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Decision Boundary Evaluation of Optimum and
Suboptimum Detectors in Class-A Interference
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Abstract—The Middleton Class-A (MCA) model is one of the
most accepted models for narrow-band impulsive interference
superimposed to additive white Gaussian noise (AWGN). The
MCA density consists of a weighted linear combination of infinite
Gaussian densities, which leads to a non-tractable form of the
optimum detector. To reduce the receiver complexity, one can
start with a two-term approximation of the MCA model, which
has only two noise states (Gaussian and impulsive state). Our
objective is to introduce a simple method to estimate the noise
state at the receiver and accordingly, reduce the complexity of
the optimum detector. Furthermore, we show for the first time
how the decision boundaries of binary signals in MCA noise
should look like. In this context, we provide a new analysis of the
behavior of many suboptimum detectors such as a linear detector,
a locally optimum detector (LOD), and a clipping detector. Based
on this analysis, we insert a new clipping threshold for the
clipping detector, which significantly improves the bit-error rate
performance.

Index Terms—Impulse noise, non-Gaussian interference, Class-
A density, decision boundaries.

I. INTRODUCTION

IMPULSIVE interference corrupts a variety of many prac-
tical wireless systems such as radio frequency interference

(RFI) in indoor and outdoor channels [1]–[3], RFI generated
by computers for embedded wireless data transceivers [4], and
co-channel interference in a Poisson field of interferers [5], [6].
The source of interference can be either natural or man-made
such as atmospheric noise, power lines, ignition, and emissions
from closely located wireless systems. Since the emissions of
interfering sources and their spatial locations are randomly
varying over time, the interference is well-approximated by a
Gaussian distribution when the number of sources is large [7].
Otherwise, when the number of potential interfering sources is
small, the interference will have a structured appearance and
exhibits impulsive characteristics.

There are several distributions [3], [8]–[10] for impulse
noise such as a Middleton Class-A (MCA) density, a symmet-
ric alpha-stable (SαS) distribution, Gaussian mixture models,
and a generalized Gaussian distribution. The MCA and SαS
distribution are derived for Poisson distributed interferers
under bounded and unbounded path-loss assumptions [3], [11],
respectively. However, the unbounded path-loss assumption
that is underlying the SαS distribution is not realistic [11],
the MCA model appears to be more physically accurate.
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Here, we restrict our attention to a classical detection
problem of binary signals corrupted by MCA noise. Since the
MCA model possesses an infinite number of noise states, the
optimum detector has a high computational complexity. As a
suboptimum solution, the linear detector, which is optimum
for Gaussian noise, can be used. However, its performance
degrades over a strongly impulsive channel. In [12], [13], it
was shown that employing a nonlinear preprocessor improves
the performance of a linear detector such as a locally optimum
detector (LOD), a clipping detector, and a blanking detector.
In [14]–[16], it has been shown that the MCA density can be
well-approximated by two or three states of noise. Extracting
the noise state at the receiver simplifies the receiver design,
which motivates us to derive the decision boundaries for a
two-dimensional case. Thereafter, we introduce an accurate
analysis for the operations of the linear detector, the LOD [12],
and the clipping detector [13]. On this basis, we propose a new
clipping threshold, which minimizes the impact of the clipping
nonlinearity on the correct decision regions. Compared with
other adaptive clipping thresholds, we show that the proposed
one has a better performance.

This paper is organized as follows. Section II briefly de-
scribes the system model, and it provides a background of
the optimum and suboptimum detectors. In Section III, we
introduce a simple suboptimum detector in MCA noise, which
realizes the knowledge of the noise state at the receiver. Sec-
tion IV presents the decision boundary analysis in the presence
of MCA noise. The performance analysis of suboptimum
detectors is provided in Section V. Section VI introduces and
compares the proposed clipping threshold with other adaptive
thresholds. Finally, simulation results and concluding remarks
are presented in sections VII and VIII, respectively.

II. SYSTEM MODEL AND BACKGROUND

A. System Model

We consider signal detection in the presence of impulse
noise modeled by a MCA density. For simplicity, we restrict
the analysis to binary phase-shift keying (PSK). However, the
generalization to an arbitrary M -ary signal set is straightfor-
ward. We assume that the receiver is supplied with N replicas
of the same transmitted signal, which can, e.g., be realized by
transmitting the signal over different N time slots. We further
assume that the transmit signal ±s(t) uses a rectangular pulse
over 0 ≤ t ≤ Tb. The received interference as seen by the
receiver consists of additive white Gaussian noise (AWGN),
ng(t), superimposed to impulse noise, ni(t), which results
from the interference of various man-made or natural sources.
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Fig. 1. System model.

Hence, the received noise is given by

z(t) = ng(t) + ni(t) , (1)

where ng(t) and ni(t) are assumed to be statistically inde-
pendent. At the receiver, after matched-filtering and sampling
(see Fig. 1), the received signal vector r = [r1 · · · rN ] can be
expressed as

rk = ±B + zk , k = 1, · · · , N (2)

where B =
√
Es =

√
Eb

N and zk is the noise sample at the

kth sampling instant

zk =
1

Tb

∫ kTb

(k−1)Tb

z(t)dt . (3)

Since the impulsive characters of noise are due to the existence
of interference from various sources, we make the following
assumptions on the interference similar to [3]:

1) There is an infinite number of potential sources in the
interference source domain.

2) The interference waveforms comprising ni(t) have the
same form. However, their envelopes, duration, frequen-
cies, and phases are randomly distributed.

3) The locations of interfering sources and their emission
times are randomly distributed in space and time accord-
ing to a homogeneous Poisson point process.

4) Due to the path-loss, the received power of interference
is inversely proportional to d2γ , where d is the distance
from the source of interference to the receiver and γ is
the attenuation factor.

When the mean duration of the interference waveforms Ti is
comparable to the bit duration Tb, the noise samples zk at the
output of the receive filter can be modeled by an MCA density
as [3]

p(zk) =
∞∑

m=0

αmg(zk; 0, σ
2
m) , (4)

where

αm =
e−AAm

m!
, (5)

g(z;μ, σ2
m) =

1√
2πσ2

m

e
− (z−μ)2

2σ2
m , (6)

σ2
m =

N0

2
· m/A+ Γ

1 + Γ
, (7)

and N0 is the noise power spectral density. This model has two
basic parameters A and Γ. The impulsive index, A, is defined
by A = λTi, where λ is the rate of a homogeneous Poisson
point process that governs the generation of the interfering
waveforms. The impulsive index is used to measure the chan-
nel impulsiveness, e.g., at small values of A, the statistics of

the output samples are characterized as a summation of a few
interfering waveforms and the interference has an impulsive
appearance. For a large number of interferers, i.e., A � 1, the
noise statistic is almost Gaussian. The Gaussian factor Γk is
the power ratio of a Gaussian to a non-Gaussian component of
noise during the kth time slot. Under a locally stationary noise
assumption [3], there are no changes regarding average source
numbers and emission properties during the N time slots.
Therefore, the Gaussian factors are identical, i.e., Γk = Γ,
∀k = 1, · · · , N .

In (4), the MCA density is a weighted linear combination
of an infinite number of Gaussian densities. The first density,
m = 0, is thought to represent the background Gaussian noise.
The remaining densities, m ≥ 1, are thought to model impulse
noise. In this context, m can be seen as a noise state, i.e.,
m = 0 and m ≥ 1 show that there is no impulse and the
impulses are present, respectively. It is clear from (5) that the
noise state m is a Poisson distributed random variable such
that the probability of being in a given state is equal to αm.

In most detection problems, it is often assumed that the
noise samples zk, k = 1, · · · , N are independent so that the
probability density function (pdf) of each sample can be used
to determine the joint pdf of z = [z1, · · · , zN ]. Since the im-
pulsive component of noise is due to interference from external
sources, the samples at the consecutive sampling instants may
be statistically dependent. It was shown in [17] for urban
environments that, of course, the sampling spacing must be
greater than an impulse mean duration to have independent
samples. When the impulse mean duration is greater than
the bit duration, it is possible to have dependencies between
two consecutive sampling instants. Therefore, to guarantee
independence between noise samples, the replicas of the
transmitted signal are interleaved over time in order to break
the dependencies of impulse noise1. Under this assumption,
the joint pdf of a noise vector z = [z1 · · · zk] is simply

p(z) =

N∏
k=1

∞∑
m=0

αmg(zk; 0, σ
2
m) . (8)

In the following analysis, we assume that there is no memory
in signals transmitted in successive signal intervals. Given
the observation vector r = [r1, · · · , rN ], we are going to
review the previously studied detectors of binary signal in the
presence of MCA noise.

B. Optimum Detector

Assuming equiprobable transmit symbols, the optimum
detector computes the test statistics

Λ(r) =

∏N
k=1 p(rk|H1)∏N
k=1 p(rk|H0)

H1≥
<
H0

1 , (9)

where the hypotheses H1 and H0 correspond to transmit
signals +s(t) and −s(t), respectively. p(rk|H1,0) is the con-
ditional pdf of the observed sample given H1,0. In [12], the
optimum detector for binary signals corrupted by MCA noise
is evaluated and the various theoretical bounds that quantify its

1Interleaving is, of course, a suboptimum approach, since the statistical
bindings in the disturbance are not utilized (no noise whitening).
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performance are derived. Substituting (4) into (9), we obtain
the following log-LRT:

ln Λ(r) = ln

⎛
⎜⎝
∏N

k=1

∑∞
m=0

Am

m!σm
e
− (rk−B)2

2σ2
m

∏N
k=1

∑∞
m=0

Am

m!σm
e
− (rk+B)2

2σ2
m

⎞
⎟⎠H1≥

<
H0

0

=

N∑
k=1

ln

⎛
⎜⎝
∑∞

m=0
Am

m!σm
e
− (rk−B)2

2σ2
m

∑∞
m=0

Am

m!σm
e
− (rk+B)2

2σ2
m

⎞
⎟⎠H1≥

<
H0

0 . (10)

The log-LRT in (10) cannot be simplified further and leads to
a high computational complexity.

C. Suboptimum Detectors

Obviously, The high complexity of (10) is due to the
sum of exponential functions. This differs from a maximum
likelihood (ML) detection in AWGN, where the likelihood
function contains only one exponential function and hence,
the log-LRT reduces to a linear decision rule. As a suboptimal
solution, the linear detector may be used, which is optimum in
Gaussian noise. Here, the following test statistic is computed:

N∑
k=1

rk
H1≥
<
H0

0 . (11)

However, the linear detector provides a poor performance
compared with the optimum one in a predominantly impulsive
channel, i.e., when A � 1. In [12], an LOD is shown to
reduce the receiver complexity and provide an almost optimum
performance under a small signal assumption. Using a power
series expansion for small signals, i.e., for B ≈ 0, the optimum
decision rule reduces to

N∑
k=1

− d

drk
ln (p(rk))

H1≥
<
H0

0 . (12)

The interesting aspect of this rule is that it comprises a linear
detector preceded by a logarithmic memoryless nonlinearity
−d/drln(p(r)). This receiver is optimum for small signals,
but it becomes suboptimum at higher signal levels. To simplify
the logarithmic nonlinear function and remove the dependence
on an MCA density, a clipping or a blanking preprocessor can
be used [13]. In [15], [16], it has been shown that (4) can be
approximated by a maximum value of the first three terms
when the impulsive index A is sufficiently small. Hence, the
MCA density (4) becomes

p(zk) ≈ max
m=0,1,2

{
αmg(zk; 0, σ

2
m)
}

, (13)

and accordingly, (10) can be represented as [15], [16]

ln Λ(r) ≈
N∑

k=1

(
max

m=0,1,2
{lm(rk|H1)}

− max
m=0,1,2

{lm(rk|H0)}
)

, (14)

where

lm(rk|H1) = − (rk −B)2

2σ2
m

+ ln

(
αm

σm

)
, (15)

lm(rk|H0) = − (rk +B)2

2σ2
m

+ ln

(
αm

σm

)
, (16)

and (rk ∓ B)2 is the distance metric between the received
observation rk and the possible transmitted one ±B. The
terms ln(αm

σm
), m = 0, 1, 2, are bias terms due to unequal

variances σm and noise state probabilities αm. This detector
requires less complexity than the optimum one. However, it
still needs to compute lm(rk|H1,0), ∀m = 0, 1, 2.

III. APPROXIMATED ML DETECTOR WITH REDUCED

COMPLEXITY

As we show in (4), the MCA density is expressed as a
weighted infinite sum of Gaussian densities with different
variances. This leads to a complex realization of the opti-
mum detector (10). From (5), we can show that the noise
state probability αm tends to zero as m approaches infinity.
Therefore, the infinite sum may be truncated to a finite sum.
The formula of (13) relies on a three term approximation
of the MCA density. The suboptimum detector that applies
this approximation is equivalent to a log-sum representa-
tion, i.e., ln

(∑
m αmg(z; 0, σ2

m)
)

can be approximated by
maxm{ln(αmg(z; 0, σ2

m))}. Selecting the maximum term is
equivalent to determining the noise state m given A and
Γ [18]. It has been shown in [14] that for a wide range of
A and Γ, the Gaussian mixture model provides a sufficiently
accurate approximation of (4) as follows:

p(zk) ≈
Gaussian term︷ ︸︸ ︷

α0g(zk; 0, σ
2
0)+

impulsive term︷ ︸︸ ︷
α1g(zk; 0, σ

2
1) , (17)

where σ2
0 = N0

2 · Γ
1+Γ and σ2

1 = N0

2 · 1
A+Γ

1+Γ In this model,
we have two noise states only, i.e., m = 0 and m = 1
corresponding to a Gaussian and impulsive an state, respec-
tively. The terms α0 = e−A and α1 = 1 − e−A represent
the noise state probabilities [19]. According to (17), when
A becomes very small, e.g., A → 10−2, the probability
of being in the Gaussian state will be higher than that of
the impulsive state. However, the impulsive term cannot be
ignored since its variance σ2

1 becomes very large compared
with the variance of the Gaussian term σ2

0 . This scenario is
used to model a strongly impulsive channel. When A grows
large (asymptotically, A → ∞, although A ∼= 10 already
represents a large value of A), the probability of the Gaussian
state approaches zero, e−A → 0. Thus, the noise pdf can
be approximated by the “impulsive” term alone, which has a
Gaussian density with variance σ2

1 ≈ N0

2 · Γ
1+Γ .

Using a log-sum approximation, the Gaussian mixture
model of impulse noise can be approximated to a maximum
term of the noise states. Our task in this part is to determine
a simple method to estimate the noise state at the receiver.
Hence, we can detect if the received sample is affected by
either Gaussian noise or impulsive noise. To illustrate this
point, Fig. 2 depicts the MCA density and the pdfs of Gaussian
and impulsive states of noise. From this figure, the MCA
density can be further approximated as

p(z) ≈
{
α0g(z; 0, σ

2
0) if − z0 ≤ z ≤ +z0

α1g(z; 0, σ
2
1) otherwise ,

(18)
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Fig. 2. The MCA density and the pdfs of Gaussian and impulsive states of
a Gaussian mixture model for A = 0.4 and Γ = 0.1.

where ±z0 denotes the threshold for discriminating the state
of noise, and it can be obtained as

α0g(z0; 0, σ
2
0) = α1g(z0; 0, σ

2
1) , (19)

thus,
e−A√
2πσ2

0

e
− z20

2σ2
0 =

1− e−A√
2πσ2

1

e
− z20

2σ2
1 . (20)

We obtain

z0 =

√
2σ2

0σ
2
1

σ2
1 − σ2

0

ln

(
σ1e−A

σ0(1− e−A)

)
, (21)

and hence, the log-LRT in (14) can be rewritten as follows:

lnΛ(r) =
N∑

k=1

{l(rk|H1)− l(rk|H0)}
H1≥
<
H0

0 , (22)

where

l(rk|H1) =

{
l0(rk|H1) , if − z0 ≤ rk −B ≤ z0

l1(rk|H1) , otherwise
, (23)

l(rk|H0) =

{
l0(rk|H0) , if − z0 ≤ rk +B ≤ z0

l1(rk|H0) , otherwise
. (24)

lm(rk|H1) and lm(rk|H0) are as given in (15) and (16),
respectively. Furthermore, (22) can be simplified further for
a given number of observations, N , as we will show in the
next section for N = 2.

IV. DECISION BOUNDARY ANALYSIS

Evaluating the decision regions is a new approach for
analyzing the operation of the optimum and suboptimum
detectors for binary signals in the presence of SαS noise [20].
Up to now, there has been no investigation how the decision
regions of the optimum detector in the presence of MCA noise
should look like. In this section, we examine the behavior of
the optimum detector by introducing the decision boundary
analysis for a two-dimensional case (N = 2).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

r1

r 2

l1(r1|H0)
l0(r1|H0)

l1(r1|H0)

l1(r2|H1)

l1(r1|H1)
l0(r1|H1)

l0(r2|H0)

l1(r2|H0)

l1(r2|H0)

−B

+B−B

l0(r2|H1)

R1 R3

R4R2

R5 R7

R8R6

l1(r2|H1)

l1(r1|H1)

+B

Fig. 3. The overlap regions of binary signals in MCA noise.

Figure 3 depicts the overlap regions of received samples
in a 2-dimensional space. Under hypotheses H1 and H0, the
received samples are centered at (+B,+B) and (−B,−B),
respectively. For each hypotheses, we use the proposed MCA
density approximation (18) to express the conditional pdfs
of the received samples r1 and r2. Therefore, the space of
conditional pdfs can be divided into impulsive or Gaussian
regions. Our goal is to derive the decision rules, which classify
the received samples into their respective hypothesis. As we
can see in Fig. 3, there are four overlap regions in the second
and fourth quadrant. Since these regions are identical in both
quadrants, we only present the analytical derivation for the
regions in the second quadrant. The decision boundaries are
calculated using the following log-LRT:

l(r1|H1) + l(r2|H1) = l(r1|H0) + l(r2|H0) . (25)

In the overlap region R1, the impulsive state is the dominant
term of the conditional pdfs for the received samples r1 and
r2. Then, (25) can be expressed as

l1(r1|H1) + l1(r2|H1) = l1(r1|H0) + l1(r2|H0) . (26)

By substituting (23) and (24) into (26), the decision boundary
can be solved as

r2 = −r1 , (27)

which is the exact boundary in AWGN (11). In the region R2,
the impulsive term is the dominant state of r1 and r2 for H0.
Given H1, the impulsive and Gaussian terms are the states of
r1 and r2, respectively. Inserting (23) and (24) into (25) again,
yields

r1 =
σ2
0 − σ2

1

4Bσ2
0

(
k20 − (r22 − br2 +B2)

)
, (28)

where b = 2B
σ2
0+σ2

1

σ2
1−σ2

0
. In the region R3, we obtain

r2 =
σ2
1 − σ2

0

4Bσ2
0

(
k20 − (r21 + br1 +B2)

)
, (29)

and finally, in R4, we have

r2 = −r1 , (30)

r2 = r1 + b . (31)
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Fig. 4. Proposed decision regions with A = 0.4, Γ = 0.1 at an SNR = 0
dB for B = 1/

√
2. Shaded area: decide for H1, white area: decide for H0.
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Fig. 5. Decision regions of the proposed and optimum detectors for different
values of an impulsive index A with Γ = 0.1 at an SNR = 0 dB.

Based on the above analysis, the decision boundaries of the
proposed detector are illustrated in Fig. 4 for A = 0.4 and
Γ = 0.1. We can see that the proposed detector has disjoint
nonlinear decision boundaries, which was expected, since the
impulse noise generally leads to nonlinear structures.

In order to examine the decision regions of the proposed
detector, we compare them with those obtained from the ML
ratio test (10). Since the exact evaluation of the optimum
decision regions is complicated, we solve (10) numerically
to draw the exact regions. Figure 5 illustrates this comparison
in the second quadrant for different values of the impulsive
index A. We observe that the proposed detector provides a
good approximation of the exact optimum decision regions.
Therefore, we can say that the proposed detector behaves
almost as the optimum one by exploring the most likely
regions that are caused by impulse noise. Furthermore, from
this figure, we can analyze the behavior of the optimum
receiver for different values of A. On the one hand, for
small A, the received noise exhibits strong impulsiveness, the
nonlinear boundaries become larger. On the other hand, as

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

2.5

3

r1

r 2

 

 

SNR=0 dB
SNR=1 dB
SNR=2 dB
SNR=10 dB

Fig. 6. Decision regions at different SNR values for A = 0.4 and Γ = 0.1.

A increases, the nonlinear regions move closer to the linear
boundary, which justifies why the linear detector performs like
the optimum one at large values of A.

V. PERFORMANCE ANALYSIS OF SUBOPTIMUM

DETECTORS

In this section we employ the decision boundary analysis
to evaluate the behavior of suboptimum detectors such as a
linear detector and an LOD.

A. Linear Detector

In [12], the performance of the linear detector is evaluated
in the presence of MCA noise. There has been no clear
justification, yet, why it performs poorly as A becomes small.
The linear receiver has one linear decision boundary, as given
by (27) and hence it ignores a wide area of nonlinear regions,
which result from the impulsive character of the noise distribu-
tion. It is clear from Fig. 5 that as the impulsiveness increases,
the nonlinear regions become larger, which increases the error
probability of the linear receiver. The expected performance of
the linear detector can be evaluated by plotting the decision
regions at different values of a signal-to-noise ratio (SNR).
As shown in Fig. 6, when the SNR increases, the nonlinear
regions move closer to the linear regions. This illustrates why,
at high SNRs, the optimum receiver does not perform much
better than the linear receiver for N ≤ 10 [12].

B. Locally Optimum Detector

The LOD [12] represents a practical realization of the
optimum detector when the signal amplitude is small, or
equivalently at low SNR values. Based on our evaluation,
we introduce another view for appraising the behavior of the
LOD. That is, the decision boundaries of the LOD (evaluated
numerically) are plotted and compared with those of the
proposed detector to deduce its behavior at different SNRs.
Figure 7 depicts the decision boundaries for A = 0.6 and
Γ = 0.1 (we only show the regions of the second quadrant).
As we can see from this figure, at a small signal level
(SNR = −6 dB), there is more than a 60% overlap between

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.



6 IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION

−7 −6 −5 −4 −3 −2 −1 0
0

1

2

3

4

5

6

7

r1

r 2

 

 

locally optimum detector

proposed detector

SNR= −6 dB

SNR= 0 dB

Fig. 7. Decision regions for the proposed detector compared with the LOD
at different values of SNR with A = 0.6 and Γ = 0.1.

the two regions, and subsequently the LOD has almost the
same performance as our proposed one. At a higher signal
level (SNR = 0 dB), the LOD nonlinear region deviates
completely from the proposed one. As a result, the LOD will
not correctly detect the received signal in these regions.

VI. CLIPPING NONLINEARITY WITH ADAPTIVE

THRESHOLDS

It has been shown in [13] that the nonlinearity operation
of the LOD can be approximated by a clipping preprocessor
in the presence of MCA noise. The clipping detector simply
consists of a linear detector preceded by a clipping device.
Hence, it has a simple structure and adds almost no complexity
to the linear detector. The clipping operation limits the signal
amplitudes to a given maximum value γ. However, the perfor-
mance improvements introduced by the clipping nonlinearity
strongly depend on the choice of that threshold. The threshold
optimization has been considered in several publications [21]–
[23] for a Gaussian mixture and an MCA noise model. The
idea behind the optimization principle of [21] is to maximize
the SNR at the output of a clipping device. Unfortunately, this
solution does not guarantee a closed-form analytical expres-
sion for the optimum γ even for the simple Gaussian mixture
model. In [22], [23], the threshold optimization problem is
carried out for a binary PSK with a multicarrier modulation
scheme. The optimum threshold is selected to discriminate
samples affected by impulses and impulse-free samples for a
large number of subcarriers. Here, we applied this approach to
a single carrier binary PSK scheme. For a given threshold γ,
the conditional probability of detection Pd is the probability
of the received sample, corrupted only by impulse noise, to
exceed γ. The conditional probability of false alarm Pf is
the probability of the received signal, corrupted by Gaussian
noise, to exceed γ. Under the hypothesis H1, Pd and Pf are
thus given by

Pd(γ) = 2

∫ ∞

γ

g(r;B, σ2
1)dr = erfc

(
γ −B√

2σ2
1

)
, (32)

Pf (γ) = 2

∫ ∞

γ

g(r;B, σ2
0)dr = erfc

(
γ −B√

2σ2
0

)
, (33)

with

erfc(x) =
2√
π

∫ ∞

x

exp(−x2)dx . (34)

In [23], two optimization criteria are suggested to derive
the optimum thresholds. In the first criterion (combination
criterion), the optimum threshold γ∗

c satisfies

γ∗
c = arg max

{
Pd − Pf

}
. (35)

Hence, this function can easily be maximized with respect to
a clipping threshold γ to yield the solution

γ∗
c = B +

√
2σ2

0σ
2
1

σ2
1 − σ2

0

ln

(
σ1

σ0

)
. (36)

In the second criterion (Siegert criterion), the noise state prob-
abilities (1 − e−A) and e−A are weighed in the combination
of Pd and Pf , respectively. The optimum threshold γ∗

s should
satisfy

γ∗
s = arg max

{
(1 − e−A)Pd − e−APf

}
. (37)

This yields

γ∗
s = B + z0 , (38)

where z0 is defined in (21). Note that γ∗
s has the same solution

of the proposed upper threshold, see (23), to estimate the
state of noise under H1. To evaluate the performance of both
criteria, the receiver operating characteristic (ROC) [23] is
used to show why γ∗

c provides a better performance than γ∗
s .

A. Clipping Threshold Analysis

In [20], the performance improvements of a clipping op-
eration are explained using decision boundaries for binary
signals corrupted by SαS noise. In this section, we discuss
the performance of clipping thresholds derived by the two
considered criteria (combination and Siegert criterion) using
the decision boundaries for binary PSK signals corrupted by
MCA noise. Due to symmetry, we restrict our analysis to the
second quadrant only. In this quadrant, the decision regions of
the clipping nonlinearity with thresholds γ∗

c and γ∗
s in MCA

noise of parameters A = 0.4 and Γ = 0.1 are depicted in
Fig. 8. Using the threshold γ∗

c , the limiter clips all received
samples in the region C1 (shaded area) to the point (−γ∗

c , γ
∗
c ),

which is on the linear boundary. In the regions C2 and C3, the
limiter clips the samples to the lines r2 = γ∗

c and r1 = −γ∗
c ,

respectively. The threshold γ∗
s limits the samples in the region

C1 to a linear boundary point (−γ∗
s , γ

∗
s ). As stated in [20],

the optimum threshold should clip the nonlinear regions to
a point on a linear boundary to eliminate the effect of the
nonlinear decision boundary before applying a linear detector.
As we can see in Fig. 8, the threshold of a combination
criterion influences larger regions than the threshold of the
Siegert criterion, which is in line with the result of a ROC
analysis for selecting the better threshold [23].
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Fig. 8. The effects of clipping thresholds on the decision regions.

B. Threshold Assignment using Decision Boundaries

As shown in Fig. 8, moving the clipping threshold down
along the linear boundary limits a large area of nonlinear
regions, which subsequently improves the performance of the
concatenated linear detector. To completely prevent nonlinear
regions, one may select the threshold at the point (−γ∗

l , γ
∗
l ),

which can be calculated analytically as the intersection point
of (29) and (31) to be

γ∗
l = B − z0 +

4Bσ2
0

σ2
1 − σ2

0

. (39)

However, this threshold clips the correct regions inside C2

and C3 as well. To keep the impact on the other decision
regions at an acceptable level, we propose the threshold at the
intersection point, (−γ∗

m, γ∗
m), which limits the largest area

of the nonlinear regions without affecting the correct regions.
Using (30) and (31), the threshold γ∗

m can be derived as

γ∗
m = B

σ2
0 + σ2

1

σ2
1 − σ2

0

. (40)

With this threshold, we can limit half of the nonlinear regions
to the point (−γ∗

m, γ∗
m) on the line r2 = −r1. The other

half will be limited to the lines r1 = −γ∗
m or r2 = γ∗

m

as shown in Fig. 8. Since the points of the linear boundary
r2 = −r1 are assigned (detected) randomly to H1 or H0, the
proposed threshold will not offer a significant performance
improvement when N = 2. It is expected as N increases, the
probability of having unclipped samples (reliable samples) will
be increased, which releaves the effect of clipped samples at
the linear detector.

VII. SIMULATION RESULTS

In this section, we present a series of simulation results
to illustrate the bit-error ratio (BER) of antipodal signals
with rectangular pulses for the proposed detectors in different
impulse noise environments. In all simulations, we assume
that the detectors have a priori knowledge of the exact noise
parameters. This is a reasonable assumption, since it has
been shown that reliable estimates can be extracted from
samples of noisy data [18], [24] and can be applied in real
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Fig. 9. Performance comparison over a weakly impulsive channel with
N = 4.
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Fig. 10. Performance comparison over a moderately impulsive channel with
N = 4.

communication systems. Figures 9, 10, and 11 show the
BER of the proposed detector, the optimum detector, the
LOD, and the linear detector with N = 4 in different MCA
channels. To simulate these channels, we use three sets of
impulse noise parameters: a weakly impulsive channel with
(A,Γ) = (0.5, 0.1), a moderately impulsive channel with
(A,Γ) = (0.1, 0.01), and a strongly impulsive channel with
(A,Γ) = (0.01, 0.01), respectively, which are within the
specified range of A and Γ [24].

In a weakly impulsive channel, the optimum detector does
not offer a significant improvement over a linear detector.
This was expected, since in this channel case, the optimum
decision boundaries are close to those of the linear detector.
In figures 10 and 11, we see that the proposed detector behaves
as the optimum one. Moreover, we observe the performance
degradation of the LOD at a high SNR, which supports
our justification in Section IV. At high SNRs, the LOD
assumes incorrect decision boundaries for impulsive regions.
Therefore, it has a much worse performance than that of
a linear detector. In addition, the performance improvement
of the optimum detector over the linear detector decreases
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Fig. 11. Performance comparison over a strongly impulsive channel with
N = 4.
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Fig. 12. BER performance of a clipping detector with the proposed thresholds
for N = 4.

as the SNR increases. This result corroborates our analysis
that the nonlinear decision regions of the optimum receiver is
diminishing at high SNRs.

We also compared the performance of a clipping detector
that uses the proposed threshold, γ = γ∗

m as given in (40),
with those based on a combination and a Siegert criterion.
An MCA channel with parameters A = 0.1 and Γ = 0.1
is used. Figures 12 and 13 show the results for N = 4
and N = 8, respectively. Our results depict the performance
improvements introduced by a clipping operation over a linear
detector. Furthermore, we observe that the limiter that uses
the proposed threshold, γ = γ∗

m, has a better performance
than the other thresholds, which is in accordance with our
analysis of Section V. In Fig. 13, there is an improvement of
about 3.5 dB for the proposed threshold over the threshold
of a combination criterion at a BER of 10−4. This illustrates
that the clipping detector with the proposed threshold offers
a very good performance at almost no additional complexity
over a linear detector. It is worth mentioning that although
the proposed threshold was derived when N = 2, it gives a
substantial improvement for N = 4 and N = 8. The reason
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Fig. 13. BER performance of a clipping detector with the proposed thresholds
for N = 8.

for this improvement comes from the fact that, for statistically
independent noise samples, the probability of having more
than two samples clipped is rather small. Of course, for very
large N , the threshold value has to be re-optimized.

VIII. CONCLUSION

In this paper, we considered a binary signal detection in the
presence of Middelton Class-A (MCA) noise. To reduce the
optimum detector complexity, we proposed a further approx-
imation of the MCA density by extracting the noise states at
the receiver. Using this model, the log-likelihood function is
further simpilfied. We derived a closed-form expression of the
proposed detector for two independently received observations
(N = 2) by evaluating its decision boundaries. We showed
that the proposed decision boundaries provide an accurate
approximation of the optimum decision regions (evaluated
numerically) in different noise environments. Based on this
analysis, we provided a solid explanation of the behaviors
of many suboptimum detectors, including a linear detector,
a locally optimum detector (LOD), and a clipping detector.
A threshold optimization of the clipping detector based on
a decision boundary analysis has been investigated in a new
closed form.

The simulation results have shown that the bit-error ratio
(BER) of the proposed detector has an almost optimum per-
formance in several impulsive channels. It has been confirmed
by simulation that the limiter that uses the proposed threshold
provides better BER performance than those based on false
alarm and good detection trade-off optimization.
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