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Abstract 

In this paper, we present a method for deriving the rotation invariants of 2nd and 4th 
degree implicit polynomials and we build a system for 3D object recognition using the 
derived invariants. 
Our results show that invariants derived in this paper are stable and the success of the 
recognition is high when the polynomial fit is successful. 

 
1. Introduction 
 

Object recognition, is a major task for many 
computer controlled systems. It is used in many 
industrial applications, such as guiding of robots, 
sorting products, and in inspection applications. 3D 
object recognition has always been a challenge in 
machine vision systems because of the complexity 
of data and the calculations. However, with the 
development of more and more powerful and faster 
systems, today 3D object recognition is possible in 
realtime. 

Implicit 2D curves and 3D surfaces are 
believed to be among the most powerful shape 
representations presently known. With this 
approach, objects in 2D images are described by 
their silhouettes and then represented by 2D 
Implicit Polynomial (IP) curves while objects in 
3D data are represented by the IP surfaces. 

Invariants are properties of geometric 
configurations which remain unchanged under an 
appropriate class of transformations and hence are 
good descriptors for recognition. 

The goal of this research is to derive the 
invariants of IPs and analyze their usage in object 
recognition systems. 

Through the proposed concepts and algorithms, 
we will argue that invariants of implicit 
polynomials provide a fast and stable model for 3D 
recognition problems stemming from industrial 
inspection. 

The application we are interested in is 
recognizing a set of objects on a conveyor belt. 
Thus the transformations under consideration are 
rotation around one specific axis, y and translation, 
although the technique used can be generalized to 
other transformations like affine, perspective, etc. 
The translation problem has been  overcome by 
finding the center of the objects from the point data 
set and aligning the object centers with the world 
origin, hence the invariance seeked in this paper is 
for rotation around one axis. 

 

 
Section 2 summarizes the implicit polynomial 

model and the 3L fitting [8] method. In section 3, 
we give a brief description of the invariant theory 
and explain the symbolic computation method for 
finding algebraic invariants of IPs. In section 4 we 
present our test results with a discussion on the 
success of our work. 
Finally, in section 5, we conclude by discussing the 
advantages and disadvantages of the symbolic 
computation method and propose some future 
work for increasing the success of recognition. 
 
2. Implicit Polynomials 
 

IPs, being among the most effective and 
leading shape representations for complex free-
form object modelling and recognition, have found 
wide application areas in computer vision. 
Although the underlying theory, ie. algebraic 
geometry has long been around, IPs could not find 
effective application areas until 1980’s. Since then, 
independent research in a number of fields, 
including computer graphics, geometric modelling, 
and computer vision, has accumulated valuable 
insights into various properties of IPs important for 
solving practical problems. 

An implicit polynomial of degree n 
0),( ,0, ==∑ ≤+≥

ji
njiji ij yxayxf  is assumed to 

represent a shape (object) },...1|),{( MkyxS kk ==  if 
every point of the shape S is on the zero set of the 
implicit polynomial 0)},(|),{()( == yxfyxfZ . Robust and 
consistent IP fits to data sets is the most important 
requirement for the practicality of IP related 
techniques. A variety of iterative and non-iterative 
solution techniques, perturbation techniques and 
stopping rules have been proposed to acquire this 
goal. The general IP fitting problem can be set up 
as follows. Given a data set 

( ){ }Kmmzmymx ,,1,,0 �==Γ , find the nth degree IP 
fn(x, y, z) that minimizes the average squared 
distance from the data points to the zero set Z(f) of 
the polynomial [13]. There is no closed form 
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expression for the distance from a point to generic 
implicit curve or surface, not even for algebraic 
curves or surfaces and iterative methods are 
required to compute it. 

Many good algorithms have been presented for 
solving this problem to get the best fitting 
polynomial [6, 12]. Taubin [12] developed an 
approximate distance from a point to a curve or 
surface defined by implicit equations, changing the 
problem of fitting curves and surfaces into the 
minimization of the approximate mean square 
distance. Then he showed that the minimization of 
the approximate mean square distance reduces to a 
generalized eigenvector computation for certain 
families of nonsingular curves and surfaces, and 
introduced an efficient procedure to compute an 
initial estimate for the general case based on these 
results [12]. IPs, bounded or unbounded, even 
though represent the data very well, have a very 
large data set and this is an important difficulty 
with them. Karen, Cooper and Subrahmonia 
presented a model for fitting polynomials, 
particularly 4th degree IPs whose zero set is 
bounded, stable, and ”tight” around the object [6]. 
Lei and Cooper [9] presented a general framework 
for using linear programming technology to solve 
fitting problems, which allowed users to 
interactively choose significant points such that the 
fitted curve lies within a user specified ε using the 
linearized distance approximation. Finally, the 3L 
algorithm provides a linear solution to the fitting 
problem while overcoming many drawbacks of the 
previous algorithms. The presence of singularities 
of the polynomial f in the vicinity of the data set, 
Γ0 is an important disadvantage of IP fitting. If we 
define d(x, y, z) as the function which, at (x, y, z), 
takes on the value of the signed distance from (x, y, 
z) to Γ0, by fitting the explicit polynomial f(x, y, z) 
to a portion of the distance transform, d(x, y, z), of 
Γ0, we get fast, stable and repeatable IP surface fits 
[3]. Other than the original data set Γ0, 3L fitting 
also uses a pair of synthetically generated data sets 
Γ+c and Γ-c consisting of points at a distance c to 
either side of Γ0 (Figure 1), hence the name 3L or 3 
level. Figure 1(b) shows the 3 level sets for the 
modified teapot object in 3D and 4th degree IP fit is 
shown in figure 1(c). 

 
Figure 1. (a) Teapot object without the spout and lid (b) Level 
sets for the modified teapot object. (c) 4th degree fit to the 
object. 

A typical application of IPs in computer vision 
has been object recognition. For this purpose, for 
the 3D case, first the 3D data of the object is 
generated using a 3D image acquisition system 
such as stereo vision, structured light or laser 
scanner. Then, an IP surface is fit to the data for 
representation and a vector of algebraic invariants 
are computed from the coefficients of the IP to 
form the invariant space representation of the 
object. This vector is compared with vectors in the 
database for solving the matching problem. 
 
3. Invariants And Object Recognition 
 
The essence of our approach to object recognition 
is to drive properties of the object geometry, which 
are invariant to the transformation of interest 
reliably from image intensity data and describe the 
objects in terms of such invariants, which provide 
all of the essential information about shape and 
configuration required to carry out visual tasks. 
 
3.2. Using Symbolic Computation to Find 
Algebraic Invariants of 3D objects 
 

In 1994 Keren [5] proposed a symbolic 
calculation tool to find simple and explicit 
invariants of polynomials assuming that the 
invariants are low-degree homogeneous 
polynomials in the coefficients. The degree of the 
homogeneous polynomial is called the rank of the 
invariant. We have applied the symbolic 
calculation method proposed in [5] in the 
calculation of rotation invariants of 3D objects 
with ranks 2 and 4. We have used the MatCAD 
and MatLAB packages for symbolic calculations. 
If we denote a polynomial with 3 variables as, 
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and x, y and z are subject to some kind of a 
transformation tzyxTtwvu ),,(),,( =  where T is 
determined by a certain number of parameters tij. 
Then P(x, y,z) transforms to a polynomial Q(u, 
v,w), where Q’s parameters qij’s are functions of 
pij’s and tij’s. From now on we will index 
coefficients pij and qij with a single variable for 
convenience. So P(x,y,z) is determined by the 

coefficients { } Ni
iip =
=1  and Q(u,v,w) by the 

coefficients { } Ni
iiq =
=1 , where each qi is a function 

of pi’s and tij’s. 



Now, we assume a particular algebraic 
structure for the invariant I, which is a 
homogeneous polynomial ψ in the pi’s. From the 
theory of invariance, the following equation must 
be true: 
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For example, if we consider rotation by an 
angle θ, each qi will be a function of pi and θ. For 
example, if the degree of the polynomial is 4 (d = 
4) then the polynomial, 
Ph(x,y,z) = p040y4 + p202x2z2 + p400x4 + p301x3z + 
p211x2yz +p310x3y + p121xy2z + p113xyz2 + p130xy3 + 
p031y3z +p103xz3 + p022y2 z2 + p013yz3 + p220x2y2 + 
p004z4                   (3.3) 
is transformed into the polynomial, 
Qh(u,v,w) = q040v4 + q202u2w2 + q400u4 + q301u3w + 
q211u2vw +q310u3v + q121uv2w + q113uvw2 + q130uv3 
+ q031v3w +q103uw3 + q022v2 w2 + q013vw3 + q220u2v2 
+ q004w4                   (3.4) 
and the transformed [u,v,w] coordinates will be 
calculated as follows, 
u = x cos θ - z sin θ 

v = y              (3.5) 
w = x sin θ + z cos θ      
If we do the substitutions in the Equations 3.5, and 
replace sin θ and cos θ by their first order Taylor 
approximations, θ and 1, and discard all powers of 
θ higher than 1. We get a linear system of 
equations between p’s and q’s.                                         
If we look for invariants Ψ which are  2nd degree 
polynomials, in pijk, the solution to the following 
equation has to hold for every angle θ and every 
coefficient vector p:  
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For Equation 3.6 to hold, it is necessary and 

sufficient for every p, ( )[ ]
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where  Ψ[Φ(θ, p)] is the homogeneous polynomial, 
The solution to Equation 3.7 will give us the 
coefficients of our invariant equation. 
A 2nd degree y - axis rotation invariant of a 4th 
degree IP with 3 variables is given below: 
Ψ1

4 = 6.500p040 p022 + 6.500p040 p220 + 1.480p2
301 + 

0.986p2
202 + 2.840p2

121 + 2.065p2
211+1.480p2

103  + 
5.918p2

004 + 2.065p2
112 + 3.150p2

031 + 6.196p2
310 + 

6.196p2
013+5.680p2

220 + 5.918p2
400 + 5.680p2

022 + 
3.150p2

130 
Other invariants obtained are given in [1].  

 
4. Experimental Results 

 
We have developed a software, Recognition 

Studio, for testing our invariants and running 
recognition tests on our test objects using the 
derived invariants. The software is developed 
using Microsoft Visual Studio 6.0 and the 
Visualization ToolKit (VTK) which is an open 
source, freely available software system for 3D 
computer graphics, image processing, and 
visualization. 

The objects we have used for test were created 
by 3D Max Studio 5 3D modelling software. We 
converted the max files to 3D point sets and stored 
them in point files to access from our recognition 
software. Some of the images of the objects in the 
database are presented in Figure 2. 

 
Figure 2. Some objects from the database 

For the recognition process we first teach each 
object to the database by calculating the invariants 
from six different views, 0, 60, 120, 180, 240, 300 
degrees.  

The success of our work is determined by the 
standard deviation of invariants of the object for 
different rotations around the y - axis. This 
standard deviation is both effected from the 
polynomial fit and from the calculation of 
invariants. Figure 3 shows the distribution of one 
of the invariants for several of the objects in the 
database.  

 
Figure 3. The distribution of invariant 5 according to the 

viewing angle for 4th degree fit. 
Table 1 shows the mean and standard deviation of 
the invariants of two of the objects in the database. 
As can be seen from the figure and the table, most 
of the invariants have low variance and are 
discriminatory for the objects in the test set. 
 

Table 4.3. The mean and standard deviation of invariants of 
the kettle and jug objects. 



 
72 transformations for each object has been done 
for the test phase. The recognition rate has been 
100% for all the objects except for the teapot and 
the wineglass objects. Figure 4 shows the 4th 
degree 3L fitting for one of the transformed teapot 
objects.  As can be seen from the figure, the fitting 
is not very successful which is thought to be the 
reason for the poor performance for the 
recognition of this object. 

 
Figure 4. 4th degree 3L fitting for one of the transformed 

teapot objects 
 
5. Conclusions 
 

In this paper, we described a symbolic 
computation method for calculating the algebraic 
invariants of IPs for 3D object recognition. To find 
the algebraic invariants of IPs for 3D objects using 
symbolic computation, we first take a general IP of 
selected degree (P) for the representation of the 3D 
object. A transformation matrix, for which the 
invariants are needed, is defined and the 
transformation is applied to the polynomial to 
calculate the transformed IP. Then a particular 
algebraic structure for the invariant having the 
coefficients of IPs as variables is assumed. The 
coefficients of the invariant polynomial is then 
calculated using the invariant theorem, which is 
based on the invariancy of the rotated polynomial 
P, with respect to any rotation angle. As the 
number of variables is higher than the number of 
equations, symbolic computation is used to 
calculate the invariant equations. Then the 
calculated invariants are used for recognition of 
objects. 

The preliminary experiments in this paper 
suggest that invariants derived in this paper are 

stable and the success of the recognition is high 
when the polynomial fit is successful. 

Future work will include deriving invariants of 
different degree polynomials and deriving 
invariants under different transformation groups. 
The invariants will also be tested with more real 
data including data from some standard 3D 
databases. 
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