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Abstract

In the classical theory of finite-dimensional linear time-invariant systems in state
space form the term deterministic separation principle refers to the observation
that a stabilizing output feedback controller can be constructed by first con-
structing an asymptotic state observer that is then coupled to a stabilizing state
feedback controller. In this paper we discuss the following converse problem:
Can every stabilizing output feedback controller be realized as interconnection
of an asymptotic state observer and a stabilizing state feedback controller? We
will provide an affirmative answer to this question (modulo a number of tech-
nicalities) in a behavioral setting and with the help of rational representations.

Keywords: separation principle, output feedback, linear systems, behavioral
approach
2010 MSC: 93B50, 93C05, 93D15

1. Introduction

The classical deterministic separation principle says that, given the plant

ẋ = Ax+Bu,

y = Cx,

an asymptotic full state observer

˙̂x = (A−GC)x̂+Bu+Gy (1)

with A−GC Hurwitz, and a stabilizing static full state feedback controller

u = Fx̂ (2)
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with A+BF Hurwitz, the closed-loop dynamics is given by(
x
e

)
=

(
A+BF BF

0 A−GC

)(
x
e

)
, (3)

where e = x̂−x is the observer error [1]. It follows from the form of the system5

matrix in (3) that limt→∞ x(t) = 0, i.e. the observer-based output feedback
controller (1) and (2) is stabilizing. In fact, it is even internally or totally
stabilizing since x → 0 implies both y → 0 and x̂ → 0 (since also e → 0), and
hence also u→ 0.

The above principle is called a separation principle because it allows to10

complete the task of constructing an output feedback controller with desirable
properties (namely stability) by separately constructing a state observer and a
full state feedback controller with that property. Another classical but unrelated
separation principle is that of optimal stochastic control, see e.g. [2].

An obvious converse question is whether there are any other constructions of15

(totally) stabilizing output feedback controllers, or whether any such controller
permits an interpretation as a series connection of a full state observer followed
by a (possibly dynamic) full state feedback controller. A partial answer to this
question was given by Schumacher using the geometric notion of compensator
couples at the beginning of the 1980s [3], but a full answer remained elusive to20

this date.
In this paper we address the converse question in a behavioral framework

using both polynomial and rational representations of linear differential systems.
We show that, under mild assumptions on the to be controlled system with
variables (x, u, y), any controllable, regular, totally stabilizing controller through25

the variables (u, y) can be separated into an asymptotic i/o-observer for x from
(u, y) with variables (x̂, u, y) and a regular, totally stabilizing controller with
variables (x̂, u) in the sense that the controllable part of the observer/(x̂, u)-
controller interconnection coincides with the given (u, y)-controller.

The paper is organized as follows. Section 2 introduces our notation and col-30

lects relevant results from the theory of behaviors including basics on rational
representations. In Section 3 we review the required material on stabilization in
a behavioral framework. In Section 4, we develop a convenient system represen-
tation that is adapted to the problem treated in this paper. Section 5 contains
the main result and Section 7 concludes the paper.35

2. Behaviors of linear differential systems

In this paper we will make heavy use of the mathematical machinery of
the behavioral approach to linear differerential systems. A linear differential
system is defined as a triple Σ = (R,Rw,B) whose behavior B ⊂ C∞(R,Rw)
is the solution space of a finite set of higher order constant coefficient linear40

differential equations.
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2.1. Polynomial and rational kernel representations

Behaviors of linear differential systems can be represented in terms of a real
polynomial matrix R(s) with w columns as R( d

dt )w = 0, so that

B = {w ∈ C∞(R,Rw) | R( d
dt )w = 0}. (4)

The representation (4) is called a polynomial kernel representation of B, and45

we often write B = kerR( d
dt ). If R1 and R2 are two full row rank polynomial

matrices, then they represent the same behavior B, i.e. B = kerR1( d
dt ) =

kerR2( d
dt ), if and only if there exists a unimodular polynomial matrix U such

that R2 = UR1.For an extensive treatment of polynomial representations of
behaviors we refer to [4].50

Behaviors also admit representations in terms of real rational matrices. A
detailed exposition on rational representations can be found in [5]. Here we
will give a brief review. Recall that any given real rational matrix admits a
left coprime factorization into polynomial matrices. A factorization of a real
rational matrix R as R = P−1Q with P,Q real polynomial matrices is called55

a left coprime factorization if
(
P Q

)
is left prime (meaning that it has a

polynomial right inverse) and det(P ) 6= 0. Following [5], if R = P−1Q is such a
left coprime factorization then we define w to be a solution of R( d

dt )w = 0 if it

is a solution of the differential equation Q( d
dt )w = 0. In other words, we define

kerR( d
dt ) := ker Q( d

dt ), (5)

which is well-defined since any two left coprime factorizations of R differ by a60

unimodular polynomial factor. For a given rational matrix R, we call a repre-
sentation of B as R( d

dt )w = 0 a rational kernel representation of B and write

B = kerR( d
dt ). For additional material on rational representations we refer to

[6] and [7]. In this paper we will often assume that the rational matrices R(s)
used in kernel representations have full row rank over the field of real rational65

functions. This is equivalent to saying that the kernel representation is minimal,
see [5] and [6].

As noted before, two minimal polynomial kernel representations differ by a
unimodular polynomial factor. A similar statement does not hold for rational
representations. We will come back to this in the next subsection.70

2.2. Controllability and controllable part

In the behavioral approach an important role is played by the property of
controllability. The definition of controllability of a behavior B is well known,
and can be found in [4]. Controllability of a behavior can be tested in terms of
its rational kernel representations as follows: If B = kerR( d

dt ) where R(s) is a75

rational matrix, then B is controllable if and only if R has no zeroes.
A behavior B is called autonomous if it is a finite dimensional subspace of

C∞(R,Rw). In terms of its rational kernel representations B = kerR( d
dt ) this

property requires that R has full column rank.
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Any behavior B admits a direct sum decomposition as B = Bcont ⊕Baut,80

where Bcont, called the controllable part of B, is the largest controllable subbe-
havior of B, and Baut, called an autonomous part, is an autonomous subbehav-
ior of B. The controllable part is uniquely determined by B. In terms of its
rational kernel representations R( d

dt )w = 0, the controllable part of B can be

found by factorizing R = QR with Q nonsingular rational and R a left prime85

polynomial matrix. For any such factorization we have Bcont = kerR( d
dt ), see

[5].
It was shown in [6] that if R1 and R2 are full row rank rational matrices,

then there exists a nonsingular rational matrix Q such that R2 = QR1 if and
only if R1 and R2 represent behaviors with the same controllable part, i.e.90

(kerR1( d
dt ))cont = (kerR2( d

dt ))cont.

2.3. Elimination of variables

We will now review the basics of elimination of variables. Suppose we have
a behavior B in which the manifest variable is partioned into two parts as
w = (v, c). Let Rv( d

dt )v + Rc(
d
dt )c = 0 be a polynomial kernel representation95

of B. The space of trajectories that satisfies this equation is called the full
behavior. The space of tractories c that are compatible with the equation of the
the full behavior is called the behavior with v eliminated and is given by

Bc := {c | there exists v such that Rv( d
dt )v +Rc(

d
dt )c = 0}. (6)

The elimination problem is to obtain a kernel representation of (6). Such kernel
representation can be obtained as follows: first find a unimodular polynomial100

matrix U such that

URv =

(
Rv,1

0

)
where Rv,1 has full row rank. Next, apply the same unimodular matrix to Rc

to obtain

URc =

(
Rc,1

Rc,2

)
.

Since ker
(
Rv Rc

)
( d
dt ) = kerU

(
Rv Rc

)
( d
dt ), a new, more structured, poly-

nomial kernel representation of B is then given by105 (
Rv,1 Rc,1

0 Rc,2

)(
v
c

)
= 0.

A kernel representation of the behavior (6) is now given by Rc,2( d
dt )c = 0 (see

[4]).
The above construction to obtain the eliminated behavior (6) is only valid

for polynomial kernel representations and uses unimodular premultiplication.
Its counterpart for the case that we deal with rational kernel representations110

and, instead of unimodular premultiplication, we use premultipication with a
nonsingular rational matrix is more subtle and is dealt with in the following
lemma.
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Lemma 2.1. Let Rv( d
dt )v +Rc(

d
dt )c = 0 be a rational kernel representation of

B. Let Q be a nonsingular rational matrix such that115

QRv =

(
Rv,1

0

)
where Rv,1 is a full row rank polynomial matrix. Partition

QRc =

(
Rc,1

Rc,2

)
and assume that also Rc,1 is also a polynomial matrix. Then the controllable
parts of kerRc,2( d

dt ) and Bc are equal.

Proof: Define the rational matrix R by

R :=

(
Rv,1 Rc,1

0 Rc,2

)
. (7)

Since Q(Rv Rc) = R, we have that Bcont = (kerR( d
dt ))cont. Let Rc,2 = P−12 Q2120

be a left coprime factorization. Then kerRc,2( d
dt ) = kerQ2( d

dt ), and also

R =

(
I 0
0 P2

)−1(
Rv,1 Rc,1

0 Q2

)
is a left coprime factorization, so we have

kerR( d
dt ) = ker

(
Rv,1 Rc,1

0 Q2

)
( d
dt ).

Since Rv,1 has full row rank, we have (kerR( d
dt ))c = kerQ2( d

dt ) = kerRc,2( d
dt ).

This yields

(Bc)cont = (Bcont)c = ((kerR)cont)c = ((kerR)c)cont = (kerRc,2)cont ,

where we have omitted the differentiation symbol. Here we have used the fact125

that the operation of taking the controllable part of a behavior, and eliminating
a variable from a behavior commute, see e.g. Lemma 2.10.4 in [8]. �

We now study the related question whether the triangular structure in (7) ad-
mits a similar triangular structure in a representation of the controllable part.
More specifically, assume that the behavior B is represented by the rational130

kernel representation associated with (7), does there exist a representation of
its controllable part with compatible triangular structure. This indeed turns
out to be the case as is shown in the next lemma.

Lemma 2.2. Consider the behavior B represented by the full row rank rational
representation135 (

Rv,1( d
dt ) Rc,1( d

dt )
0 Rc,2( d

dt )

)(
v
c

)
= 0. (8)
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Assume that Rv,1 and Rc,1 are polynomial, and Rv,1 has full row rank. Then
there exist polynomial matrices Rv,1, Rc,1, Rc,2, and rational matrices Q11, Q12

and Q22, with Q11 and Q22 square nonsingular, such that(
Rv,1 Rc,1

0 Rc,2

)
=

(
Q11 Q12

0 Q22

)(
Rv,1 Rc,1

0 Rc,2

)
and such that (

Rv,1( d
dt ) Rc,1( d

dt )
0 Rc,2( d

dt )

)(
v
c

)
= 0

is a representation of the controllable part Bcont of B.140

Proof: First note that since Rv,1 and Rc,1 are polynomial matrices, and Rv,1

has full row rank, Rc,2( d
dt )c = 0 is a kernel representation of Bc. Factorize(

Rv,1 Rc,1

0 Rc,2

)
=

(
Q11 Q12

Q21 Q22

)(
R̃v,1 R̃c,1

R̃v,2 R̃c,2

)
(9)

where the first factor is nonsingular rational and the second left prime poly-
nomial. The second factor yields a kernel representation of Bcont. We now
eliminate v from Bcont: by premultiplying the second factor in (9) with a suit-145

able unimodular polynomial matrix we obtain(
Rv,1 Rc,1

0 Rc,2

)
=

(
U11 U12

U21 U22

)(
R̃v,1 R̃c,1

R̃v,2 R̃c,2

)
, (10)

with Rv,1 full row rank. Then Rc,2( d
dt )v = 0 is a representation of (Bcont)c. By

combining (9) and (10) we obtain(
Rv,1 Rc,1

0 Rc,2

)
=

(
Q11 Q12

Q21 Q22

)(
Rv,1 Rc,1

0 Rc,2

)
(11)

for suitable rational matrices Qij . From (11) we obtain Q21Rv,1 = 0. Since Rv,1

has full row rank this yields Q21 = 0. Also we read of that Rc,2 = Q22Rc,2. Since150

(Bc)cont = (Bcont)c, the controllable part of kerRc,2( d
dt ) is equal to kerRc,2( d

dt ).

Since both Rc,2 and Rc,2 have full row rank, this implies that Q22 must be
square. Then also Q11 must be square, and both must be nonsingular. �

2.4. Inputs and outputs

Often, the manifest variable w of a behavior B is partitioned as w =155

col(u, y), and accordingly the rational kernel representation takes the form
Ru( d

dt )u+Ry( d
dt )y = 0. This partitioning is called an input-output partition of

the behavior if u is input and y is output, see [5]. In terms of the rational matri-
ces this is equivalent to the property that Ry is a nonsingular rational matrix.
In general a behavior admits many input-output partitions. However, the sizes160

of u and y (denoted by m(B) and p(B), respectively) are uniquely determined
by the behavior. It is well known that if R( d

dt )w is a kernel representation of B
(either polynomial or rational), then the number of outputs p(B) of B is equal
to rank R.
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3. Stabilization in a behavioral framework165

3.1. Stabilization by full interconnection

Given a behavior B (called the plant) with polynomial kernel representa-
tion R( d

dt )w = 0 and a behavior C (called a controller) with polynomial kernel

representation C( d
dt )w = 0, the interconnection of B and C is simply their

intersection B ∩ C. Clearly, the interconnection has the kernel representation170 (
R( d

dt )
C( d

dt )

)
w = 0.

The interconnection is called a regular interconnection if p(B∩C) = p(B)+p(C).
If both R and C have full row rank, then the interconnection is regular if and
only if the matrix (

R
C

)
(12)

has full row rank. The problem of stabilization by full interconnection is to find,
for B, a controller C such that their interconnection is regular, and limt→∞ w(t) =175

0 for all w ∈ B ∩ C. The controller C is then called a stabilizing controller for
B. If both R and C have full row rank, then C is a stabilizing controller for B
if and only if the polynomial matrix (12) is Hurwitz, see [9] and [10].

Next we will prove that for each stabilizing controller for a given plant, also
its controllable part is a stabilizing controller.180

Lemma 3.1. Let B be stabilizable and let C be a stabilizing controller for B.
Then Ccont is a stabilizing controller for B.

Proof: Let R( d
dt )w = 0 be a minimal polynomial kernel representation of B

and let C( d
dt )w = 0 be a minimal polynomial kernel representation of C. Then

the polynomial matrix (12) is Hurwitz. C admits a factorization C = QC, with185

Q nonsingular polynomial and where C( d
dt )w = 0 is a minimal representation

of the controllable part Ccont of C. Then from the fact that(
R
C

)
=

(
I 0
0 Q

)(
R
C

)
it is easily seen that the matrix (

R
C

)
must be Hurwitz as well. �

The above can be extended to stable rational kernel representations for the190

controller C. We do however adhere in this paper to polynomial kernel repre-
sentations of the plant B. It is easily seen that if the plant B has polynomial
kernel representation R( d

dt )w = 0 and the controller C has rational kernel repre-

sentation C( d
dt )w = 0 then C is a stabilizing controller if and only if the rational

matrix (12) is nonsingular and has all its zeroes in C−.195
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A rational matrix is called a stable rational matrix if all its poles lie in C−.
A square nonsingular stable rational matrix is called miniphase if its inverse is
again stable, equivalently if all its zeros lie in C−.

If C( d
dt )w = 0 is a rational kernel representation of the controller C with

C a full row rank stable rational matrix, then it is a stabilizing controller if200

and only if the rational matrix (12) is miniphase, see [5]. For a given plant
B, a stabilizing controller exists if and only if it is stabilizable. A definition of
stabilizability of behaviors can be found in [4]. If B is given by the full row rank
rational kernel representation R( d

dt )w = 0, then B is stabilizable if and only if
R(λ) has full row rank for all λ ∈ C+, see [5].205

In the following lemma we will give a parametrization of all stabilizing con-
trollers for a given plant B.

Lemma 3.2. Let B be stabilizable, and let R( d
dt )w = be a minimal polynomial

kernel representation. Let C0 be a stable rational matrix such that(
R
C0

)
(13)

is miniphase. Then a controller C = kerC( d
dt ) with C full row rank rational210

is a stabilizing controller for B if and only if there exists a rational matrix F
and a square nonsingular rational matrix G with all its zeros in C− such that
C = FR+GC0.

Proof: Let C = FR + GC0 with F rational and G square nonsingular and all
its zeros in C−. We have215 (

R
C

)
=

(
I 0
F G

)(
R
C0

)
,

which is clearly square nonsingular and has all its zeros in C−. Hence kerC( d
dt )

is a stabilizing controller. Conversely, let kerC( d
dt ) be a stabilizing controller,

and C full row rank. Then (
R
C

)
is square nonsingular and has all its zeros in C−. Define(

Q11 Q12

Q21 Q22

)
:=

(
R
C

)(
R
C0

)−1
This product is clearly square nonsingular and has all its zeros in C−. Also, it220

yields R = Q11R+Q12C0, which implies that

(I −Q11 −Q12)

(
R
C0

)
= 0.

This clearly implies Q11 = I and Q12 = 0. Now define F := Q21, and G :=
Q22. Then G is square nonsingular and has all its zeros in C− and, finally,
C = FR+GC0. �
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3.2. Stabilization by partial interconnection225

In general, the plant B has two types of variables, the variable w to be
controlled, and the variable c, called the interconnection variable, through which
the plant can be interconnected with a controller. More specific, if the plant
B has the polynomial kernel representation Rw( d

dt )w + Rc(
d
dt )c = 0, and if

a controller C has the polynomial kernel representation C( d
dt )c = 0, then the230

interconnection of B and C through c is defined as the behavior

B ∧c C := {(w, c) | (w, c) ∈ B and c ∈ C}.

As before, the interconnection is called regular if p(B) + p(C) = p(B ∧c C). In
this paper we will consider the problem of total stabilization for the plant B. A
controller C is called a totally stabilizing controller for B if the interconnection
is regular and if limt→∞(w(t), c(t)) = 0 for all (w, c) ∈ B ∧c C. If both plant235

and controller are represented by a minimal polynomial kernel representation,
then C is a totally stabilizing controller for B if and only if(

Rw Rc

0 C

)
(14)

is Hurwitz.
Again, the above can be extended to stable rational kernel representations

for the controller C. We do however again adhere to polynomial kernel repre-240

sentations of the plant B.
If C( d

dt )w = 0 is a rational kernel representation of the controller C with C
a full row rank stable rational matrix, then it is a totally stabilizing controller if
and only if the rational matrix (14) is miniphase. If C is a full row rank rational
matrix (not necessarily stable) then it is a totally stabilizing controller if and245

only if (14) is a square nonsingular rational matrix with all its zeros in C−.
We will now deal with the question under what conditions there exists a

totally stabilizing controller for a given plant B. These conditions involve sta-
bilizability and detectability. Given the plant behavior B with variable (w, c),
we say that w is detectable from c if (w, 0) ∈ B implies limt→∞ w(t) = 0. If B250

is represented by the polynomial kernel representation Rw( d
dt )w+Rc(

d
dt )c = 0,

then w is detectable from c if and only if Rw(λ) has full column rank for all
λ ∈ C+, see [4].

The following lemma gives necessary and sufficient conditions on the plant
B for the existence of a totally stabilizing controller.255

Lemma 3.3. Given a plant B with variable (w, c), there exists a totally stabi-
lizing controller C if and only if B is stabilizable and w is detectable from c in
B.

Proof: Let Rw( d
dt )w+Rc(

d
dt )c = 0 be a minimal polynomial kernel representa-

tion of B. By unimodular premultiplication we can obtain an alternative kernel260

representation in the triangular form(
Rw,1( d

dt ) Rc,1( d
dt )

0 Rc,2( d
dt )

)(
w
c

)
= 0, (15)
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with Rw,1 full row rank. Using the assumption that w is detectable from c we
find that, in fact, Rw,1(λ) has full column rank for all λ ∈ C+. As a consequence,
Rw,1 is square and Hurwitz. By stabilizability of B, Rc,2(λ) has full row rank
for all λ ∈ C+. Thus, the behavior represented by Rc,2( d

dt )c = 0 itself is265

stabilizable, so there exists a full row rank polynomial matrix C such that(
Rc,2

C

)
is Hurwitz. Clearly then  Rw,1 Rc,1

0 Rc,2

0 C

 (16)

is Hurwitz, so the controller C = kerC( d
dt ) totally stabilizes B.

Conversely, assume that there exists C such that(
Rw Rc

0 C

)
is Hurwitz. Then obviously (Rw(λ) Rc(λ)) has full row rank for all λ ∈ C+, so B270

is stabilizable. Now, assume that (w, 0) ∈ B. Then, clearly, also (w, 0) ∈ B∧cC.
Since the controller is totally stabilizing we must have w(t) → 0 as t → ∞, so
in B, w is detectable from c. �

4. A convenient system representation

As announced in Section 1, in this paper we will consider linear differential275

systems P with system variable (x, u, y), where x is interpreted as the variable
to be controlled, and (u, y) as the interconnection variable through which P can
be interconnected with a controller. We will make the following assumptions on
P.

(A1) P is stabilizable,280

(A2) x is detectable from (u, y),

(A3) u is input with (x, y) output,

(A4) dim(y) ≤ dim(x).

We will now briefly discuss the above assumptions. First note that by Lemma
3.3, assumptions (A1) and (A2) are necessary and sufficient for the existence285

of a totally stabilizing controller for P. In subsection 2.3 it was explained that
starting from a minimal polynomial kernel representation

Rxx+Ruu+Ryy = 0

10



of P, we can always obtain a new, more structured, minimal polynomial kernel
representation for P of the form(

Rx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

) x
u
y

 = 0, (17)

in which Rx,1 has full row rank. We will study how our assumptions are reflected290

in the polynomial matrices in the representation (17). First note that (A2)
holds if and only if Rx,1 has full column rank for all λ ∈ C+. Since Rx,1 has also
full row rank we therefore have that assumption (A2) is equivalent with Rx,1

being Hurwitz. Next, assumption (A3) is equivalent to the condition that the
submatrix295 (

Rx,1 Ry,1

0 Ry,2

)
is square and nonsingular. In particular this implies that Ry,2 is square and
nonsingular. Finally, as a consequence of assumption (A4) we have that the
matrix Ry,1 is tall, meaning that its number of columns does not exceed its
number of rows. By applying Lemma 2.2, there exist polynomial matrices Rx,1,
Ru,1, Ry,1, Ru,2, Ry,2 and rational matrices Q11, Q12 and Q22, with Q11 and300

Q22 square nonsingular, such that(
Rx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

)
=

(
Q11 Q12

0 Q22

)(
Rx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

)
and such that (

Rx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

) v
u
y

 = 0 (18)

is a representation of the controllable part Pcont of P. Obviously, under the
assumptions made above Rx,1 and Ry,2 are both nonsingular and Ry,1 is tall.

Remark 4.1. Referring to the discussion at the beginning of Section 3.2, every305

regular, totally stabilizing controller C for P through (u, y) has a polynomial
(and hence stable rational) representation C = ker

(
Cu Cy

)
such thatRx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

0 Cu Cy


is Hurwitz (and hence miniphase). SinceRx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

0 Cu Cy

 =

Q11 Q12 0
0 Q22 0
0 0 I

Rx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

0 Cu Cy


this implies that (

Ru,2 Ru,2

Cu Cy

)
has full row rank. We will use this fact in the proof of Proposition 5.2 below.310
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5. A converse to the separation principle

The following theorem is the main result of this paper. It provides a converse
to the classical deterministic separation principle.

Theorem 5.1. Consider a system with variables (x, u, y) such that Assump-
tions (A1)–(A4) from Section 4 hold. Then for every controllable, regular,315

totally stabilizing controller C through (u, y) there exists an asymptotic i/o-
observer O for x from (u, y) with variables (x̂, u, y) and a regular, totally stabi-
lizing controller K with variables (x̂, u) such that(

O ∧(x̂,u) K
)
(u,y),cont

= C. (19)

A few remarks are in order before we prove this theorem. Figure 1 illus-
trates the separation of the controller C into the two blocks O and K. As-320

sumptions (A1) and (A2) are clearly necessary for totally stabilizing controllers
through (u, y) to exist (Lemma 3.3). Assumptions (A3) and (A4) will turn out
to be sufficient conditions for solvability of the matrix equation that is equivalent
to (19), cf. Proposition 5.2 below. Ideally, we would like to drop the assumption
of controllability for the controller C and the corresponding restriction of the325

theorem statement to the controllable part of the separated controller. This
assumption and restriction is, however, necessitated by our use of rational rep-
resentations. The general theory will likely require more advanced algebraic
methods and our inability to generalize the current proof using standard poly-
nomial or rational methods might help to explain why such a result was never330

obtained in the classical state space literature (cf. [3]). Note, however, that if a
controller is totally stabilizing then its controllable part is also totally stabilizing
(Lemma 3.1).

In order to prove Theorem 5.1, we first derive a matrix equation formulation
of condition (19).335

Proposition 5.2. Consider a system P with variables (x, u, y) and such that
assumptions (A1) and (A2) from Section 4 hold. Represent P as in (17). Con-
sider a controllable, regular, totally stabilizing controller C = ker

(
Cu Cy

)

Figure 1: The separated controller of Theorem 5.1.
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through (u, y), where the polynomial representation of C has been chosen as in
Remark 4.1. Then there exists an asymptotic i/o-observer O for x from (u, y)340

with variables (x̂, u, y) and a regular, totally stabilizing controller K with vari-
ables (x̂, u) such that (19) holds if and only if there exists a rational matrix Y
and a stable rational matrix T such that(

Y Y T
)(Ry,1

Ry,2

)
= −Cy. (20)

Proof: The proof of Proposition 5.2 proceeds in four major steps. In a first
step we parametrize all observers O(S1, S2) for x from (u, y) using the authors’345

recent internal model principle for observers [11] and the algebraic generalization
thereof [12]. Here, S1 and S2 are matrix parameters. In a second step, we use
Lemma 3.2 to provide a parametrization K(Y1, Y2, X) of all fully interconnected
regular stabilizing controllers where Y1, Y2 and X are matrix parameters. In a
third step we use Lemma 2.1 to show that the separated controller resulting from350

the interconnection of O(S1, S2) and K(Y1, Y2, X) has the same controllable part
as C if and only if we choose Y2 and X appropriately. In a fourth and last step
we characterize when the parameter Y1 can be chosen such that K(Y1, Y2, X) is
a controller with variables (x̂, u) as required.

Step 1. Since the system P is stabilizable, its anti-stabilizable part is equal
to its controllable part, cf. Theorem 2.3 in [11]. But then O = ker

(
R̂x̂ R̂u R̂y

)
is a full row rank polynomial representation of an asymptotic i/o-observer for x
from (u, y) if and only if R̂x̂ is Hurwitz and Pcont ⊂ O, cf. Theorem 5.6 in [11]
and Corollary 16 in [12]; equivalently,(

R̂x̂ R̂u R̂y

)
=
(
S1 S2

)(Rx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

)
=
(
S1Rx,1 S1Ru,1 + S2Ru,2 S1Ry,1 + S2Ry,2

)
with S1 polynomial and Hurwitz, and S2 polynomial. We write O(S1, S2) to355

indicate the dependence of O on the matrix parameters S1 and S2.
Step 2. By Lemma 3.2, K = ker

(
Kx Ku Ky

)
is a fully interconnected,

regular, stabilizing controller for P if and only if(
Kx Ku Ky

)
=
(
Z1 Z2

)(Q11 Q12

0 Q22

)(
Rx,1 Ru,1 Ry,1

0 Ru,2 Ry,2

)
+X

(
0 Cu Cy

)
,

where Z1 and Z2 are rational and X is rational and non-singular square with
only stable zeroes. Define360 (

Y1 Y2
)

:=
(
Z1 Z2

)(Q11 Q12

0 Q22

)(
Rx,1 0

0 I

)
and observe that the reparametrization

(
Z1 Z2

)
↔

(
Y1 Y2

)
is bijective.

Hence K = K(Y1, Y2, X) = ker
(
Kx Ku Ky

)
is a fully interconnected, regu-

lar, stabilizing controller for P if and only if(
Kx Ku Ky

)
=
(
Y1 Y1R

−1
x,1Ru,1 + Y2Ru,2 +XCu Y1R

−1
x,1Ry,1 + Y2Ry,2 +XCy

)
(21)
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with Y1 and Y2 rational and X rational and non-singular square with only stable
zeroes.365

Step 3. Compute(
I 0

−Y1R
−1
x,1S

−1
1 I

)(
S1Rx,1 S1Ru,1 + S2Ru,2 S1Ry,1 + S2Ry,2

Y1 Y1R
−1
x,1Ru,1 + Y2Ru,2 +XCu Y1R

−1
x,1Ry,1 + Y2Ry,2 +XCy

)

=

(
S1Rx,1 S1Ru,1 + S2Ru,2 S1Ry,1 + S2Ry,2

0 (Y2 − Y1R
−1
x,1S

−1
1 S2)Ru,2 +XCu (Y2 − Y1R

−1
x,1S

−1
1 S2)Ry,2 +XCy

)
.

By Lemma 2.1,

(O(S1, S2) ∩K(Y1, Y2, X))(u,y),cont =

ker
(

(Y2 − Y1R
−1
x,1S

−1
1 S2)Ru,2 +XCu (Y2 − Y1R

−1
x,1S

−1
1 S2)Ry,2 +XCy

)
and since (

Ru,2 Ry,2

Cu Cy

)
has full row rank, (O(S1, S2) ∩K(Y1, Y2, X))(u,y),cont = C if and only if Y2 =

Y1R
−1
x,1S

−1
1 S2 and X is unimodular.

Step 4. It only remains to characterize when K(Y1, Y1R
−1
x,1S

−1
1 S2, X) has

variables (x̂, u) only, i.e. when Ky = Y1R
−1
x,1Ry,1+Y2Ry,2+XCy = Y1R

−1
x,1Ry,1+370

Y1R
−1
x,1S

−1
1 S2Ry,2 + XCy = 0. Setting Y = X−1Y1R

−1
x,1 and T = S−11 S2 shows

that this is equivalent to Equation (20). �

We can now complete the proof of Theorem 5.1 by showing that, under the
conditions of the theorem, Equation (20) has a solution.

Proof of Theorem 5.1: Assumption (A3) implies that Ry,2 is invertible. By375

Assumption (A4), the matrix Ry,1R
−1
y,2 is tall and hence there exists a left-

invertible rational matrix B such that T := B − Ry,1R
−1
y,2 is stable rational:

let

U−1Ry,1R
−1
y,2V =


p1

q1
0

. . .
...

pr

qr
0

0 . . . 0 0
0 . . . 0 0


be in Smith-McMillan form then B can be chosen as

B := U


−p1

q1
0

. . .
...

−pr

qr
0

0 . . . 0 I
0 . . . 0 0

V −1,
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making T polynomial and hence stable rational. Let BL be a left-inverse of B,380

i.e. BLB = I. Let Y := −CyR
−1
y,2B

L then

(
Y Y T

)(Ry,1

Ry,2

)
= −CyR

−1
y,2B

LRy,1 − CyR
−1
y,2B

L(B −Ry,1R
−1
y,2)Ry,2 = −Cy

as required. �

In the above theorem, the only constraints placed on the controller K are
that it is itself regular and totally stabilizing, and that it connects to the plant
only through (x, u); K is written here with variables (x̂, u) since it is intended to385

be combined with the observer O. In particular, it is not assumed a priori that
the controller K acts by feedback or that it is even static in the classical sense.
The latter would amount to the additional conditions Kx̂ = I and Ku = F
where F is a constant matrix, yielding the controller representation u = Fx̂. It
can be shown that Equation (20) does not always have a solution under these390

additional conditions.

6. Example: the state space case

Returning to the state space case that we already briefly discussed in Section
1, assume that our plant P with system variable (x, u, y) is represented by

ẋ = Ax+Bu,

y = Cx,

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp. For simplicity, assume that the pair
(A,B) is controllable and that the pair (C,A) is detectable. Let C be a regular
totally stabilizing controller through (u, y) and assume that C is controlable.395

Let C have polynomial kernel representation

Cu( d
dt )u+ Cy( d

dt )y = 0.

In this section we will identify an asymptotic i/o-observer O for x through (u, y)
and a regular totally stabilizing controller K through (x, u) such that the con-
trollable part of their interconnection equals C. Clearly, a minimal polynomial
kernel representation of P is given by400

(
d
dt I −A B 0
C 0 −I

)xu
y

 = 0 (22)

and this reveals that P is controllable (so also stabilizable) and that x is de-
tectable from (u, y). Obviously, in P, u is input and (x, y) is output, so the
assumptions (A1), (A2) and (A3) of Section 4 hold. Assume that in addition
we have p ≤ n so that also (A4) holds. Since P is controllable it is equal to its
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controllable part Pcont. We will now first bring the kernel representation (22)405

in the required upper diagonal form. Let

C(sI −A)−1 = L−12 L1

be a polynomial left coprime factorization, and let N1 and N2 be polynomial
matrices such that (

N1 N2

L1 −L2

)
is unimodular. Premultiplying (22) by this unimodualr matrix, we see that an
upper diagonal polynomial kernel representation of P = Pcont is given by410 (

N1( d
dt I −A) +N2C N1B −N2

0 L1B L2

)xu
y

 = 0.

Denote R := N1(sI − A) + N2C and note that this polynomial matrix is Hur-
witz. In order to identify a suitable obvserver/controller pair we first solve the
nonlinear equation (20), that in this case takes the form(

Y Y T
)(−N2

L2

)
= −Cy .

Since assumptions (A1) to (A4) hold, this equation indeed has a solution pair
(Y, T ) with Y rational and T stable rational. Next, factorize T = S−12 S1, with415

S1 polynomial and Hurwitz, and S2 polynomial. This yields an asymptotic
i/o-observer O for x from (u, y) with polynomial kernel representation

(
S1R (S1N1 + S2L1)B −S1N2 + S2L2

)x̂u
y

 = 0.

It is indeed easily verified that if (x, u, y) ∈ P and (x̂, u, y) ∈ O, then the error
e := x̂ − x satisfies S1Re = 0, so e(t) → 0 as t → ∞. Next we identify a
regular totally stabilizing controller K through (x, u). In general, all totally420

stabilizing controllers for P are parametrized by (21), with Y1, Y2 rational and
X nonsingular rational with only stable zeroes. Here we take

X := Im, Y1 := Y R, Y2 := Y T.

This yields the regular totally stabilizing controller K with rational kernel rep-
resentation (

Y R Y (N1 + TL1)B + Cu

)(x
u

)
= 0.

Now interconnect the observer O425

(
S1R (S1N1 + S2L1)B −S1N2 + S2L2

)x̂u
y

 = 0
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with K: (
Y R Y (N1 + TL1)B + Cu

)(x̂
u

)
= 0

through the variables (x̂, u). Then the controllable part of the (u, y) behavior
of this interconnection is equal to the given controller C as desired.

7. Conclusions

We have shown that under the mild assumptions (A1)–(A4) from Section 4430

the converse of the deterministic separation principle holds true, namely that
for a linear differential system with variables (x, u, y) any controllable, regu-
lar, totally stabilizing controller through the variables (u, y) can be separated
into an asymptotic i/o-observer for x from (u, y) with variables (x̂, u, y) and a
regular, totally stabilizing controller with variables (x̂, u) in the sense that the435

controllable part of the observer/(x̂, u)-controller interconnection coincides with
the given (u, y)-controller.

Together with the fact that the controllable part of a totally stabilizing
controller is also totally stabilizing and combined with the internal model prin-
ciple for observers, this result implies that any such controller must contain an440

internal model of the controllable part of the to be controlled system. This
observation should have interesting consequences for robustly stabilizing output
feedback controllers.

A characterization of those (u, y)-controllers that can be separated into an
asymptotic observer and a feedback (x̂, u)-controller is the topic of future work445

as is a generalization to not necessarily controllable (u, y)-controllers and the
case dim(y) > dim(x).
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