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We studied bark thickness in the mixed-conifer forest type throughout California. Sampling included eight conifer species and
covered latitude and elevation gradients. The thickness of tree bark at 1.37m correlated with diameter at breast height (DBH) and
varied among species. Trees exhibiting more rapid growth had slightly thinner bark for a given DBH. Variability in bark thickness
obscured differences between sample locations.Model predictions for 50 cmDBH trees of each species indicated that bark thickness
was ranked Calocedrus decurrens > Pinus jeffreyi > Pinus lambertiana > Abies concolor > Pseudotsuga menziesii > Abies magnifica
> Pinus monticola > Pinus contorta. We failed to find reasonable agreement between our bark thickness data and existing bark
thickness regressions used inmodels predicting fire-inducedmortality in themixed-conifer forest type in California.The fire effects
software systems generally underpredicted bark thickness for most species, which could lead to an overprediction in fire-caused
tree mortality in California. A model for conifers in Oregon predicted that bark was 49% thinner in Abies concolor and 37% thicker
in Pseudotsuga menziesii than our samples from across California, suggesting that more data are needed to validate and refine bark
thickness equations within existing fire effects models.

1. Introduction

There is interest in predicting fire-caused tree mortality in
places where prescribed fire or wildfires are common [1–
4]. Heat from flames or smoldering duff at a tree’s base can
kill trees, especially those with thinner bark [5–8]. Species-
specific bark thickness equations are central to fire effects
models such as FOFEM (First Order Fire Effects Model)
[9, 10] and FFE-FVS (Fire and Fuels Extension for the Forest
Vegetation Simulator) [1, 11, 12].

Tree bark plays a critical role in reducing mortality
from fire. Bark protects living cambial tissues from external
biotic and abiotic forces [14–17]. Different tree species exhibit
distinct strategies in growth and the development of defense
features with some allocating proportionally more resources
to bark development than others [18–21]. However, there
are many factors that can influence the formation of bark
and little information exists comparing this trait across
geographic gradients [22, 23]. The properties and function of
bark are a result of complex evolutionary strategies by these

organisms to perform more efficiently and competitively
within their native ranges [21, 22].

Bark is comprised of various tissues covering the stem,
branches, and roots of woody plants. It is found outside
the secondary xylem and includes the inner living phloem
and dead outer tissue [5, 24]. Inner bark is produced
directly by the secondary cambium and consists of sec-
ondary phloem tissues [18]. Outer bark, also known as the
rhytidome, is composed of periderm, cortical, and phloem
tissue [25]. Bark plays an important physiological role
in protecting trees from the environment and infectious
microorganisms as well as containing mechanical injuries
[18, 26]. Bark thickness (BT) is the most important char-
acteristic for cambial protection from fire, more so than
other bark properties like density, moisture content, or
structure [14, 20, 27]. Trees with thicker bark are more
likely to survive wildfire events. Thick bark provides an
insulating layer of protection from heat for the underly-
ing vascular tissues which can prevent cambial girdling
[6, 28–31].
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Standard fire-caused tree mortality models use BT,
derived from species-specific BT equations, along with per-
cent crown scorch as predictors of tree mortality [1, 9, 11, 12].
However, despite its importance in fire-induced tree mor-
tality modeling, there are few studies assessing BT across a
range of species and locations [32]. Studies analyzing external
factors influencing BT are limited [32]. Site quality and soil
fertility have been considered [33], but site quality cannot be
easily altered by forest management. Measures of tree vigor,
such as annual radial growth rates, can be associated with
reduced likelihood of treemortality during disturbances such
as wildfire [29]. Competition can be reduced to enhance tree
vigor but with an unknown influence on BT.

While there are studies correlating BT to tree diameter
[34–37], we did not find any that tested for the influence
of tree growth and vigor on BT. Therefore, we sought to
test whether vigorous rapidly growing trees (in terms of
crown ratio or recent growth rate) might allocate more or less
resources to bark production. Also unknown is whether BT
is an adaptation to fire that differs among areas with different
climates and fire regimes. Therefore, we used regression
analysis to test for such effects and compared our BT data
and best BTmodels against existing BTmodels implemented
within fire effects models. Our objectives were to

(i) examine how BT relates to measures of tree size
[diameter at breast height (DBH)], recent growth
rates (GR), vigor [crown ratio (CR)], and crown
position [crown class (CC)];

(ii) quantify BT variation among species along a latitudi-
nal gradient;

(iii) develop BT prediction models and compare their
predictions against published BT models for the
mixed-conifer forest type.

2. Materials and Methods

2.1. Study Sites. Data for the mixed-conifer forest type were
collected fromKlamath, Tahoe, and Sequoia National Forests
and the Stanislaus-Tuolumne Experimental Forest in Cal-
ifornia. Sampling at these locations provided a latitudinal
gradient across the range of mixed-conifer species (Figure 1).
Eight species were sampled for BT: white fir (Abies con-
color) [ABCO], red fir (Abies magnifica) [ABMA], incense-
cedar (Calocedrus decurrens) [CADE], lodgepole pine (Pinus
contorta) [PICO], Jeffrey pine (Pinus jeffreyi) [PIJE], sugar
pine (Pinus lambertiana) [PILA], western white pine (Pinus
monticola) [PIMO], and Douglas-fir (Pseudotsuga menziesii)
[PSME]. Climate and geology varied among the study sites
(Table 1). The Klamath National Forest (KNF) is recognized
as one of America’s most biologically diverse regions [38, 39].
It is situated in a transitional region between hotter and drier
areas to the south and colder, wetter climate to the north
[40]. Unlike our other study sites, KNF has the Shasta red fir
variety (Abies magnifica var. shastensis). The Tahoe National
Forest (TNF) data were collected in the Blackwood Creek
watershed of the Lake Tahoe Basin Management Unit. This
area has a Mediterranean continental climate with warm, dry

Figure 1: Bark thickness sampling in California. Stars show sample
locations at Klamath National Forest (KNF), Tahoe National For-
est (TNF), Stanislaus-Tuolumne Experimental Forest (STEF), and
Sequoia National Forest (SNF). Major cities are shown for reference.

summers and cold winters with most precipitation falling as
snow. The Stanislaus-Tuolumne Experimental Forest (STEF)
is located near the town of Pinecrest, California. It is a mixed-
conifer forest of high site quality on the western slope of
the Sierra Nevada, at lower elevation than the other two
Sierra Nevada sites (TNF and SNF). Climate of the region is
characterized by warm, dry summers and cold, wet winters,
with over half of annual precipitation falling as snow between
December and March. The Sequoia National Forest (SNF)
sampling was conducted in the Bull Run Creek watershed
which has characteristic expansive areas of exposed rock,
particularly at higher elevations. The area experiences warm
to hot, dry summers and cool to cold, wet winters. Summer
brings occasional thunderstorms but most precipitation is in
the form of snow falling from October through April.

2.1.1. Field Data Collection. At KNF, TNF, and SNF, trees
were sampled along transects spanning an elevation gradient.
Every 100m the closest tree was sampled, followed by one tree
of each species in understory and overstory positions, giving
data for a range of tree sizes and stand densities. Transects
were not straight; they climbed and traversed the slope from
bottom to top of each watershed, running approximately
parallel to the main creek and avoiding road corridors. Trees
below five cm DBH (diameter at breast height), noticeably
unhealthy trees, andmalformed trees were not sampled. Bark
thickness, recent radial growth, and diameter measurements
were taken at a height of 1.37m on each sample tree. Total
height and live crown base height were also measured to
calculate live crown ratio (CR). Crown class was recorded for
each sample tree.
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Table 1:Description of study sites at KlamathNational Forest (KNF), TahoeNational Forest (TNF), Stanislaus-TuolumneExperimental Forest
(STEF), and Sequoia National Forest (SNF). Average temperature is reported as the mean temperature during winter and summer months,
respectively. Soil types include parent material (PM). Species sampled: Douglas-fir (PSME), red fir (ABMA), white fir (ABCO), incense-cedar
(CADE), sugar pine (PILA), western white pine (PIMO), Jeffrey pine (PIJE), and lodgepole pine (PICO).

Site Location
Average
temp.
(∘C)

Annual
precip.
(mm)

Soil type and
parent materials

Species sampled and sample size
(number of trees)

Elevation
range of
sampling

(m)

KNF 41.5003∘N
123.3333∘W 24–41 559

Gravely clay loam
PM: basic igneous,
metamorphic, and altered
sedimentary rocks

ABCO (53), ABMA (48), CADE
(29), PILA (17), PIMO (6), PSME
(30)

1508–1868

TNF 39.5625∘N
120.5625∘W 6–23 1,397

Gravely loam
PM: andesite and volcanic
rock

ABCO (39), ABMA (53), PICO
(29), PIJE (20), PIMO (23) 2013–2369

STEF 38.1677∘N
120.0∘W 0–17 940 Sandy to fine sandy loam

PM: granite and diorite
ABCO (365), CADE (221), PIJE
(51), PILA (189) 1820–1948

SNF 37.4167∘N
119.1667∘W 7–26 660

Sandy clay loam
PM: sedimentary, granite,
and granodiorite

ABCO (40), ABMA (37), CADE
(16), PIJE (10), PILA (6) 2066–2499

Two BT measurements were taken using a handheld
Swedish bark gauge at approximately 90 degrees apart around
the tree circumference. Bark thickness was measured from
thewood surface to the contour of the diameter tape wrapped
snugly around the tree [41]. One shallow increment core
was collected at the site of BT measurements. The collective
width of the most recent five complete rings measured to
the nearest 0.1mm gave tree growth (GR) in terms of a five-
year periodic average annual radial increment (although the
series was not crossdated so it is possible that increment was
over/underestimated due to missing/false tree rings).

We obtained independently collected data for BT and
DBH in ABCO, CADE, PIJE, and PILA at the STEF site in
the central Sierra Nevada (Andrew Slack, Humboldt State
University, personal communication). Here, sample trees
were nearest neighbors of individual PILA trees randomly
selected throughout the forest for a different study. Growth
and crown ratio were not measured at STEF.

2.2. Analysis. We used multiple linear regression and non-
linear regression to model BT for each species at three study
sites with growth and crown ratio data (KNF, TNF, and
SNF). Individual variables were either square root- or log-
transformed to reduce skewness in data distributions. We
compared regression models with and without candidate
predictor variables representing tree size (DBH), growth (GR,
converted from radial increment to a basal area increment),
and tree vigor (CR). The 𝑦-intercept was forced through the
origin because a tree with zero DBH is exactly 1.37m tall and
essentially has zero BT at that height (the tip) but begins to
develop bark at breast height as the tree grows taller. We used
a second-order correction for Akaike information criterion
(AICc) in model selection as this takes into account sample
size by increasing the relative penalty for model complexity
with small data sets [42]. Models with delta AICc < 2 were
treated as similar, among which the most parsimonious

model was favored. We also calculated average BT prediction
error (mm) in terms of root-mean-square error (RMSE) as an
indicator of model performance.

The large sample size for ABCO and ABMA allowed
for investigation of geographic location (north, central,
and southern latitudes), as well as crown class (dominant,
codominant, intermediate, and suppressed) influence on BT.
Dummy variables were included in nonlinear regressions to
test for differences in BT between categorical variables of site
and crown class.

We examined performance of existing, widely used BT
models by comparing predictions from these BT models
against our California BT models and data. Specifically,
we compared our California BT data against predictions
from diameter inside bark equations for ABCO, CADE,
PILA, and PSME in southwest Oregon [13] as well as those
embedded in the Fire and Fuels Extension (FFE) of the
ForestVegetation Simulator (FVS) [11, 12].Wedid not validate
another commonly used fire mortality model, FOFEM (First
Order Fire Effects Model) version 6.3.1, because the same
bark thickness equations were also embedded in the Fire
and Fuels Extension (FFE) version 2.0. Prediction errors
were calculated in percent terms for each tree in our dataset
(percent error = 100× (predicted-actual)/predicted).We used
𝑅 [43] and SPSS [44] to analyze data.

3. Results and Discussion

Sample trees covered a broad range of tree sizes, crown
ratio, and growth (Supplementary File, Table S1, in Supple-
mentaryMaterial available online at http://dx.doi.org/10.1155/
2016/1864039). Sample size across the KNF, TNF, and SNF
sites differed among species. ABCOandABMAwere encoun-
tered most frequently along the sample transects. The inde-
pendent dataset from STEF added records for four species,
including very large PILA, as well as CADE, PIJE, and ABCO
(Supplementary File, Table S2).
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Table 2: Comparison of bark thickness (BT; mm) as a function of DBH (cm) across latitudinal gradient (north, central, south) and among
crown classes (dominant, codominant, intermediate, and suppressed) for red fir (ABMA) and white fir (ABCO) at Klamath National Forest
(KNF), Tahoe National Forest (TNF), and Sequoia National Forest (SNF). Coefficients and fit statistics for region and crown class dummy
variable (d) in nonlinear regression.

Species Region/crown class Coefficient (d) s.e. Appr. 95% confidence limits
Lower Upper

ABMA (𝑛 = 138)

√BT = 0.900√DBH𝑑 (RMSE = 6.22mm)
North (KNF) 0.875 0.032 0.812 0.938
Central (TNF) 0.941 0.031 0.880 1.003
South (SNF) 0.917 0.030 0.858 0.976

√BT = 0.801√DBH𝑑 (RMSE = 6.75mm)

Dominant 0.964 0.042 0.881 1.047
Codominant 0.973 0.051 0.872 1.074
Intermediate 1.012 0.059 0.896 1.128
Suppressed 1.041 0.068 0.906 1.176

ABCO (𝑛 = 132)

√BT = 1.005√DBH𝑑 (RMSE = 6.15mm)
North (KNF) 0.856 0.056 0.745 0.967
Central (TNF) 0.888 0.029 0.831 0.945
South (SNF) 0.865 0.028 0.810 0.921

√BT = 0.878√DBH𝑑 (RMSE = 6.20mm)

Dominant 0.924 0.036 0.853 0.995
Codominant 0.947 0.043 0.861 1.033
Intermediate 0.964 0.051 0.863 1.065
Suppressed 0.996 0.060 0.877 1.116

There was a positive trend of increasing tree size (DBH)
and BT, although the BT of some conifers varied widely for
any given tree size. In general, nonlinear relationships best
explained our empirical data with the exception of PSME and
CADE where simpler linear models were adopted. Incorpo-
rating tree vigor (in terms of recent growth, GR) improved
model predictions of bark thickness for four mixed-conifer
species, ABCO,ABMA, PICO, andPIJE, indicating that faster
growth came at the expense of BT (Supplementary Files,
Tables S3 and S4). However, in practice the small differences
in prediction errors (8% overall average reduction in RMSE;
range 4%–16% reduction by species) indicated that including
GR as a predictor of BT only gave marginal improvements
over the simplified models with only DBH as a parameter
(Supplementary File, Table S3).

We found no significant difference in BT for ABMA
or ABCO along the latitude gradient of northern (KNF),
central (TNF), and southern (SNF) sample locations. On
average, the shastensis variety of ABMA had thinner bark
for a given tree size than ABMA along the Sierra Nevada.
Bark thickness was slightly but not significantly greater at
TNF than further south at SNF (Table 2) where mean GR for
ABMA was 3.18mmyr−1 (i.e., 31% faster). ABCO exhibited
a similar but less pronounced trend of thicker bark at TNF
and thinner bark at KNF but variability in BT at each site
prevented detection of significant differences. Variability in
BT was greater among ABMA than ABCO sample trees.
For a given tree size in ABMA or ABCO, average BT by
crown class was ranked as follows: suppressed > intermediate
> codominant > dominant; however, these differences were

not statistically significant but were consistent with negative
coefficients for GR indicating that faster-growing trees had
thinner bark (Supplementary File, Table S3). It should be
noted that there are several other factors beyond latitudinal
variation which could contribute to the observed differences
in BT, such as past management and disturbance regimes, as
well as variations in climate and site quality between each of
the study locations.

Independently collected BT data from STEF exhibited
greater BT for a given DBH than BT at the three National
Forest sites. In comparison with STEF data, predictions from
our simple BT-DBH models for the KNF, TNF, and SNF
locations (models shown in Supplementary File, Table S3)
revealed that predicted BT was 10.5% less for ABCO, 20.9%
less for CADE, 15.1% less for PIJE, and 21.2% less for PILA
than the BT data for the STEF site. To increase the geographic
range of applicability of our BT-DBH models, we merged
the data from KNF, TNF, SNF, and STEF sites and fitted
final models to this expanded dataset (Table 3 and Figure 2).
The STEF dataset included BT for larger CADE, PIJE, and
PILA than the other sites. Our final models indicated that BT
among large-sized (100 cm DBH) California mixed-conifers
was thickest for CADE and thinnest for PIMO and PICO
(Figure 3). Modeled averages for BT in sample trees above
150 cm DBH ranked PSME > ABCO > PILA. Expected
bark thickness (i.e., modeled average) for a 50 cm DBH
tree fell into three groupings, where CADE, PIJE, and PILA
had relatively thick bark, ABCO, PSME, and ABMA had
intermediate BT, and PIMO and PICO had relatively thin
bark. Our California models can be used to estimate BT
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Table 3: Mixed-conifer forest type bark thickness (BT) models for red fir (ABMA), lodgepole pine (PICO), western white pine (PIMO),
and Douglas-fir (PSME) at three sites: Klamath National Forest (KNF), Tahoe National Forest (TNF), and Sequoia National Forest (SNF),
and models for white fir (ABCO), Jeffrey pine (PIJE), sugar pine (PILA), and incense-cedar (CADE) fitted to data from four sites including
Stanislaus-Tuolumne Experimental Forest (STEF). Models predict square root of bark thickness in mm, as a function of DBH (cm).

Data Model Coefficient s.e. Pr > |𝑡| RMSE (mm)
ABCO
(𝑛 = 497) √BT = 𝑎 ∗ √DBH𝑏 a

b
1.005
0.888

0.031
0.016

<0.0001
<0.0001 7.46

ABMA
(𝑛 = 138) √BT = 𝑎 ∗ √DBH𝑏 a

b
0.886
0.919

0.060
0.034

<0.0001
<0.0001 6.88

PIJE
(𝑛 = 81) √BT = 𝑎 ∗ √DBH𝑏 a

b
1.298
0.802

0.109
0.041

<0.0001
<0.0001 10.29

PICO
(𝑛 = 29) √BT = 𝑎 ∗ √DBH𝑏 a

b
1.027
0.603

0.104
0.057

<0.0001
<0.0001 1.49

PILA
(𝑛 = 212) √BT = 𝑎 ∗ √DBH𝑏 a

b
1.521
0.718

0.116
0.034

<0.0001
<0.0001 14.50

PIMO
(𝑛 = 29) √BT = 𝑎 ∗ √DBH𝑏 a

b
1.299
0.609

0.156
0.059

<0.0001
<0.0001 4.24

PSME
(𝑛 = 30)

√BT = 𝑎 ∗ √DBH a 0.785 0.015 <0.0001 7.16

CADE (𝑛 = 266) √BT = 𝑎 ∗ √DBH a 0.946 0.009 <0.0001 14.18

Table 4: Performance of bark thickness (BT) models in the Fire and Fuels Extension for the Forest Vegetation Simulator (FFE-FVS) [11, 12]
and Larsen&Hann [13]models for BT inOregon applied to BT andDBHdata for Californiamixed-conifers. Comparing BT data for Klamath
National Forest (KNF), Tahoe National Forest (TNF), Stanislaus-Tuolumne Experimental Forest (STEF), and Sequoia National Forest (SNF)
in California against FFE-FVS and Oregon BT model predictions in terms of percent difference between predicted BT and actual BT data
calculated as 100 × (predicted-actual)/predicted. Negative percentage indicates underprediction by the FFE-FVS or Oregon models.

Species FFE-FVS BT models [11, 12] Oregon BT models [13]
White fir (ABCO) −47.7% −49.2%
Incense-cedar (CADE) −55.2% −14.4%
Jeffrey pine (PIJE) −20.1% —
Sugar pine (PILA) −0.5% 11.2%
Douglas-fir (PSME) 6.9% 37.2%
Western white pine (PIMO) −17.3% —
Lodgepole pine (PICO) −5.4% —
Red fir (ABMA) −53% —

using forest inventory data and quantify diameter inside
bark at breast height. The minimum and maximum DBH for
each species define the range of application of BT models
(Supplementary File, Tables S1 and S2).

The percent differences between our data and predicted
BT from the FFE-FVS [11, 12] or Oregon [13] BT models
indicated that these models generally underpredicted BT
in California mixed-conifers, most noticeably for ABCO,
ABMA,CADE, andPIJE (Table 4, Figure 4). Prediction errors
were greatest among smaller trees, where underprediction
was common. When compared against California BT data,
the FFE-FVS model underpredicted BT for CADE, ABMA,
and ABCO of all sizes. For PICO, PILA, and PIMO trees
in California, the FFE-FVS model underpredicted BT for
smaller trees and overpredicted BT for larger trees. The Ore-
gon models overpredicted BT for PILA and PSME, especially
among larger PILA and smaller PSME trees (Figure 4).

Underpredicted bark thickness for most species sug-
gested that the FFE-FVS fire effects model may overestimate

fire severity in California. This finding is consistent with
validation of the postfire tree mortality models in Hood et al.
[1] where mortality was overpredicted for many of the same
species that we studied. The models for conifers in Oregon
indicated that bark was 49% thinner in Abies concolor and
37% thicker in Pseudotsuga menziesii than our sample from
across California. These important differences and subtler
differences according to location and growth rate suggested
that more BT data are needed to validate and, if needed,
refine equations within existing fire effects models or develop
local or regionalmodel variants. Overall, our findings suggest
that further study and revision of BT models implemented
within fire models are warranted for mixed-conifer forests in
California.

4. Conclusion

Bark thickness correlatedwithDBHbut varied among conifer
species. Our modeling indicated that, among 50 cm DBH
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Figure 2: Continued.
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Figure 3: Comparing California mixed-conifer forest bark thickness model predictions for eight conifer species at Klamath National Forest
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Species (and codes): Douglas-fir (PSME), red fir (ABMA), white fir (ABCO), incense-cedar (CADE), sugar pine (PILA), western white pine
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conifers, BT ranked CADE > PIJE > PILA > ABCO >
PSME > ABMA > PIMO > PICO. We did not detect
regional differences in BT nor differences between crown
class and only slight differences according to recent tree
radial growth. These findings suggest that our linear and
nonlinearmodels of BT-DBHhave general applicationwithin
California. We failed to find reasonable agreement between

our newly developed BTmodel predictions andmost existing
BT models currently used to model fire-induced mortality in
the mixed-conifer forest type in California.
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Figure 4: Bark thicknessmodel prediction errors according to tree size (DBH) for eight species within themixed-conifer forests of California.
Prediction errors calculated in percent terms for our California models, for FFE-FVS (Fire and Fuels Extension for the Forest Vegetation
Simulator) [11, 12], and for the Larsen &Hann [13] bark thickness models for Oregon, where percent error is the difference between predicted
BT and actual BT data calculated as 100 × (predicted-actual)/predicted.
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