628)
8 0 0 3.80 (24.91) 2.26 (12.63) 6613 (41385) 3751 (19131)

16 0 0 0.95 (3.11) 1.01 (3.09) 1979 (5158) 1885 (5054)

TABLE II

RESULTS OFGS VS. PSON PROBLEM SET (I)

n α β
Ê(d̄j−rj) No. CPU

n α β
Ê(d̄j−rj) No. CPU

Ê(pj) Unsolved Seconds Ê(pj) Unsolved Seconds
GS PS GS PS GS PS GS PS

Mean (Max) Mean (Max) Mean (Max) Mean (Max)
20 0.5 1 9.42 0 0 0.01 (0.05) 0.02 (0.03) 40 0.5 1 18.06 3 0 9.85 (24.95) 0.57 (1.80)

2 11.44 0 0 0.03 (0.14) 0.02 (0.07) 2 22.13 8 0 — 1.02 (4.05)
4 16.00 0 0 0.29 (0.99) 0.02 (0.09) 4 33.70 10 0 — 0.36 (1.26)
8 31.04 0 0 1.99 (7.01) 0.01 (0.02) 8 61.08 10 0 — 0.59 (3.92)

16 57.48 0 0 5.58 (12.61) 0.01 (0.02) 16 96.89 10 0 — 0.32 (0.79)
1 1 4.65 0 0 0.00 (0.01) 0.01 (0.01) 1 1 5.34 0 0 0.07 (0.68) 0.09 (0.38)

2 5.39 0 0 0.00 (0.00) 0.00 (0.01) 2 8.04 0 0 0.09 (0.80) 0.18 (0.56)
4 7.96 0 0 0.01 (0.05) 0.01 (0.01) 4 12.02 1 0 1.96 (8.56) 0.27 (0.68)
8 12.80 0 0 0.02 (0.07) 0.01 (0.01) 8 21.69 5 0 — 0.19 (0.55)

16 20.82 0 0 0.23 (0.80) 0.01 (0.01) 16 32.25 8 0 — 0.31 (0.89)

30 0.5 1 12.19 0 0 0.17 (1.37) 0.10 (0.26) 50 0.5 1 20.43 7 0 — 14.33 (75.56)
2 18.30 0 0 6.01 (13.89) 0.16 (0.27) 2 27.29 10 0 — 2.35 (7.26)
4 27.64 7 0 — 0.10 (0.19) 4 42.78 10 0 — 4.04 (15.14)
8 43.64 8 0 — 0.07 (0.13) 8 66.47 10 0 — 4.03 (28.58)

16 80.73 10 0 — 0.08 (0.18) 16 123.11 10 0 — 1.05 (2.03)
1 1 6.27 0 0 0.01 (0.03) 0.04 (0.12) 1 1 7.13 0 0 0.04 (0.25) 0.27 (0.60)

2 7.41 0 0 0.09 (0.71) 0.07 (0.26) 2 8.57 0 0 0.72 (4.70) 0.63 (2.01)
4 11.07 0 0 0.35 (2.89) 0.05 (0.13) 4 17.30 5 0 — 2.44 (9.10)
8 15.49 0 0 1.50 (9.63) 0.05 (0.14) 8 24.11 5 0 — 2.26 (12.63)

16 31.08 5 0 — 0.04 (0.06) 16 44.65 10 0 — 1.01 (3.09)

12

TABLE III

RESULTS ONPROBLEM SET (II): A LGORITHMS’ SENSITIVITY TO TIME WINDOW WIDTH

n W
Ê(d̄j−rj) No. CPU

n W
Ê(d̄j−rj) No. CPU

Ê(pj) Unsolved Seconds Ê(pj) Unsolved Seconds
GS PS GS PS GS PS GS PS

Mean (Max) Mean (Max) Mean (Max) Mean (Max)
20 150 5.96 0 0 0.00 (0.01) 0.01 (0.01) 40 150 6.08 0 0 0.00 (0.01) 0.06 (0.11)

200 7.87 0 0 0.01 (0.02) 0.00 (0.01) 200 7.87 0 0 0.01 (0.02) 0.12 (0.29)
250 10.65 0 0 0.02 (0.07) 0.00 (0.01) 250 9.53 0 0 0.06 (0.14) 0.21 (0.84)
300 11.64 0 0 0.25 (2.11) 0.01 (0.01) 300 11.21 0 0 0.26 (0.70) 0.19 (0.42)
400 15.86 0 0 0.66 (1.68) 0.01 (0.01) 400 16.66 4 0 7.29 (16.86) 0.15 (0.34)
600 21.49 0 0 2.28 (10.85) 0.00 (0.01) 600 23.20 9 0 — 0.14 (0.39)
800 30.06 0 0 4.83 (15.33) 0.00 (0.01) 800 32.38 10 0 — 0.06 (0.17)

30 150 5.59 0 0 0.00 (0.01) 0.02 (0.04) 50 150 5.93 0 0 0.01 (0.01) 0.13 (0.18)
200 7.76 0 0 0.00 (0.01) 0.03 (0.07) 200 7.87 0 0 0.02 (0.04) 0.23 (0.58)
250 10.05 0 0 0.05 (0.29) 0.03 (0.06) 250 9.41 0 0 0.08 (0.16) 0.40 (0.87)
300 11.56 0 0 0.34 (1.62) 0.05 (0.11) 300 11.93 0 0 1.31 (6.76) 1.39 (5.22)
400 16.33 0 0 1.98 (6.22) 0.06 (0.20) 400 16.84 4 0 11.65 (25.81) 0.79 (2.96)
600 24.95 10 0 — 0.02 (0.07) 600 23.84 10 0 — 1.01 (6.14)
800 30.68 10 0 — 0.02 (0.05) 800 31.17 10 0 — 0.22 (0.42)

TABLE IV

RESULTS ONPROBLEM SET (III): U NCORRELATED RELEASE DATES AND DEADLINES

n α γ
Ê(d̄j−rj) No. CPU

n α γ
Ê(d̄j−rj) No. CPU

Ê(pj) Unsolved Seconds Ê(pj) Unsolved Seconds
GS PS GS PS GS PS GS PS

Mean (Max) Mean (Max) Mean (Max) Mean (Max)
20 0.5 1 12.51 0 0 0.24 (0.68) 0.03 (0.10) 40 0.5 1 25.76 9 0 — 6.05 (45.76)

2 18.63 0 0 1.16 (5.87) 0.02 (0.04) 2 42.45 10 0 — 1.35 (3.07)
4 36.13 0 0 3.93 (10.82) 0.01 (0.02) 4 79.18 10 0 — 0.77 (2.39)
8 75.17 0 0 8.27 (15.78) 0.01 (0.02) 8 163.04 10 0 — 0.36 (1.46)

16 167.08 1 0 26.07 (38.02) 0.01 (0.02) 16 317.80 10 0 — 0.37 (1.19)
1 1 15.81 0 0 1.18 (4.20) 0.02 (0.09) 1 1 34.15 10 0 — 0.49 (1.48)

2 24.03 0 0 1.65 (6.48) 0.01 (0.02) 2 52.13 10 0 — 1.06 (7.13)
4 40.30 0 0 5.12 (11.75) 0.01 (0.02) 4 80.41 10 0 — 0.39 (2.21)
8 77.68 0 0 9.66 (29.36) 0.01 (0.01) 8 153.58 10 0 — 0.36 (1.21)

16 162.15 0 0 12.38 (30.81) 0.01 (0.02) 16 310.17 10 0 — 0.27 (0.74)

30 0.5 1 20.36 8 0 — 0.99 (6.37) 50 0.5 1 31.45 10 3 — 46.39 (120.01)
2 30.81 10 0 — 0.18 (0.57) 2 56.08 10 1 — 16.05 (120.00)
4 59.01 10 0 — 0.15 (0.57) 4 100.57 10 0 — 9.10 (51.28)
8 116.51 10 0 — 0.09 (0.20) 8 197.80 10 0 — 0.86 (1.59)

16 249.62 10 0 — 0.09 (0.26) 16 393.73 10 0 — 1.89 (5.66)
1 1 24.45 9 0 — 0.16 (0.69) 1 1 41.90 10 0 — 1.05 (2.24)

2 34.56 10 0 — 0.09 (0.18) 2 59.47 10 0 — 2.49 (16.60)
4 58.38 10 0 — 0.11 (0.41) 4 109.72 10 0 — 3.61 (11.10)
8 120.28 10 0 — 0.07 (0.20) 8 196.81 10 0 — 1.35 (5.52)

16 246.35 10 0 — 0.06 (0.16) 16 387.60 10 0 — 1.27 (5.05)

inventory and cycle time-related objectives. Another promising
direction is to utilize our tailored algorithm within a mathe-
matical programming framework based on the Dantzig-Wolfe
decomposition and column generation (e.g., [11], [36]–[38]).

Additionally, the isotone optimization problem defined in
(8) can be extended by adding the following bound constraints
on the variables:

x0
j ≤ xj ≤ x1

j , ∀j, (11)

where x0
j and x1

j are given lower and upper bounds on the
variablexj . It turns out that these bound constraints do not
complicate the problem and can be handled easily. Specifically,
we first solve the problem without taking into account the
bounds; letx1, . . . , xn be the optimal solution found. The
solution to the problem with bounds can be obtained in two
passes:

Algorithm. Two-Pass

Step 0.Let x1, . . . , xn be an optimal solution to the problem
without bound constraints.

Backward Pass:

Step 1.Setxn := max{xn, x0
n}.

Step 2.For j = n− 1, . . . , 1, setxj := max{xj , xj+1, x
0
j}.

Forward Pass:

Step 3.Setx1 := min{x1, x
1
1}.

Step 4.For j = 2, . . . , n, set xj := min{xj , xj−1, x
1
j}. If

xj < x0
j for any j, the chain constraints and bound

constraints as a whole are not consistent, i.e., the
problem is infeasible.

This procedure clearly runs inO(n) time, and its correctness
can be shown by a fairly elementary argument.

Finally, we would like to shed some light on the relationship

13

between the isotone optimization problems and the timetabling
algorithms in scheduling theory. The timetabling algorithms
are also extensively researched and play an important role
in scheduling withnonregularobjectives. Take the earliness-
tardiness problem,1||∑ µj(dj −Cj)+ + νj(Cj − dj)+, as an
example, where for each jobj, µj ≥ 0, νj ≥ 0, anddj denotes
the due date(which can be violated at a penalty). Suppose
without loss of generality that we are given a sequence
(1, . . . , n). The task of timetabling is to compute optimal
completion times,Cj , j = 1, . . . , n, that solve the following
problem (Cj ’s are variables here).

min
n∑

j=1

µj(dj − Cj)+ + νj(Cj − dj)+

s.t. 0 ≤ C1 − p1, (12)

Cj−1 ≤ Cj − pj , j = 2, . . . , n.

Quite a number of authors have studied variations of the
timetabling problem (see [21] for an extensive list of refer-
ences).O(n2)-time timetabling algorithms are straightforward
(e.g., the algorithm of Szwarc and Mukhopadhyay [34]).
O(n log n)-time implementations are often adapted from that
of Garey et al. [17], who study the unit-weight case where
µj = νj = 1 for all j.

In fact, the timetabling problem defined above can be
converted into one just like (8) by the following linear trans-
formation

xj = Cn+1−j −
n+1−j∑

i=1

pi, ∀j.

This is a remarkable coincidence, considering the distinct
origins of the isotone optimization problems and timetabling
problem. It should be noted that thefj(xj) function associated
with the timetabling problem corresponds to the special case
depicted in Fig. 1(a), becauseµj ≥ 0 and νj ≥ 0 in the
objective function. Consequently, the optimal objective value
of the timetabling problem is bounded, whereas the isotone
problem originated from our lower bound calculation can be
unbounded. After the conversion, constraint (12) results in a
lower bound constraint onxn, which can be handled using the
backward pass discussed above. As a result, our Specialized
Cascading Descent algorithm, together with the backward
pass, offers a newO(n log n) procedure for timetabling.

Although our algorithm is not the firstO(n log n) procedure
for timetabling, it does offer a more practical alternative to the
algorithm of Garey et al. and its variations. This is because
Garey et al.’s algorithm (theO(n log n)-time version) requires
the so-called “meld” operation—i.e., the merger of two heaps
to form a new heap. Because there can be as many asO(n)
melds, each meld has to be done inO(log n) in order to
achieve theO(n log n)-time bound. Unfortunately, this means
that the aforementioned mergeable heaps must be used. Due to
the difficulty and overhead in the implementation of mergeable
heaps, less efficientO(n2) procedures are often used instead
(see, e.g., [22]). Our proposed procedure, on the other hand,
does not require meld operations, and therefore avoids this
difficulty.

ACKNOWLEDGMENT

We are grateful to the associate editor and two anonymous
referees, whose critiques and suggestions have greatly influ-
enced the content and presentation of this paper. In particular,
the associate editor brought isotone optimization problems to
our attention, and one referee led us to the study of problem
set (III).

REFERENCES

[1] R. H. Ahmadi and U. Bagchi, “Just-in-time scheduling in single machine
systems,” 1986, working paper 85/86-4-21, Department of Management,
University of Texas, Austin, TX.

[2] ——, “Minimizing job idleness in deadline constrained environments,”
Operations Research, vol. 40, pp. 972–985, 1992.

[3] R. K. Ahuja and J. B. Orlin, “A fast scaling algorithm for minimizing
separable convex functions subject to chain constraints,”Operations
Research, vol. 49, no. 5, pp. 784–789, 2001.

[4] K. R. Baker,Introduction to Sequencing and Scheduling. NY: Wiley,
1974.

[5] J. F. Bard, K. Venkatraman, and T. A. Feo, “Single machine scheduling
with flow time and earliness penalties,”Journal of Global Optimization,
vol. 3, no. 3, pp. 289–309, 1993.

[6] H. Belouadah, M. E. Posner, and C. N. Potts, “Scheduling with release
dates on a single machine to minimize total weighted completion time,”
Discrete Applied Mathematics, vol. 36, no. 3, pp. 213–231, 1992.

[7] L. Bianco and S. Ricciardelli, “Scheduling of a single machine to
minimize total weighted completion time subject to release times,”Naval
Research Logistics Quarterly, vol. 29, pp. 151–167, 1982.

[8] J. Carlier, “The one-machine sequencing problem,”European Journal
of Operational Research, vol. 11, pp. 42–47, 1982.

[9] N. Chakravarti, “Isotonic median regression: A linear programming
approach,”Mathematics of Operations Research, vol. 14, no. 2, pp. 303–
308, 1989.

[10] S. Chand and H. Schneeberger, “Single machine scheduling to minimize
weighted earliness subject to no tardy jobs,”European Journal of
Operational Research, vol. 34, pp. 221–230, 1988.

[11] Z.-L. Chen and W. B. Powell, “Solving parallel machine scheduling
problems by column generation,”INFORMS on Computing, vol. 11, pp.
78–94, 1999.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to
Algorithms. Cambridge, MA: MIT Press, 1997.

[13] M. Dell’Amico, S. Martello, and D. Vigo, “Minimizing the sum of
weighted completion times with unrestricted weights,”Discrete Applied
Mathematics, vol. 63, no. 1, pp. 25–41, 1995.

[14] H. Emmons, “A note on a scheduling problem with dual criteria,”Naval
Research Logistics Quarterly, vol. 22, pp. 615–616, 1975.

[15] S. French,Sequencing and Scheduling: An Introduction to the Mathe-
matics of the Job Shop. Chichester, West Sussex, England: Horwood,
1982.

[16] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[17] M. R. Garey, R. Tarjan, and G. Wilfong, “One-processor scheduling with
symmetric earliness and tardiness penalties,”Mathematics of Operations
Research, vol. 13, pp. 330–348, 1988.

[18] S. Ǵelinas and F. Soumis, “A dynamic programming algorithm for single
machine scheduling with ready times,”Annals of Operations Research,
vol. 69, pp. 135–156, 1997.

[19] R. Graham, E. Lawler, J. Lenstra, and A. H. G. Rinnooy Kan, “Opti-
mization and approximation in deterministic sequencing and scheduling:
A survey,” Annals of Discrete Mathematics, vol. 5, pp. 287–326, 1979.

[20] A. M. A. Hariri and C. N. Potts, “Algorithm for single machine
sequencing with release dates to minimize total weighted completion
time,” Discrete Applied Mathematics, vol. 5, pp. 99–109, 1983.

[21] J. J. Kanet and V. Sridharan, “Scheduling with inserted idle time:
problem taxonomy and literature review,”Operations Research, vol. 48,
no. 1, pp. 99–110, 2000.

[22] C. Koulamas, “Single-machine scheduling with time windows and ear-
liness/tardiness penalties,”European Journal of Operational Research,
vol. 91, no. 1, pp. 190–202, 1996.

[23] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Minimizing
maximum lateness on one machine: computational experience and some
applications,”Statistica Neerlandica, vol. 30, pp. 25–41, 1976.

14

[24] P. D. Martin and D. B. Shmoys, “A new approach to computing
optimal schedules for the job-shop scheduling problem,”Lecture Notes
in Computer Science, vol. 1084, pp. 389–403, 1996.

[25] Y. Pan, “An improved branch and bound algorithm for single machine
scheduling with deadlines to minimize total weighted completion time,”
Operations Research Letters, vol. 31, no. 6, pp. 492–496, 2003.

[26] ——, “Production scheduling for suppliers in the extended enterprise,”
Ph.D. dissertation, Department of Industrial Engineering, University of
Wisconsin-Madison, Madison, WI, 2003.

[27] Y. Pan and L. Shi, “Branch-and-bound algorithms for solving hard
instances of the one-machine sequencing problem,”European Journal
of Operational Research, 2004, in press.

[28] P. M. Pardalos, G. Xue, and L. Yong, “Efficient computation of an
isotonic median regression,”Applied Mathematics Letters, vol. 8, no. 2,
1995.

[29] M. Posner, “Minimizing weighted completion times with deadlines,”
Operations Research, vol. 33, no. 3, pp. 562–574, 1985.

[30] C. N. Potts and L. N. van Wassenhove, “Algorithm for single machine
sequencing with deadlines to minimize total weighted completion time,”
European Journal of Operational Research, vol. 12, pp. 379–387, 1983.

[31] T. Robertson and P. Waltman, “On estimating monotone parameters,”
Annals of Mathematical Statistics, vol. 39, pp. 1030–1039, 1968.

[32] L. Shi and Y. Pan, “Minimizing job shop inventory with on-time delivery
guarantees,”J. Systems Science & Systems Engineering, vol. 12, no. 4,
pp. 449–469, 2003.

[33] W. E. Smith, “Various optimizers for single-stage production,”Naval
Research Logistics Quarterly, vol. 3, pp. 59–66, 1956.

[34] W. Szwarc and S. K. Mukhopadhyay, “Optimal timing schedules in
earliness-tardiness single machine sequencing,”Naval Research Logis-
tics Quarterly, vol. 42, pp. 1109–1114, 1995.

[35] R. Tarjan,Data Structures and Network Algorithms, ser. CBMS-NSF
Regional Conference Series in Applied Mathematics. Philadelphia,
PA: SIAM, 1983, vol. 44.

[36] J. M. van den Akker, J. A. Hoogeveen, and S. L. van de Velde, “Par-
allel machine scheduling by column generation,”Operations Research,
vol. 47, no. 6, pp. 862–872, 1999.

[37] J. M. van den Akker, C. A. J. Hurkens, and M. W. P. Savelsbergh,
“Time-indexed formulations for machine scheduling problems: Column
generation,”INFORMS on Computing, vol. 12, no. 2, pp. 111–124, 2000.

[38] M. van den Akker, H. Hoogeveen, and S. van de Velde, “Combining
column generation and lagrangean relaxation to solve a single-machine
common due date problem,”INFORMS on Computing, vol. 14, no. 1,
pp. 37–51, 2002.

[39] L. N. van Wassenhove, “Special-purpose algorithms for one-machine
sequencing problems with single and composite objectives,” Ph.D.
dissertation, Katholieke Universiteit, Leuven, 1979.

Yunpeng Pan is a research associate with De-
partment of Industrial Engineering at University of
Wisconsin-Madison. He received a Ph.D. in In-
dustrial Engineering (2003) and an M.S. in Com-
puter Sciences (2001) from University of Wisconsin-
Madison, an M.S. in Operations Research from
University of Delaware (1998), and a B.S. in Com-
putational Mathematics from Nanjing University,
China (1995). His current research interest is hybrid
combinatorial and mathematical programming-based
approaches to practical shop scheduling problems

that arise from extended enterprise supply chain networks. His work appears
in Operations Research Letters, IEEE Trans. on Automation Science and En-
gineering, European Journal of Operational Research, and Journal of Systems
Science and Systems Engineering. Dr. Pan is a member of INFORMS.

Leyuan Shi is a Professor with Department of
Industrial Engineering at University of Wisconsin-
Madison. She received her Ph.D. in Applied Math-
ematics from Harvard University in 1992, her M.S.
in Engineering from Harvard University in 1990, her
M.S. in Applied Mathematics from Tsinghua Uni-
versity in 1985, and her B.S. in Mathematics from
Nanjing Normal University in 1982. Dr. Shi has been
involved in undergraduate and graduate teaching, as
well as research and professional service. Dr. Shi’s
research is devoted to the theory and applications of

large-scale optimization algorithms, discrete event simulation and modeling
and analysis of discrete dynamic systems. She has published many papers
in these areas. Her work has appeared in Discrete Event Dynamic Systems,
Operations Research, Management Science, IEEE Trans., and, IIE Trans. She
is currently a member of the editorial board for Journal of Manufacturing
& Service Operations Management, and is an Associate Editor of Journal
of Discrete Event Dynamic Systems. Dr. Shi is a member of IEEE and
INFORMS.

