NEW ALGEBRAIC INVARIANTS OF IMPLICIT POLYNOMIALS FOR 3D OBJECT RECOGNITION

B. Borhan, A. Erçil
Sabancı University, Faculty of Engineering and Natural Sciences aytulercil@sabanciuniv.edu

Abstract

In this paper, we present a method for deriving the rotation invariants of $2^{\text {nd }}$ and $4^{\text {th }}$ degree implicit polynomials and we build a system for 3D object recognition using the derived invariants. Our results show that invariants derived in this paper are stable and the success of the recognition is high when the polynomial fit is successful.

1. Introduction

Object recognition, is a major task for many computer controlled systems. It is used in many industrial applications, such as guiding of robots, sorting products, and in inspection applications. 3D object recognition has always been a challenge in machine vision systems because of the complexity of data and the calculations. However, with the development of more and more powerful and faster systems, today 3D object recognition is possible in realtime.

Implicit 2D curves and 3D surfaces are believed to be among the most powerful shape representations presently known. With this approach, objects in 2D images are described by their silhouettes and then represented by 2D Implicit Polynomial (IP) curves while objects in 3D data are represented by the IP surfaces.

Invariants are properties of geometric configurations which remain unchanged under an appropriate class of transformations and hence are good descriptors for recognition.

The goal of this research is to derive the invariants of IPs and analyze their usage in object recognition systems.

Through the proposed concepts and algorithms, we will argue that invariants of implicit polynomials provide a fast and stable model for 3D recognition problems stemming from industrial inspection.

The application we are interested in is recognizing a set of objects on a conveyor belt. Thus the transformations under consideration are rotation around one specific axis, y and translation, although the technique used can be generalized to other transformations like affine, perspective, etc. The translation problem has been overcome by finding the center of the objects from the point data set and aligning the object centers with the world origin, hence the invariance seeked in this paper is for rotation around one axis.

Section 2 summarizes the implicit polynomial model and the 3L fitting [8] method. In section 3, we give a brief description of the invariant theory and explain the symbolic computation method for finding algebraic invariants of IPs. In section 4 we present our test results with a discussion on the success of our work.
Finally, in section 5, we conclude by discussing the advantages and disadvantages of the symbolic computation method and propose some future work for increasing the success of recognition.

2. Implicit Polynomials

IPs, being among the most effective and leading shape representations for complex freeform object modelling and recognition, have found wide application areas in computer vision. Although the underlying theory, ie. algebraic geometry has long been around, IPs could not find effective application areas until 1980's. Since then, independent research in a number of fields, including computer graphics, geometric modelling, and computer vision, has accumulated valuable insights into various properties of IPs important for solving practical problems.

An implicit polynomial of degree n $f(x, y)=\sum_{i, j \geq 0, i+j \leq n} a_{i j} x^{i} y^{j}=0 \quad$ is assumed to represent a shape (object) $S=\left\{\left(x_{k}, y_{k}\right) \mid k=1, . . M\right\}$ if every point of the shape S is on the zero set of the implicit polynomial $z(f)=\{(x, y) \mid f(x, y)\}=0$. Robust and consistent IP fits to data sets is the most important requirement for the practicality of IP related techniques. A variety of iterative and non-iterative solution techniques, perturbation techniques and stopping rules have been proposed to acquire this goal. The general IP fitting problem can be set up as follows. Given a data set $\Gamma_{0}=\left\{\left(x_{m}, y_{m}, z_{m}\right) \mid m=1, \ldots, K\right\}$, find the $\mathrm{n}^{\text {th }}$ degree IP $\mathrm{f}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ that minimizes the average squared distance from the data points to the zero set $Z(f)$ of the polynomial [13]. There is no closed form
expression for the distance from a point to generic implicit curve or surface, not even for algebraic curves or surfaces and iterative methods are required to compute it.

Many good algorithms have been presented for solving this problem to get the best fitting polynomial [6, 12]. Taubin [12] developed an approximate distance from a point to a curve or surface defined by implicit equations, changing the problem of fitting curves and surfaces into the minimization of the approximate mean square distance. Then he showed that the minimization of the approximate mean square distance reduces to a generalized eigenvector computation for certain families of nonsingular curves and surfaces, and introduced an efficient procedure to compute an initial estimate for the general case based on these results [12]. IPs, bounded or unbounded, even though represent the data very well, have a very large data set and this is an important difficulty with them. Karen, Cooper and Subrahmonia presented a model for fitting polynomials, particularly 4th degree IPs whose zero set is bounded, stable, and "tight" around the object [6]. Lei and Cooper [9] presented a general framework for using linear programming technology to solve fitting problems, which allowed users to interactively choose significant points such that the fitted curve lies within a user specified ε using the linearized distance approximation. Finally, the 3L algorithm provides a linear solution to the fitting problem while overcoming many drawbacks of the previous algorithms. The presence of singularities of the polynomial f in the vicinity of the data set, Γ_{0} is an important disadvantage of IP fitting. If we define $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ as the function which, at $(\mathrm{x}, \mathrm{y}, \mathrm{z})$, takes on the value of the signed distance from $(x, y$, z) to Γ_{0}, by fitting the explicit polynomial $f(x, y, z)$ to a portion of the distance transform, $\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, of Γ_{0}, we get fast, stable and repeatable IP surface fits [3]. Other than the original data set Γ_{0}, 3L fitting also uses a pair of synthetically generated data sets $\Gamma_{+\mathrm{c}}$ and $\Gamma_{-\mathrm{c}}$ consisting of points at a distance c to either side of Γ_{0} (Figure 1), hence the name 3 L or 3 level. Figure 1(b) shows the 3 level sets for the modified teapot object in 3D and $4^{\text {th }}$ degree IP fit is shown in figure 1 (c).

Figure 1. (a) Teapot object without the spout and lid (b) Level sets for the modified teapot object. (c) 4th degree fit to the object.

A typical application of IPs in computer vision has been object recognition. For this purpose, for the 3D case, first the 3D data of the object is generated using a 3D image acquisition system such as stereo vision, structured light or laser scanner. Then, an IP surface is fit to the data for representation and a vector of algebraic invariants are computed from the coefficients of the IP to form the invariant space representation of the object. This vector is compared with vectors in the database for solving the matching problem.

3. Invariants And Object Recognition

The essence of our approach to object recognition is to drive properties of the object geometry, which are invariant to the transformation of interest reliably from image intensity data and describe the objects in terms of such invariants, which provide all of the essential information about shape and configuration required to carry out visual tasks.

3.2. Using Symbolic Computation to Find Algebraic Invariants of 3D objects

In 1994 Keren [5] proposed a symbolic calculation tool to find simple and explicit invariants of polynomials assuming that the invariants are low-degree homogeneous polynomials in the coefficients. The degree of the homogeneous polynomial is called the rank of the invariant. We have applied the symbolic calculation method proposed in [5] in the calculation of rotation invariants of 3D objects with ranks 2 and 4 . We have used the MatCAD and MatLAB packages for symbolic calculations. If we denote a polynomial with 3 variables as,

$$
\begin{equation*}
P(x, y, z)=\sum_{i=0}^{n} \sum_{j=0}^{n-i n-j-i} \sum_{k=0} p_{i j k} x^{i} y^{j} z^{k} \tag{3.1}
\end{equation*}
$$

and x, y and z are subject to some kind of a transformation $(u, v, w)^{t}=T(x, y, z)^{t}$ where T is determined by a certain number of parameters t_{ij}. Then $P(x, y, z)$ transforms to a polynomial $Q(u$, v, w), where Q 's parameters q_{ij} 's are functions of $p_{i j}$'s and $t_{i j}$'s. From now on we will index coefficients $p_{i j}$ and $q_{i j}$ with a single variable for convenience. So $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is determined by the coefficients $\left\{p_{i}\right\}_{i=1}^{i=N}$ and $\mathrm{Q}(\mathrm{u}, \mathrm{v}, \mathrm{w})$ by the coefficients $\left\{q_{i}\right\}_{i=1}^{i=N}$, where each q_{i} is a function of $p_{i}{ }^{\prime} \mathrm{s}$ and $\mathrm{t}_{\mathrm{ij}}{ }^{\prime} \mathrm{s}$.

Now, we assume a particular algebraic structure for the invariant I, which is a homogeneous polynomial ψ in the p_{i} 's. From the theory of invariance, the following equation must be true:

$$
\begin{equation*}
I=\sum_{o \leq i<j<k \leq N} \Psi_{i j k} p_{i} p_{j} p_{k}=\sum_{o \leq i<j<k \leq N} \Psi_{i j k} q_{i} q_{j} q_{k} \tag{3.2}
\end{equation*}
$$

For example, if we consider rotation by an angle θ, each q_{i} will be a function of p_{i} and θ. For example, if the degree of the polynomial is $4(d=$ 4) then the polynomial,
$P_{h}(x, y, z)=p_{040} y^{4}+p_{202} x^{2} z^{2}+p_{400} x^{4}+p_{301} x^{3} z+$ $p_{211} x^{2} y z+p_{310} x^{3} y+p_{121} x y^{2} z+p_{113} x y z^{2}+p_{130} x y^{3}+$ $p_{031} y^{3} z+p_{103} x z^{3}+p_{022} y^{2} z^{2}+p_{013} y z^{3}+p_{220} x^{2} y^{2}+$ $p_{004} Z^{4}$
is transformed into the polynomial,
$\mathrm{Q}_{\mathrm{h}}(\mathrm{u}, \mathrm{v}, \mathrm{w})=\mathrm{q}_{040} \mathrm{v}^{4}+\mathrm{q}_{202} \mathrm{u}^{2} \mathrm{w}^{2}+\mathrm{q}_{400} \mathrm{u}^{4}+\mathrm{q}_{301} \mathrm{u}^{3} \mathrm{w}+$ $q_{211} u^{2} v w+q_{310} u^{3} v+q_{121} u v^{2} w+q_{113} u v w^{2}+q_{130} u v^{3}$
$+q_{031} v^{3} w+q_{103} u w^{3}+q_{022} v^{2} w^{2}+q_{013} v w^{3}+q_{220} u^{2} v^{2}$
$+\mathrm{q}_{004} \mathrm{~W}^{4}$
and the transformed [$\mathrm{u}, \mathrm{v}, \mathrm{w}$] coordinates will be calculated as follows,
$\mathrm{u}=\mathrm{x} \cos \theta-\mathrm{z} \sin \theta$
$\mathrm{v}=\mathrm{y}$
$\mathrm{w}=\mathrm{x} \sin \theta+\mathrm{z} \cos \theta$
If we do the substitutions in the Equations 3.5, and replace $\sin \theta$ and $\cos \theta$ by their first order Taylor approximations, θ and 1 , and discard all powers of θ higher than 1 . We get a linear system of equations between p's and q's.
If we look for invariants Ψ which are $2^{\text {nd }}$ degree polynomials, in $\mathrm{p}_{\mathrm{ijk}}$, the solution to the following equation has to hold for every angle θ and every coefficient vector p :

$$
\begin{aligned}
\Phi\left(\left\{p_{i}\right\}\right) & =\sum_{0 \leq j<j<k \leq N} \Phi_{i j k} p_{i} p_{j} p_{k}=\sum_{0 \leq j<j<k \leq N} \Phi_{i j k} q_{i} q_{j} q_{k} \\
& =\Phi\left(\left\{q_{i}\right\}\right)
\end{aligned}
$$

For Equation 3.6 to hold, it is necessary and sufficient for every $\mathrm{p},\left(\frac{\partial}{\partial \theta} \Psi[\Phi(\theta, p)]\right)$
where $\Psi[\Phi(\theta, \mathrm{p})]$ is the homogeneous polynomial, The solution to Equation 3.7 will give us the coefficients of our invariant equation.
A $2^{\text {nd }}$ degree $y-$ axis rotation invariant of a $4^{\text {th }}$ degree IP with 3 variables is given below:
$\Psi_{1}{ }^{4}=6.500_{\mathrm{p} 040 \mathrm{p} 022}+6.500_{\mathrm{p} 040 \mathrm{p} 220}+1.480 \mathrm{p}_{301}^{2}+$ $0.986 \mathrm{p}^{2}{ }_{202}+2.840 \mathrm{p}^{2}{ }_{121}+2.065 \mathrm{p}^{2}{ }_{211}+1.480 \mathrm{p}^{2}{ }_{103}+$ $5.918 \mathrm{p}_{004}^{2}+2.065 \mathrm{p}_{112}+3.150 \mathrm{p}^{2}{ }_{031}+6.196 \mathrm{p}_{310}^{2}+$ $6.196 \mathrm{p}^{2}{ }_{013}+5.680 \mathrm{p}^{2}{ }_{220}+5.918 \mathrm{p}_{400}^{2}+5.680 \mathrm{p}^{2}{ }_{022}+$ $3.150 \mathrm{p}^{2}{ }_{130}$

Other invariants obtained are given in [1].

4. Experimental Results

We have developed a software, Recognition Studio, for testing our invariants and running recognition tests on our test objects using the derived invariants. The software is developed using Microsoft Visual Studio 6.0 and the Visualization ToolKit (VTK) which is an open source, freely available software system for 3D computer graphics, image processing, and visualization.

The objects we have used for test were created by 3D Max Studio 5 3D modelling software. We converted the max files to 3D point sets and stored them in point files to access from our recognition software. Some of the images of the objects in the database are presented in Figure 2.

Figure 2. Some objects from the database
For the recognition process we first teach each object to the database by calculating the invariants from six different views, $0,60,120,180,240,300$ degrees.

The success of our work is determined by the standard deviation of invariants of the object for different rotations around the y - axis. This standard deviation is both effected from the polynomial fit and from the calculation of invariants. Figure 3 shows the distribution of one of the invariants for several of the objects in the database.

Figure 3. The distribution of invariant 5 according to the viewing angle for 4th degree fit.
Table 1 shows the mean and standard deviation of the invariants of two of the objects in the database. As can be seen from the figure and the table, most of the invariants have low variance and are discriminatory for the objects in the test set.

Table 4.3. The mean and standard deviation of invariants of the kettle and jug objects.

72 transformations for each object has been done for the test phase. The recognition rate has been 100% for all the objects except for the teapot and the wineglass objects. Figure 4 shows the 4th degree 3L fitting for one of the transformed teapot objects. As can be seen from the figure, the fitting is not very successful which is thought to be the reason for the poor performance for the recognition of this object.

Figure 4. $4^{\text {th }}$ degree 3L fitting for one of the transformed teapot objects

5. Conclusions

In this paper, we described a symbolic computation method for calculating the algebraic invariants of IPs for 3D object recognition. To find the algebraic invariants of IPs for 3D objects using symbolic computation, we first take a general IP of selected degree (P) for the representation of the 3D object. A transformation matrix, for which the invariants are needed, is defined and the transformation is applied to the polynomial to calculate the transformed IP. Then a particular algebraic structure for the invariant having the coefficients of IPs as variables is assumed. The coefficients of the invariant polynomial is then calculated using the invariant theorem, which is based on the invariancy of the rotated polynomial P, with respect to any rotation angle. As the number of variables is higher than the number of equations, symbolic computation is used to calculate the invariant equations. Then the calculated invariants are used for recognition of objects.

The preliminary experiments in this paper suggest that invariants derived in this paper are

Polynomials For 3D Object Recognition, Ph.D. Thesis, Boğazici University, October 2003.
[2] H. Civi, C. Christopher, A. Ercil The Classical Theory of Invariants and Object Recognition using Algebraic Curves and Surfaces, Journal of Mathematical Imaging and Vision Vol. 19, No. 3, pp. 239-255, 2003
[3] P. Danielsson, -E., "Euclidean Distance Mapping.", Computer Graphics and image processing, Vol. 14, pp. 227-248, 1980.
[4] D. Forsyth, A. Z. C. C. A. H., Joseph L. Mundy and C. Rothwell, "Invariant Descriptors for 3D Object Recognition and Pose", IEEE PAMI, Vol. 13, No. 10, pp. 971-991, 1991.
[5] D. Keren, , "Using Symbolic Computation to Find Algebraic Invariants", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 11, pp. 1943-1949, 1994.
[6] D. Keren, D. C. and J. Subrahmonia, "Describing complicated objects by implicit polynomials", IEEE PAMI,
Vol. 16, No. 1, pp. 191-210, 1994.
[7] D. J. Kriegman, and J. Ponce, "On recognizing and positioning curved 3 D objects from image contours.", IEEE PAMI, Vol. 12, No. 12, pp. 1127-1138, 1990.
[8] M. M. Blane, Z. Lei, H. Civi and D. B. Cooper, "The 3L Algorithm for Fitting Implicit Polynomial Curves and Surfaces to Data ", IEEE PAMI, Vol. 22, No. 3, pp 298-313, 2000
[9] Z. Lei, and D. B. Cooper, "Linear Programming Fitting of Implicit Polynomials", IEEE PAMI, Vol. 20, No. 2, pp. 212-217, 1998.
[10] J. L. Mundy, and A. Zisserman, Geometric Invariance in Computer Vision, The MIT Press, 1992.
[11] J. L. Mundy, and A. Zisserman, "Towards a new framework for vision", J. L. Mundy and A. Zisserman (Editors), Geometric Invariance in Computer Vision, Vol. 1, pp. 1-39, The MIT Press, 1992.
[12] G. Taubin, , "Estimation of Planar Curves, Surfaces and Nonplanar Space Curves Defined by Implicit Equations, with Applications to Edge and Range Image Segmentation", IEEE PAMI, Vol. 13, No. 11, pp. 11151138, 1991.
[13] G. Taubin, S. S. J. P., F. Cukierman and D. Kriegman, "Parametrized families of polynomials for bounded algebraic curve and surface fitting", IEEE PAMI, Vol. 16, No. 3, pp. 287-303, 1994.

