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Abstract: The effect of stenting on blood flow is investigated using a model of the coronary artery
network. The parameters in a generic non-linear pressure–radius relationship are varied in the stented
region to model the increase in stiffness of the vessel due to the presence of the stent. A computationally
efficient form of the Navier–Stokes equation is solved using a Lax–Wendroff finite difference method.
Pressure, vessel radius and flow velocity are computed along the vessel segments. Results show negative
pressure gradients at the ends of the stent and increased velocity through the middle of the stented
region. Changes in local flow patterns and vessel wall stresses due to the presence of the stent have been
shown to be important in restenosis of vessels. Local and global pressure gradients affect local flow
patterns and vessel wall stresses, and therefore may be an important factor associated with restenosis.
The model presented in this study can be easily extended to solve flows for stented vessels in a full,
anatomically realistic coronary network. The framework to allow for the effects of the deformation of
the myocardium on the coronary network is also in place.
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INTRODUCTION

Stents are metallic mesh tubes that are inserted into ar-
teries to keep them open. A stent is generally placed in
an occluded artery (such as coronary arteries) following a
balloon angioplasty (also known as percutaneous translu-
minal coronary angioplasty). Balloon angioplasty involves
inserting a balloon catheter into the femoral artery and
guiding it to the blockage site in the coronary artery. The
balloon is then inflated to widen the artery and remove
the blockage. The catheter is removed, and then the stent
catheter is introduced into the system. The stent is placed
over a deflated balloon on the catheter. Once the stent is
at the blockage site, the balloon is inflated and the stent is
deployed to keep the artery open.

Stenting can reduce acute complications of angioplasty
as well as the restenosis rate (Jowett and Thompson 2003).
With just balloon angioplasty (and no stent implantation),
up to 50% of cases develop restenosis. This restenosis is
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due to arterial remodelling (shrinkage) and neointimal hy-
perplasia (Jowett and Thompson 2003). Restenosis rates
are lower with stenting than without because of better ini-
tial patency of the artery. However, restenosis still occurs
in about 20% to 30% of cases mainly due to neointimal
proliferation. Stenting is also said to improve the safety
and efficiency of balloon angioplasty procedures since the
need for emergency coronary artery bypass graft surgery is
reduced (Jowett and Thompson 2003; Yock et al. 2003).

Some of the stenosis locations that are targeted for stent
implantation (and used in many modelling studies) are in
the left anterior descending (LAD), right coronary and
circumflex arteries (Wentzel et al. 2000; Capozzolo et al.
2001; Hsieh et al. 2001; LaDisa et al. 2003; Zhu et al. 2003).

Stents can cause longitudinal straightening of the vessels
due to their stiffness and can also cause the enlargement
of the lumen of the vessels due to their radial force (Zhu
et al. 2003; Tortoriello and Pedrizzetti 2004). The presence
of the stent introduces a compliance mismatch with the
surrounding portion of the vessel. Several studies have
modelled the biomechanics of stents including initial stent
expansion and deformation (Barragan et al. 2000; Etave
et al. 2001; Tan et al. 2001; Migliavacca et al. 2002). Other
studies have presented experimental results and models of
flow and flow–tissue interactions in the local stented region
of arteries (Rolland et al. 1999; Berry et al. 2000; Moore
and Berry 2002; Benard et al. 2003; LaDisa et al. 2003;
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Figure 1 (a) Coronary artery network model—labelled in the
figure are the numbers of the network vessel segments. The
lengths of the segment are: (1) is 20 mm, (2) and (3) are
40 mm, (4) and (7) are 34 mm, (5) and (6) are 26.5 mm.
(b) Close-up of segment 2 where the stent was placed—L is
the length of the stent in place (15 mm in this study),
2L denotes the region where the stent affects the material
properties of the vessel, A–E are points along the vessel
segment at which results are presented later in the article.

Tortoriello and Pedrizzetti 2004). Many such studies are
mainly concerned with the local changes in the flow and
the implications on restenoses of stented arteries.

One-dimensional blood flow models that assume a radial
velocity profile are increasingly being developed in the lit-
erature (Smith et al. 2002; Formaggia et al. 2003; Sherwin
et al. 2003). The simplifications in these models remove
explicit calculation of local effects such as circumferential
stress. However, the formulation is computationally effi-
cient, and thus provides the ability to simulate blood flow
in large networks. To our knowledge, this is the first study
to investigate computationally the effects of stenting on the
flow in a network.

In this article, we present such a computationally effi-
cient formulation to study the effects of stenting an artery
segment on the local, upstream and downstream flow pres-
sures, velocities and vessel radii. The principles of mod-
elling blood flow used in this study can be extended in a
straightforward manner to anatomically realistic coronary
artery meshes. The framework to allow the mechanics of
the heart is already in place for more detailed future mod-
els (Smith et al. 2005). A finite difference grid based on an

underlying finite element coronary artery mesh is used in
this study (Figure 1).

This study presents a one-dimensional model of coro-
nary artery blood flow in the unstented and stented cases
for an assumed pressure pulse. In the stented case, the
compliance mismatch is modelled by changing the form of
the pressure–radius relationship within the stiffer stented
region compared with the surrounding vessels. The re-
sulting transient and steady-state pressures, velocities and
vessel radii are compared with each other and physiological
conclusions are drawn from the results.

MODEL DESCRIPTION

Blood flow equations

Single vessel
The blood flow model used in this study is the one
presented by Smith et al. (2002). Blood is modelled as
an incompressible, homogeneous, Newtonian fluid. The
Navier–Stokes equations govern the Newtonian fluid flow.
A cylindrical coordinate system (r, θ and x) is used in the
model, with x representing the local vessel axial direction.
Assuming that the velocity in the circumferential (θ ) di-
rection is zero and following the derivation given in Smith
et al. (2002), the Navier–Stokes equations that govern the
Newtonian fluid flow reduce to (1).

∂V
∂t

+ (2α − 1)V
∂V
∂x

+ 2(α − 1)
V2

R
∂ R
∂x

+ 1
ρ

∂p
∂x

= −2
να

α − 1
V
R2

, (1)

where V is the average velocity, p is the pressure, R is
the inner vessel radius, ρ is the fluid density, ν is the
fluid viscosity and t is the time. The term α is a non-
dimenionalised parameter, which defines the radial velocity
profile that can vary between 1.33, fully developed flow,
and 1.0, corresponding to a flat plug flow profile (for more
details, see Smith et al. 2002).

The equation of conservation of mass is given by (2).

∂ R
∂t

+ V
∂ R
∂x

+ R
2

∂V
∂x

= 0. (2)

To solve the system, another equation describing the re-
lationship between pressure and inner vessel radius is
needed. The vessel wall is assumed to be elastic and any
viscoelastic effects are ignored in this model. An empir-
ical relationship shown in (3) is established between the
pressure and radius.

p(R) = G0

[(
R
R0

)β

− 1

]
, (3)

where R0 is the unstressed vessel radius and G0 and β are
parameters that define wall behaviour. A two-step Lax–
Wendroff finite difference technique is used to solve the
above equations.
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Bifurcation model
A bifurcation model is necessary to model flow through
the branches in the artery network. The bifurcation model
used in this study was presented by Smith et al. (2002).
In the model, the junction of three tubes (a, b and c) is
approximated as the elastic tubes short enough for velocity
along them to be assumed constant and for losses due to
fluid viscosity to be negligible. It is also assumed that no
fluid is stored within the junction. Let a1 be the finite
difference grid point at the end of vessel a (the parent vessel)
entering the junction and let a2 be the point proximal to
it. Let b1 and c1 be the grid points at the beginning of
the daughter vessels (b and c) and let the distal points be
denoted b2 and c2, respectively.

The conservation of mass at any given time through the
junction is then governed by (4), where Fa1 , Fb1 and Fc1

are the flows through each junction segment and p0 is the
pressure at the junction centre.

Fa1 − Fb1 − Fc1 = 0. (4)

In a segment of length la and radius Ra of tube a, the
conservation of momentum of fluid is given by (5).

π R2
a (pa − p0) = ∂(ρlaπ R2

a Va)
∂t

. (5)

Similarly, the conservation of momentum equations can
be written for tubes b and c. These are then expanded using
a central difference representation about the

(
k + 1

2

)
time

step.

Arterial properties

For all simulations, blood density ρ, viscosity µ, and the
flow profile parameter α have been set to 1.05e-03 g mm−3,
3.2 mm2 s and 1.1, respectively. The difference between
unstented and stented vessels lies in the pressure–radius
relationship defined for each case (Equation (3)), in partic-
ular, the descriptions of G0 and β used in each case.

Unstented vessel
For an unstented vessel, G0 and β values are taken to be
constant along the entire vessel. The values used in this
model are G0 = G0C = 10.0 kPa and β = 2.0. These
chosen values for the constants are typical of values fitted
from the experimental data of Carmines et al. (1991).

Stented vessel
Because of the presence of the stent, the vessel becomes
stiff. Therefore, the pressure–radius relationship within
the stented region will be different from the one outside
the stented region. As the effect of the stent in the network
is modelled by altering the mechanical properties of the
vessel wall, the shape of the stent is assumed to implicitly
conform to the shape of the vessel wall and not substantially
alter the haemodynamic characteristics, that is, cylindrical,
axi-symmetric flow. Thus, specifics such as stent geometry
and strut size are beyond the scope of inclusion in network
models via this technique.

Since the vessel is a continuous structure, this change
in the pressure–radius relationship between the unstented
and stented regions is assumed to occur in a smooth man-
ner without discontinuities. This change in the pressure–
radius relationship is described by the gradual change in
G0 and β values along the length of the vessel, where the
stent is assumed to have an effect. The total length of the
region where the stent is assumed to have an effect is taken
to be twice the length of the stent. The variation in G0
and β values is given by the relationships shown in (6) and
(7), which are adapted from the work of Tortoriello and
Pedrizzetti (2004).

G0 =
{

G0C x < xs, x > (xs + 2L)

G0C

(
Eh(x)

(R(x))2

)
xs ≤ x ≤ (xs + 2L)

(6)

β =
{

βC x < xs, x > (xs + 2L)

βC

(
1 + �β e−(2( x−xs

L )−2)n )
xs ≤ x ≤ (xs + 2L)

(7)

In (6) and (7), x is the axial distance from the start of a
vessel segment, xs is the distance at which the effect of
the stent is assumed to start, L is the length of the stent,
G0C and βC are the constant parameters as used in the
unstented vessel and n is used to control the steepness of
the transition of the G0 and β values from the unstented to
the stented regions and back. The x-dependent functions
Eh(x) and R (x) are given by (8) and (9).

Eh(x) = 1 + �Eh e−(2( x−xs
L )−2)n

. (8)

R(x) = 1 + �R e−(2( x−xs
L )−2)n

. (9)

For this model, the constants �Eh and �R were taken
to be 60 and 0, respectively, thus making R(x) = 1. The
function R(x) can actually be used to model any increase in
unstressed vessel radius due to the expansion of the stent.
For this model, however, the unstressed vessel radius was
taken as constant in the stented and unstented regions.
According to the experimental measurements of pressure
and vessel diameter conducted by Rolland et al. (1999), the
effects of the stent can be felt up to 10 mm on either side of
the stent. Therefore, the value of n was taken as 4, giving a
less steep transition for the G0 and β values compared with
that reported in Tortoriello and Pedrizzetti (2004), where
a value of 8 was assigned to n. Figure 2 shows an example
of the variation of G0 and β along a stented vessel.

Steady-state solution

Stented vessel
Here, we derive a steady-state solution for the stented
vessel case as a means of verifying the numerical solution
procedure. By setting all time-dependent terms in (1) to
be zero, and using vessel area S = πR2 and a constant flow
rate Q = VS, from the conservation of mass principle, we
obtain (10).

− αQ 2

(S(x))3

dS
dx

+ 1
ρ

dp
dx

= −2π
να

α − 1
Q

(S(x))2
. (10)
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Figure 2 (a) G0 and (b) β values computed from (6) and (7) along a stented vessel with xs = 5 mm, stent length L = 15 mm.

Substituting vessel area into (3), we obtain (11),

p(S) = G0

[(
S
S0

)β/2

− 1

]
= G0(x)H(x), (11)

where G0(x) is given by the appropriate part of (6) and

H(x) =
(

S(x)
S0

)β(x)/2

− 1. (12)

Equations (11) and (12) can be used to give an expression
for dp

dx (Equation (13)) in the region where xs ≤ x ≤ (xs +
2L). Note that in the stented region of the vessel both G0
and β are functions of the axial distance x.

1
ρ

dp
dx

= 1
ρ

[
dG0

dx
H(x) + G0(x)

dH
dx

]
. (13)

The derivative terms in (13) are given by (14) and (15).

dG0

dx
= G0C

[
d(Eh)

dx (R̄(x))2 − 2R̄(x)Eh(x) d(R̄(x))
dx

(R̄(x))4

]
.

(14)

dH
dx

= 1
2

[H(x) + 1]
[

dβ

dx
ln

(
S(x)
S0

)
+ β(x)

S(x)
dS
dx

]
.

(15)

Equations (7)–(9) can be easily differentiated to give dβ

dx ,
d(Eh)

dx and d(R̄)
dx . So substituting (14) and (15) into (13), we

have an expression for dp
dx in terms of x and S such that it

can be used in (10). This gives us an ordinary differential
equation (ODE) describing dS

dx as shown in (16). This dif-
ferential equation cannot be solved analytically. It is solved
numerically using the MATLAB software package with a
Runge–Kutta method based on the work of Dormand and
Prince (1980). The vessel area S(x) from this steady-state
solution is later compared with the flow simulation results
to verify the simulations described below (Figure 6).[

− αQ 2

(S(x))3
+ 1

2ρ
G0(x)(H(x) + 1)

β(x)
S(x)

]
dS
dx

= −2π
να

α − 1
Q

(S(x))2
− 1

ρ

dG0

dx
H(x)

− 1
2ρ

G0(x)(H(x) + 1)
dβ

dx
ln

(
S(x)
S0

)
. (16)

FLOW SIMULATIONS

Pressure boundary conditions were set for the inlet at the
top of vessel segment 1 and at the outlets at the bottom of
segments 4, 5, 6 and 7. Exit pressures were held at 2 kPa
for the duration of the flow simulations. This pressure was
set to the lower end of the range reported by Defily et al.
(1993) for a small epicardial vessel of the same size.

Simulations were carried out for two different cases of
inlet pressure under unstented and stented conditions: (I)
linear increase in inlet pressure from 2 kPa to 3 kPa over
0.25 s and inlet pressure held at 3 kPa up to 1.0 s and (II)
a single sinusoidal pressure pulse squared followed by a
constant pressure value held at 2 kPa as given by (17).

pi = sin2
(

π
t
t f

)
+ 2, (17)

where pi is the inlet pressure and tf is the period of the
curve (0.25 s in this case). The stent was assumed to have a
length L of 15 mm with an expanded radius R0 of 1.5 mm.
The unstressed vessel radii for all segments of the network
were also taken to be 1.5 mm.

All simulations were carried out on a High Performance
Computer maintained at The University of Auckland. The
machine (Silicon Graphics Origin 3400 model) contains
16 processors (MIPS designed, 500 MHz, R14000) with
16 GB physical DRAM running the Silicon Graphics IRIX
6.5.13 operating system—only one processor in the system
was used for running the simulations. The software used
for the simulations was CMISS (continuum mechanics,
image analysis, signal processing and system identifica-
tion), which was developed at The University of Auckland.
The CMISS can be used to perform finite element, bound-
ary element or finite difference analyses. It has a compu-
tational back end to perform the analyses and a graphical
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Figure 3 Time versus varying pressure, radius and flow velocity at various points (A–E) along the vessel segment 2 in the
unstented ((a)–(c)) and stented ((d)–(f)) cases with linear increase in inlet pressure (Simulation I). See Figure 1 for the
positions of these points in the network. Note that the radius at point C in the middle of the stented vessel is just over 1.5 mm
(the radius of the stent).

front end allowing the user to view the results in three
dimensions. From our previous study, we found that a
time step of 2e-06 s, when using double precision arith-
metic, provides numerical stability, accuracy and no ac-
cumulation of numerical errors. Applying this time step,
each simulation took approximately 25 minutes to run to a
final simulation time of 1.0 s.

Simulation I

Figure 3 presents time versus varying pressure, vessel ra-
dius and flow velocity results at different points along vessel
segment 2 in the unstented and stented cases. The posi-
tions of these points on the network are shown in Figure 1.
These points are significant for the following reasons: point
A lies before the start of the region where the effects of the
stent are felt (where the material properties of the vessel
start changing), B lies at the start of the region where the
effects of the stent are felt, C lies exactly in the middle of
the stented region where the vessel is at its stiffest, D is
the point corresponding to B downstream of the stent and
E is the point corresponding to A downstream of the stent
(i.e. after the material properties return to their unstented
values).

The pressure plots in Figure 3 are similar to but not
exactly the same as each other in the unstented and stented
cases. In the stented case, the pressures at the upstream

points are slightly higher and pressures at the downstream
points are slightly lower than the corresponding values
in the unstented case. Similarly, the radii upstream and
downstream of the vessel are only slightly different in the
stented and unstented cases. However, as expected, the
radius in the middle of the stented region (point C) hardly
rises above 1.5 mm (the radius of the stent). Also, as ex-
pected, the velocity in the middle of the stent is much
higher than the upstream or downstream velocities. The
velocities upstream and downstream of the stent are lower
in the stented case than in the unstented case.

Figure 4 shows that pressure along vessel segments 1, 2
and 4 at various times in the unstented and stented cases.
No difference can be observed in the pressures for seg-
ment 1. The greatest difference between the unstented and
stented cases occurs in segment 2 where the stent is placed.
In the transition zone to the stented region, the pressure
dips at both the proximal and distal parts of the vessel.
This introduces a short region where there is a negative
pressure gradient. However, as can be seen in Figure 5(e),
the blood still flows downstream due to the momentum
already present in the flow. In segment 4, there is a slight
decrease in pressure in the stented case compared with the
unstented case.

Figure 5 shows radius, velocity and flow along vessel
segment 2 at various times in the unstented and stented
cases. The radius in the stented region stays close to 1.5 mm

81C© Woodhead Publishing Ltd doi:10.1533/abbi.2005.0023 ABBI 2006 Vol. 3 No. 2



R. Raghu, A. Pullan and N. Smith

3

2.8

2.6

2.4

0 5 10 15

Distance along vessel segment (mm)

2.2

2

P
re

ss
ur

e 
(k

P
a)

20

2.2

2.1

2

2.05

1.95

2.15

0 5 10 15 20 25 30

(a) (c)

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0 10 20 30

Distance along vessel segment (mm) Distance along vessel segment (mm)

P
re

ss
ur

e 
(k

P
a)

P
re

ss
ur

e 
(k

P
a)

40

(b)

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

Segment 1

3

2.8

2.6

2.4

0 5 10 15

Distance along vessel segment (mm)

2.2

2

P
re

ss
ur

e 
(k

P
a)

20

(d)

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

Segment 1

Segment 2 Segment 4

2.2

2.1

2

2.05

1.95

2.15

0 5 10 15 20 25 30

(f)

2.3

2.4

2.5

2.6

2.7

2.2

2.1

0

Distance along vessel segment (mm) Distance along vessel segment (mm)

2

2

1.9

2.3

2.4

2.5

2.6

2.7

2.2

2.1

1.9

P
re

ss
ur

e 
(k

P
a)

P
re

ss
ur

e 
(k

P
a)

(e)

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0
0.06
0.12
0.18
0.25 

1 

Segment 2 Segment 4

10 20 30 40

Figure 4 Pressure along different vessel segments at the times shown in the legends of the plots in the unstented ((a)–(c)) and
stented ((d)–(f)) cases. The results for 0.25 s and 1.0 s are very similar to each other and appear together as the top line in all the
plots. See Figure 1 for the positions of the vessel segments in the network.

as noted previously. The flow velocity along the unstented
vessel is reasonably constant compared with the stented
case. In the stented case, the velocity in the stented region
of the vessel is greater than in the unstented regions. As
the pressure increases over time, this difference in velocity
also increases. The figure also shows that the flow rate in
the unstented case is higher than in the stented case.

By 1.0 s, the system essentially reaches a steady state.
The radius along vessel segment 2 in the stented case at 1.0 s
(from the finite difference solution) is used to compute the
corresponding vessel area that is plotted against distance
along the vessel in Figure 6. Also shown in the same figure
is the solution of the steady-state ODE (16). Equation (16)
was solved using a constant flow rate (Q) of 2520 mm3/s
and a vessel area (Si) of 8.88 mm2 (at the start of the
region that is modified by the stent, i.e. at x = xs). This
steady-state flow rate and vessel cross-sectional area at xs
was obtained from the finite difference solution. Figure 6
also shows the pressure along the segment at 1.0 s from
the finite difference and the steady-state ODE solutions.
The steady-state ODE pressure was computed from the
steady-state ODE area using (11).

Simulation II

Figure 7 presents time versus varying pressure, vessel ra-
dius and flow velocity results at different points along vessel

segment 2 in the unstented and stented cases for sinusoidal
inlet pressure variation. The positions of these points on
the network are shown in Figure 1. As with the previous set
of simulations (Simulation I: linear increase in inlet pres-
sure), the pressure plots in Figure 7 are similar to but not
exactly the same as each other in the unstented and stented
cases. Similarly, the radii upstream and downstream of
the vessel are only slightly different in the stented and
unstented cases. The radius in the middle of the stented
region (point C) is only slightly higher than 1.5 mm (the
radius of the stent). Also, as expected, the differences in
velocity between the unstented and stented cases are as
described for Simulation I.

Figure 8 shows pressure, radius and flow velocity along
vessel segment 2 at various times in the unstented and
stented cases. The trends in pressures, radii and flow ve-
locities along the vessel described for Simulation I apply
to this set of simulations as well. The pressure in the tran-
sition zone in the stented case shows the highest change
from the unstented case.

DISCUSSION

The placement of a stent in an artery leads to a region of
increased stiffness where the stent is placed. Because of
this increase in stiffness, the flow is changed considerably

82ABBI 2006 Vol. 3 No. 2 doi:10.1533/abbi.2005.0023 C© Woodhead Publishing Ltd



Effects of stenting on blood flow in a coronary artery network model

1.68

1.66

1.64

1.62

1.6

1.7

R
ad

iu
s 

(m
m

)

403020100 403020100

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

350

V
el

oc
ity

 (
m

m
/s

)

300

250

200

150

100

50

0

Distance along vessel segment (mm) Distance along vessel segment (mm)

403020100

Distance along vessel segment (mm)

Segment 2 Segment 2 Segment 2

3000

F
lo

w
 r

at
e 

(m
m

3 /s
) 2500

2000

1500

1000

500

0

1.00 s

0.25 s

0.18 s

0.12 s

0.06 s
0.00 s

1.00 s

0.25 s

0.18 s

0.12 s

0.06 s
0.00 s

(a)

1.65

1.6

1.55

1.5

1.7

R
ad

iu
s 

(m
m

)

403020100

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

Distance along vessel segment (mm)

Segment 2

(d)

(b) (c)

403020100

350

400
V

el
oc

ity
 (

m
m

/s
) 300

250

200

150

100

50

0

Distance along vessel segment (mm)
403020100

Distance along vessel segment (mm)

Segment 2 Segment 2

2500

F
lo

w
 r

at
e 

(m
m

3 /s
)

2000

1500

1000

500

0

1.00 s

0.25 s

0.18 s

0.12 s

0.06 s

0.00 s

(e) (f)

1.00 s

0.25 s

0.18 s

0.12 s

0.06 s
0.00 s

Figure 5 Radius, flow velocity and flow rate along vessel segment 2 at the times shown in the legends of the plots in the
unstented ((a)–(c)) and stented ((d)–(f)) cases. The radius results for 0.25 s and 1.0 s are very similar to each other and appear
together as the top line in plots (a) and (d). See Figure 1 for the positions of the vessel segment 2 in the network.

8.5

8

7.5

7

9

3530252015105 5

5 5

C
ro

ss
-s

ec
tio

na
l a

re
a 

(m
m

2 )

Distance along stented vessel, x (mm)

Area from steady-state ODE solution

8.5

8

7.5

7

9

353025201510C
ro

ss
-s

ec
tio

na
l a

re
a 

(m
m

2 )

Distance along stented vessel, x (mm)

Area at 1.0 s from finite difference solution

2.2

2.4

2.6

2.8

3

2
353025201510

P
re

ss
ur

e 
(k

P
a)

P
re

ss
ur

e 
(k

P
a)

Distance along stented vessel, x (mm)

Pressure from steady-state ODE solution

353025201510

Distance along stented vessel, x (mm)

Pressure at 1.0 s from finite difference solution

2.2

2.4

2.6

2.8

3

2

(a) (b)

(c) (d)

Figure 6 Area and pressure from steady-state ODE solution ((a) and (c)) and from finite difference solution at a simulation time
of 1.0 s ((b) and (d)). The steady-state ODE solution does not appear as smooth as the finite difference solution due to
numerical errors introduced by the ODE solver.

83C© Woodhead Publishing Ltd doi:10.1533/abbi.2005.0023 ABBI 2006 Vol. 3 No. 2



R. Raghu, A. Pullan and N. Smith

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
P

re
ss

ur
e 

(k
P

a)

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

P
re

ss
ur

e 
(k

P
a)

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

1.6

1.62

1.64

1.66

1.68

1.7

R
ad

iu
s 

(m
m

)

0

50

100

150

200

250

300

350

V
el

oc
ity

 (
m

m
/s

)

0

50

100

150

200

250

300

350

V
el

oc
ity

1.5

1.55

1.6

1.65

1.7

R
ad

iu
s 

(m
m

)

Time (s) Time (s) Time (s)

(a) (b) (c)

Time (s) Time (s) Time (s)

(d) (e) (f)

Figure 7 Time versus varying pressure, radius and flow velocity at various points (A–E) along the vessel segment 2 in the
unstented ((a)–(c)) and stented ((d)–(f)) cases with sinusoidal inlet pressure variation (Simulation II). See Figure 1 for the
positions of these points in the network. Note that the radius at point C in the middle of the stented vessel is just over 1.5 mm
(the radius of the stent).

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7
0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

0.00 s
0.06 s
0.12 s
0.18 s
0.25 s
1.00 s

P
re

ss
ur

e 
(k

P
a)

P
re

ss
ur

e 
(k

P
a)

1.63

1.64

1.65

1.66

1.67

1.68

1.69

R
ad

iu
s 

(m
m

)
R

ad
iu

s 
(m

m
)

0

50

100

150

200

250

300

V
el

oc
ity

 (
m

m
/s

)

0

50

100

150

200

250

300

350

V
el

oc
ity

 (
m

m
/s

)

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

1.5

1.55

1.6

1.65

1.7

0 10 20 30 40

Distance along vessel segment (mm)

0 10 20 30 40

Distance along vessel segment (mm)

0 10 20 30 40

Distance along vessel segment (mm)

0 10 20 30 40

Distance along vessel segment (mm)

0 10 20 30 40

Distance along vessel segment (mm)

0 10 20 30 40

Distance along vessel segment (mm)

Segment 2 Segment 2 Segment 2

Segment 2 Segment 2 Segment 2

(a) (b) (c)

(d) (e) (f)

Figure 8 Pressure, radius and flow velocity along vessel segment 2 at the times shown in the legends of the plots in the
unstented ((a)–(c)) and stented ((d)–(f)) cases. See Figure 1 for the positions of the vessel segment 2 in the network.
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within the stented region and at the transition from
the unstented to stented regions. This study makes two
contributions—firstly, we extend a computationally effi-
cient methodology to solve for flow in a stented coronary
artery network and, secondly, using this methodology, we
investigate flow in a coronary artery network with and
without the stent in place.

The strength of the methodology presented in this ar-
ticle lies in the fact that it can be implemented in a full
coronary artery mesh relatively easily following the pro-
cedure used by Smith et al. (2002). The framework for
embedding this full coronary mesh in a model of the heart
is also in place (Smith et al. 2000, 2005). The flow problem
can be combined with the deformation of the myocardium
of the heart to produce more realistic simulations of blood
flow in stented and unstented networks. Another advantage
of the methodology presented in this study is its ability to
simulate the effects of more than one stent at various places
in the network.

The main limitation of this methodology is its one-
dimensional nature and the lack of localised flow informa-
tion that can only be obtained with higher dimensional
models. Local pressure gradients, changes in velocity
and wall shear stress can be computed accurately with
three-dimensional models of the stented region. However,
when considering the effects of flow changes in large net-
works of vessels such as the coronary network, full three-
dimensional models are computationally prohibitive while
one-dimensional models provide the required computa-
tional efficiency.

We have applied two relatively simple pressure bound-
ary conditions in this study. It is important to acknowledge
that the actual pressure gradients in the coronary vascu-
lature can be determined by intermyocardial, ventricular
and transmission of downstream coronary pressure. Thus,
it is impossible to say whether a constant or sinusoidal
boundary condition is more appropriate. However, we do
propose that the two boundary conditions applied provide
an initial basis from which to understand the dynamics of
the system.

The results of the investigation of flow in a coronary
artery network with and without a stent in place allow us
to draw conclusions regarding restenosis and arterial re-
modelling. As mentioned previously, a significant problem
arises due to restenosis of stented regions and remodelling
of other arterial segments. Restenosis is thought to be the
result of abnormal flow conditions affecting the endothelial
cell (innermost) layer of the blood vessel. Vessel wall shear
stress distribution and flow direction are known to affect
endothelial cells (Davies 1995; Mates 1995; Kataoka et al.
1998; Yamamoto et al. 2003).

Wall shear stress is dependent on local velocity gradi-
ents, which in turn are dependent on the pressure gradi-
ents along the vessel. Rapidly changing pressure gradients
such as those occurring in the transition zones between the
stented and unstented regions of a vessel (Figures 4 and 8)
could indicate local regions of negative velocity, although

the average velocity is positive (Figures 5 and 8). The
rapidly changing pressure gradients indicate the possibil-
ity of a large difference in the mechanical environment of
endothelial cells at the entrance and exit of stented regions
in vessels. As recently reviewed by Boisseau (2005), this
has significant implications for gene regulation, vulnera-
bility to endothelial cell hypoxia, accumulation of white
cells and a number of other haemorheological disorders.
Furthermore, these changes in local flow velocity can ad-
versely affect the endothelial cell layer and hence cause
restenosis.

Wentzel et al. (2000) found significant changes in wall
shear stresses at the entrance and exit areas of the stent,
and concluded that the changes could be related to in-stent
restenosis. Moore and Berry (2002) also confirmed that the
greatest effects are likely to be felt at the entrance and exit
areas of the stents. Rachev et al. (2000) mentioned exper-
imental studies that have found arterial lumen decreasing
in the region just outside the stent due to wall remod-
elling. Their results showed the remodelling effects as a
result of axial and circumferential stress concentration in
the immediate vicinity of the stent.

A very important factor in any model regarding the ef-
fects of the stent is the set of material properties or the par-
ticular form of the pressure–radius relationship assigned
to the region in question. The model presented in this
study can be used to assess the effects of different material
property assumptions on coronary blood flow in detailed
representations of coronary vasculature.
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