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Measuring information networks
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Abstract. Traffic and communication between different parts of a complex system are
fundamental elements in maintaining its overall cooperativity. Because a complex system
consists of many different parts, it matters where signals are transmitted. Thus signaling
and traffic are in principle specific, with each message going from a unique sender to a
specific recipient. In the current paper we review some measures of network topology that
are related to its ability to direct specific communication.
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A key feature of molecular as well as most of the other networks is that they
define the channels along which information flows in a system. Thus, in a typical
complex system one may say that the underlying network constrains the information
horizon that each node in the network experiences [1]. This view of networks can
be formalized in terms of information measures that quantify how easy it would
be for a node to send a signal to other specific nodes in the rest of the network
[2,3]. To do this one counts the number of bits of information required to transmit
a message to a specific remote part of the network, or conversely, to predict from
where a message is received (see figure 1).

In practice, imagine that you at node i want to send a message to node b in a given
network (left panel in figure 1). Assume that the message follows the shortest path.
That is, as we are only interested in specific signals we limit ourselves to consider
only this direct communication. If the signal deviates from the shortest path, it
is assumed to be lost. If there are several degenerate shortest paths, the message
can be sent along any of them. For each shortest path we calculate the probability
to follow this path (see figure 1). Assume that without possessing information one
would chose any new link at each node along the path with equal probability. Then

P{p(i, b)} =
1
ki

∏

j ∈ p(i,b)

1
kj − 1

, (1)

where j counts all nodes on the path from a node i to the last node before the
target node b is reached. The factor kj − 1, instead of kj , takes into account the
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Figure 1. Information measures on network topology: Left panel: Search
information S(i → b) measures your ability to locate node b from node i.
S(i → b) is the number of yes/no questions needed to locate any of the shortest
paths between node i and node b. For each such path P{p(i, b)} = 1

ki

Q
j

1
kj−1

,

with j counting nodes on the path p(i, b) until the last node before b is reached.
Right panel: Target entropy Ti measures predictability of traffic to you located
at node i. cij is the fraction of the messages targeted to i that passed through
neighbor node j. Notice that a signal from b in the figure can go two ways,
each counted with weight 0.5.

information we gain by following the path, and therefore reduces the number of exit
links by one. In figure 1 we show the subsequent factors in going along any of the
two shortest paths from node i to node b. The total information needed to identify
one of all the degenerate paths between i and b defines the ‘search information’

IS(i → b) = − log2


 ∑

p(i,b)

P{p(i, b)}

 , (2)

where the sum runs over all degenerate paths that connect i with b. A large
IS(i → b) means that one needs many yes/no questions to locate b. The existence
of many degenerate paths will be reflected in a small IS and consequently in easy
goal finding.

The value of IS(i → b) teaches us how easy it is to transmit a specific message
from node i to node b. To characterize a node, or a protein in a network, one may
ask how easy it is on average to send a specific message from one node to another
in the net:

Ai =
∑

b

IS(i → b). (3)

A is called the access information. In figure 2 we show Ai for proteins belonging to
the largest connected component of the yeast protein–protein interaction network
obtained by two hybrid methods [4,5]. The network shown nicely demonstrate that

1122 Pramana – J. Phys., Vol. 64, No. 6, June 2005



Measuring information networks

min

maxa b

Figure 2. (a) Analysis of the protein–protein interaction network in yeast
defined by the connected component of the most reliable data from the two-
hybrid data of Ito et al [5]. The value of the shown access information Ai

increases from light colored in the center to darker in the periphery. The dark
colors mark nodes that have least access to the rest of the network. (b) shows
a randomized version of the same network [6]. One sees that hubs are more
interconnected and that typical A values are smaller (less dark).

often highly connected nodes are on the periphery of the network, and thus do not
provide particularly good access to the rest of the system. This is not what one see
in a randomized version of the network, where all in and out degrees are maintained,
the network kept globally connected, but partners reshuffled (for a procedure, see
[6,7]). In fact we quantify the overall ability for specific communication

IS =
∑

i

Ai =
∑

i,b

IS(i → b) (4)

and compare with the value IS(random) obtained for a randomized network. In
figure 3 we plot the Z score defined as

Z =
IS − 〈IS(random)〉√

〈IS(random)2〉 − 〈IS(random)〉2
(5)

for the protein–protein network for both yeast (Sacromyces Cerevisia) [4,5] and
fly (Drosophilia) [8] as well as for the hardwired Internet and a human network
of governance (CEO) defined by company executives in the USA where two CEOs
are connected by a link if they are members of the same board [9]. One sees
that IS > IS(random) for most networks, except for the fly network. Thus most
networks have a topology that tends to hide nodes. In fact this can be quantified
further by considering the average information 〈S(l)〉 needed to locate a node that
is a certain distance l away from a given node (the average is over all nodes and
all neighbors at distance l from these nodes in a given network). For most of the
investigated networks, including the yeast network, we find that 〈S(l)〉−〈Srandom(l)〉
has a minimum below zero for some rather short distance l = 2 to l = 3, whereas
it becomes positive for l > 3. Thus most information networks have good local
communication, but prefer to hide for more distant communication. We interpret
this as a topology that reflects a tendency to favor specific signals, and disfavor the
distant and therefore typically nonspecific signals. To understand what feature
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Figure 3. Measure of communication ability of various networks. A high
Z-score implies relatively high entropy. In all cases we show Z = (I − Ir)/σr

for I = IS and IT , by comparing with Ir for randomized networks with pre-
served degree distribution. σr is the standard deviation of the correspond-
ing Ir, sampled over 100 realizations [2]. Results within the shaded area of
two standard deviations are insignificant. All networks have a relatively high
search information IS . The network of governance CEOs show a distinct com-
munication structure characterized by local predictability, low IT , and global
inefficiency, i.e., high IS .

that give rise to this ‘information horizon’ one may recast it in terms of average
connectivities as function of distances from a typical node. The observed informa-
tion horizon means that the average distance from a random node to the highly
connected hubs is larger in real world networks, than randomly expected.

In figure 3 we also show another quantity, namely, the ability to predict from
which of your neighbors the next message to you will arrive. This quantity measures
predictability, or alternatively the order/disorder of the traffic around a given node
i. The predictability based on the orders that are targeted to a given node i is

IT (i) = −
ki∑

j=1

cij log2(cij), (6)

where j = 1, 2, . . . , ki denotes the links from node i to its immediate neighbors j
and cij is the fraction of the messages targeted to i that passed through node j.
As before our measure is implicitly assuming that all pairs of nodes communicate
equally with one another.

Notice that IT is an entropy measure, and as such is a measure of order in the
network. In analogy with the global search information IS one may also define
overall predictability of a network

IT =
∑

i

IT (i) (7)

and compare it with its random counterparts. In general, as the organization
of a network gets more disorganized, IT increases and the number of hubs with
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disordered traffic increases. Also, as one considers networks with increasing values
of IT , nodes of low degree tend to be positioned between the hubs [2].

In summary, networks are coupled to specific communication and their topol-
ogy should reflect this. The optimal topology for information transfer relies on a
system-specific balance between effective communication (search) and not having
the individual parts being unnecessarily disturbed (hide). In figure 3 we saw that
the human network of governance (CEO, [9]) were highly ‘predictable’, and at the
same time very inefficient in transmitting information. In contrast, the hardwired
Internet was found to be locally unpredictable, and therefore robust against local
failures. Further, the fruit fly network, Drosophilia melanogaster [8], had better
connections between distant parts of the network than the yeast, Saccromyces cere-
visiae [4,5]. Such global communication patterns may reflect that the multicellular
organism must sustain life in cells with many more different local environments
than the single-celled yeast.

In a wider perspective the measures of ability to direct specific communication
is a complement to more traditional measures of network complexity, such as node
degree [10–14], particular motifs [15–17], topological hierarchy [18,19], modularity
or measures associated to the nonspecific diffusion of signals across the network
[20,21]. To understand real world networks, measures that relate function and
topology are required. The measures IS and IT presented here focus on communi-
cation and as such are ideally suited for characterizing networks where information
transfer is the main purpose.
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