
978-1-4244-1676-9/08 /$25.00 ©2008 IEEE RAM 2008

An Internet Robot Tele-operating System

WANG Quanyu, CAO Haifang, LIU Xin
School of Computer Science & Technology

Beijing Institute of Technology
Beijing China

 wangquanyu@bit.edu.cn, slowlycome180@hotmail.com, liuxinyhoo@yahoo.com.cn

Abstract— A server-decentralized internet model based on
Jabber for robot tele-operation with P2P stream media transfer
supplement based on JXTA is proposed. The system is composed
of four components: operators, robots, transfer servers and data-
keeper. The robot-controlling data/robot state data are packed
with XML stanzas and delivered to the resolved robot/operator
through XML streams. The locale audio/video media streams of
the robot are sent directly through P2P pipes to the operators. In
order to test its availability and performance, the model is
implemented and instanced as remote control systems for Virtual
Puma560 robot and the Hexapod Monster robot. Experiments of
the systems and network tests are carried out to evaluate the
instances; the results show that the systems are suitable for many
kinds of robot tele-operation scenarios despite the tough network
environment.

Keywords—Jabber, Tele-operation, Robot simulation, P2P

I. INTRODUCTION
The Internet is becoming more and more popular in recent

years and it provides us a cheap and convenient communication
channel for robot tele-operation. Thus the WWW-based RCS
(remote-control system) is becoming an interesting and
promising field of investigation in robotics, VR and
visualization [1].

The essence of the Internet is sharing data, information and
other resources. This reminds us we can not only develop our
robot application via the Internet, but also share the robots and
relevant resources in order to make the robots serve the people.
Nowadays there are more than one million robots in use all
over the world [2]. Applications of the current investigations in
areas such as space and underwater robotics, remote
manufacturing, remote surgery, traffic control, house cleaning,
remote education and entertainment are of great interests and
importance.

Although robots may have some extent of intelligence and
can perform some jobs automatically, human intervention and
human intelligence are still indispensable, especially in those
complex situations that could not be handled by robots alone.
Hence, the robots RCS is the way to provide the operators a
friendly interactive environment and combine the intelligence
of human beings with the execution of robots. Generally there
are two popular ways to construct the Internet RCS:

1) Basic Internet protocol Based RCS [2]: This kind of
Internet RCS is built up on the TCP/IP (transmission control
protocol/internet protocol) [3]. As a basic technique on the
worldwide web (www), the TCP/IP has arisen the possibility of

using the internet for remote control. Because the protocol is so
basic that too much work has to be done to resolve many
internet problems, such as firewall/NAT (network address
translations) traversal, connection safety, durability etc.

2) Hypertext Based RCS [5]: In this kind of RCS, usually
the user interface is implemented as an HTML page with a Java
applet for remote control and communication and a virtual
environment written in VRML for visualization [4]. The
operator (browser) has the ability to connect to a dedicated
WWW server and download the user interface. An obvious
shortcoming of this kind of RCS is that the only server restricts
its scalability and expansibility.

In order to take full advantage of the Internet resources and
to provide a scalable service to the public users, a multi-server
based RCS architecture is proposed in the paper. Jabber/XMPP
is chosen as the architecture’s substrate with a P2P (peer to
peer) stream media transfer service based on JXTA as its
supplement.

Jabber is an open Instant Messaging protocol that relies on
XMPP and XMPP is a generic and extensible messaging
protocol based on XML [6] [7]. It is implemented here to
perform a lot of the system's routine work: managing
operator/robot accounts, defining the different ways that
operator query remote entities for service discovery,
maintaining the authentication and security, handling all
communication messages sent among operators/robots and
machine-based services, firewall/NAT traversal, etc.

JXTA technology is a set of open protocols that enable any
connected device on the network, ranging from cell phones and
wireless PDAs to PCs and servers, to communicate and
collaborate in a P2P manner [8]. JXTA peers are created with a
virtual network where any peer can interact with other peers
and resources directly in case of multiple requests for one
audio or video stream resource from different operators or if
the stream resource is no longer needed to be recorded.

This paper presents the design, implementation, and
evaluation of the server-distributed architecture RCS.

II. ARCHITECTURE DESIGN

A. Design Criteria
In order to make this architecture fully applicable in

practice, some potential issues must be targeted:

1) Availability: Once an operator/robot goes online or
offline, his state quickly becomes available or invalid.

2) Performance: Remote-control has frequent updates and
they must be propagated under certain time constraints even
though the operators/robots may have limited bandwidth.

3) Scalability: System is easy to deploy new servers and
clients as needed to meet increased demand without disrupting
existing remote-control for connected users and it can provide a
single, unified, seamless environment that can support tens of
thousands of concurrent operators/robots.

4) Fault Tolerant: When a server goes down, system events
and remote-control connections can be redistributed to other
servers.

5) Security: Security plays a critical role in our remote-
control systems, and a compromise in security can result in
downtime and increased operations costs.

B. Possible Application Scenarios
The architecture should be designed as a generic structure

providing communication and other services and can be easily
configured as the following kinds of RCS:

1) One-To-One RCS:
One operator controls one robot. The operator can make a

connection to the robot. Once the connection has been
established, the operator can control the robot and request for
the state information of the robot. Meanwhile, the connection
request from other operators will be refused by the robot.

2) One-To-Many RCS:
One operator can control more than one robot. The operator

can control the robots in two different ways. In the first way the
operator makes separate self-governed remote-control
connections to each robot, and sends specific orders to each
robot. In the other way, the robots to be controlled are
considered as a robot-group, the operator sends the order to the
robot-group, so there is only one connection from the operator
to the robot-group, and then the orders are resolved by the
robots-group into many sub-orders for each robot.

3) Many-To-One RCS:
Many operators control one robot. The operators form as an

operator-group, and make a connection to the controlled robot.
The operators in the operator-group can send orders to the
robot alternatively, and they can also consult the orders to be
sent to the robot before sending.

4) Many-To-Many RCS:
Many operators control many robots. The operators can

combine the ways of operations discussed in the previous three
RCS to control the robots which can be treated as a robot-group
or separate robots. The operators can communicate with each
other and the robots can also be configured with rules of
cooperation.

C. The Network Structure
With consideration of the above issues, we designed a

simple but complete network structure.

As showed below in Figure 1, the system architecture is
made up of four components connected by the Internet:
Operators, Robots, Transfer Servers and Data Keepers. One of

the advantages of this architecture is that all of the components
are not amount limited.

1) Operators/robots
Operators/Robots in this architecture are end-users who

connect to the transfer server and perform as clients of it.
Whenever an operator/robot is on line, registration information
should be filled out and the server knows his presence.

Figure 1. The network structure

Operator/robot identification in the system is the all-
important problem to resolve and our solution depends on the
Addressing mechanism of XMPP.

Operator/Robot@Bit.com/Remote Control

node domain resource
Figure 2. Anatomy of a typical operator/robot ID

Just as Figure. 2 shows, the ID of an operator/robot is
composed of three parts:

a) Node: To the left of the “@” symbol lay the node part of
the ID, naming the operator/robot to whom this OID/RID
belongs. This name must be unique within the server named by
the domain part.

b) Domain: After the “@” comes the domain, an identifier
that names the host (Transfer Server) of this OID/RID.

c) Resource: The optional resource part, which must follow
a “/” character, allows an operator/robot to further specify its
location somehow. This has the effect of allowing the
operator/robot to be in several remote-control connections at
the same time.

2) Transfer Server
Relying on a naturally distributed structure, transfer servers

are decentralized and any user can run their own Transfer
Server, enabling individuals and organizations to take control
of their own experience.

Each Transfer Server is identified by a network address and
the architecture can be regarded as a system consists of a
network of servers that inter-communicate. This pattern is
familiar from messaging protocols, such as SMTP (Simple
Mail Transfer Protocol), that make use of network addressing
standards. Communications between any two transfer servers
are OPTIONAL.

From the network's point of view, a Transfer Server do not
actually host the remote-control, it's simply another user-level
node of the system. Rather, it listens for and responds to the
requests from operators/robots (and maybe also handles other
sorts of messages, such as personal chats). The most important
of these is the “request connection” request, sent by an operator
that wishes to start a new remote-control connection to a robot.
When it receives this request, a server makes sure that where
the robot is by the domain of his RID. If they are in the same
domain, the connection data will be transferred just through the
Transfer Server in this specific domain. If their OID/RIDs have
different domain, the operator/robot don’t have to do any more
than the former one, since everything will be done by Server-
to-Server level, data transferring from one operator/robot to the
other one when they are in different domain one actually
handled by the servers of their domain.

3) Data-Keeper
As its name suggests, the Data-Keeper's role in our system

architecture involves managing all the remote-control
connections and operators/robots records generated by connect
activity. Whenever a remote-control ends, the Data-Keeper
hears about it, taking note of who is the operator, who is the
robot, what server hosted it. Thereafter, operators/robots can
query the Data-Keeper to learn about that remote-control
connection.

Every operator/robot is allowed to run their own Data-
Keeper if they wish, and in doing so create a separate remote-
control network with its own set of remote-control and
operators’/robots’ records.

4) Peer
The operators’ computers can be treated as peers whenever

they are requested to relay the audio and video stream
resources. Though distributed designed, the transfer servers
may still be the bottleneck when many audio or video stream
resources from the locale of robots. P2P is introduced here in
order to: a) avoid the overload of the transfer server; b) to find
a better route than the “robot-transfer server-operator” .

III. IMPLEMENTATION
On the basis of the above system architecture it is easy for

us to fulfill an operator’s/robot’s interface of a Robot Remote
Control. Here below is how the Robot RCS is implemented as
an instance of the architecture with Jabber/XMPP.

A. Jabber/XMPP Data Features
Jabber/XMPP technologies provide a lot of valuable

features of which we have taken advantage, such as message
archiving, presence maintenance, publishing and subscription,
message queues and messages expiration, etc. Among all of
them, the most valuable feature is using streaming XML to
exchange structured information [6].

XML is used in Jabber to define the common basic data
types: message and presence. Essentially, XML is the core
enabling technology within the abstraction layer, providing a
common language with which operators and robots can
communicate. XML allows for painless growth and expansion
of the basic data types and almost infinite customization and
extensibility anywhere within the data.

So our Jabber based RCS gets away with calling itself a
fully XML-based technology simply because all of its
technological components are themselves XML applications.

B. Packing RCS data
RCS data is transferred on the network, which contains the

necessary data that exchanged between the operators and
robots.

1) XML stanzas
Three XML stanzas - the actual payload messages - are

defined in the remote-control system: message, presence, and
info/query. All of these XML stanzas share a set of common
attributes, which are to, from, id, type, and xml:lang [8].

a) Message Stanza
The message stanza is used a push mechanism from one

operator/robot to another. All message stanzas operate the to
attribute, which denotes the final recipient of the message.
Once a server receives a message stanza, it must look up the
value of the to attribute, and route the message appropriately.

b) Presence Stanza
Presence stanza is the notification part of the basic publish-

subscribe mechanism; it is used to deliver information from
one entity to multiple recipients. With this stanza, when an
operator/robot goes online, other operators/robots will observe
it.

c) Info/Query Stanza
Info/Query (IQ) is a request/response interaction, with

which an operator/robot is able to request some information
from another operator/robot, for example, the contact list. The
type attribute plays a central role in the IQ stanza; it is used to
specify the operation of the stanza, and can be one of the
following: get, set, result, or error.

In the RCS, message stanzas are frequently used when an
operator controls a robot. In each cycle, the operator and the
robot exchange lots of data.

2) RCS data types
In the RCS, there are mainly four kinds of data to be

transferred on the internet:

a) Robot modeling data: This kind of data is used to
construct robot simulation model usually created by the robot
owner for the operator to observe with the 3D modeling
program.

b) Robot state data: The robot transfers this kind of data to
the operators (maybe just observers) for them to realize the
robot current state.

c) Robot controlling data: The operator(s) transfer this kind
of data to send orders to the robot to inform the robot how to
move.

d) Robot locale media data: This kind of data includes
video and audio streams from the locale and transferred to the
operators for them to have an intuitive impression about how
their control data are performed and to make compare with the
3D simulation environment. This is a special kind of data and
will be discussed later.

3) Packing RCS data
An easy mechanism is designed for b) and c) by attaching

arbitrary properties to packets. Each property has a string
name, and a value that is a primitive (int, long, float, double,
bool). A piece of such data is listed below:

<properties >

 <property>

 <name>Joint1</name>

 <value type="double">Joint1’s Angle or
Displacement</value>

 <property>

</properties>

…

This mechanism is also suitable for transferring some of the
models built from command stream, but for the binary form
models, base 64 encoding scheme is employed to encode the
binary form into Base 64 and transferred over the network. The
Base 64 encoding is designed to represent arbitrary sequences
of octets in a form that requires case sensitivity but need not be
humanly readable [9].

The video and audio streams can be very large, after
sampled and coded with the algorithm of H.263 [10] and G.729
[11] stored in predefined structures respectively. Then encoded
as base 64 and then transferred.

C. Stream delivering
1) Text-based data

When an operator controls a robot, a set of data will be
packed with message stanzas; with the OID/RID a persistent
connection is established for delivering the XML data; once the
connection has been opened, instead of delivering separate
XML documents the operator/robot initiates a XML stream,
then the data with XML stanzas are transferred through the
stream.

2) Binary data
Binary data is transferred by a reliable bytestream protocol,

In-Band Bytestreams (or IBB), between two end-users over a
Jabber XML stream. IBB is a generic bytestream and suitable
for sending small payloads, such as files that would otherwise
be too cumbersome to send as stanzas defined above (such as a
text file) or impossible to send (such as a small binary image
file). As the data transferred, handshaking between the two
end-users and an incremental counter are necessary.

3) Media stream data

Besides the IBB protocol, which may bring too much traffic
to the transfer server and slow down the transfer rate of the
media stream data, a P2P supplement is employed to construct
direct media stream pipe between the operator and the robot.
The data can be flushed to other operators (peers) who have the
same media request from the robot. The peers can either use a
gateway peer or act as a gateway peer, even when some of the
peers and resources are behind firewalls and NATs or on
different network transports. Peers can be configured to relay
the data to other peers.

IV. EXPERIMENTS AND EVALUATION
With the previous work, some experimental systems have

been constructed to evaluate the availability and performance
of the RCS.

A. Virtual PUMA560 Remote Operation
1) RCS Implementation

The experiment was carried out with a computer connected
to the Internet via a broadband connection performing as the
Transfer Server and the Data Keeper; another domestic
computer connected to the Internet via an ADSL dial-up
connection running as a robot and an operator. Detailed
information about the computers is listed below:

Transfer Server/Data Keeper:
CPU: Celeron 2.66GHz
Memory : 256M DDR 266
Operating system : Microsoft Windows XP SP2
Connection: Broad Band
Maximum Bandwidth: 100M
IP: Static IP 218.8. 193.34
Robot/Operator:
CPU: Celeron 1.7GHz
Memory: 256M DDR 266
Operating system: Microsoft Windows XP SP2
Connection: ADSL
Maximum Bandwidth: 1M
IP: Dynamically assigned
The first computer is configured as the Transfer Server and

the Data Keeper with corresponding programs installed and
running. Then the robot simulation program on the other
computer is started and registered in the Transfer Server so that
the virtual Puma robot is set in the state of available.

The robot to be operated in the system is a 3D fully
parameterized simulation model of Puma560, which is a
modeling data file stored in the client side and can be
transferred to the operator if necessary. The simulation model
can be changed to other robot models in order to acquire
generality. When it is connected, the program pops up a
window just like the Main Window in Figure. 3, showing the
current position and motion of the robot.

As shown in Figure. 3, the human interface of the operator
program contains four windows: the Main Window, the
Control Panel, the Feedback Window and the Available robot
List Window. In the Main Window, four different viewports of
the simulation robot is displayed. Control Panel is designed to
send control information to the robot and two modes to control
the robot-Joint mode and World mode are in different tabs.
Through the Control Panel, the view point of the perspective

view can also be changed. The Feed Back Window receives the
robot feed-back information that indicates the angles and
locations of the remote robot’s joints, and then simulate it with
3D virtual reality [12] [13].

Once the operator program is in execution, after registered
in the Transfer Server, it can access the system and can initiate
a connection of remote-control by clicking on the virtual Puma
robot in the available remote robots list. After an agreement is
reached by the operator and the robot, i.e. the robot accepts the
request of operation; the robot gets itself ready to be operated
by the operator. The operator sends the operation commands to
the robot through the control-panel. Before being sent, the
commands are packed into the XML-formatted messages
which can be transferred by the Transfer Server and can be
translated and recognized by the virtual robot. As the robot is
under control and follows the orders from the operator, it packs
its current state-data into the XML-formatted message to feed
back its state to the operator so that the operator program can
simulate the robot’s current state in the 3D visualization
environment. The screen shots of the experiment are shown in
Figure. 3.

(a) Main Window (b) Control Panel

(c) Feed Back Window (d) Available robot List Window

Figure 3. Robot remote control simulation system snapshots

2) Performance
The success of the experiment has testified the availability

of the RCS. Further tests are fulfilled in order to acquire the
performance of the system.

Before the performance test, an Internet bandwidth test is
carried out by connecting a bandwidth test website:
http://www.linkwan.com/gb/broadmeter/SpeedAuto/. The
results are shown in Figure. 4.

(a) Server bandwidth (b) Operator/Robot bandwidth

Figure 4. The download bandwidth of server and operator/robot

The data in TABLE I recorded the delay of the RCS and the
relationship between it and the package size. The data show
that the average delay increases slightly as the package size
grows.

TABLE I. PERFORMANCE OF THE SYSTEM

In the Puma RCS, it takes about 200 bytes to describe the
state of the 6 DOF robot arm and the control data can be
managed into a pack less than 600 bytes. Theoretically the
feedback from the robot is so fast that the operator can not
observe any sticky display. Practically, during the operation
experiment some sticky displays were found and some even
very obvious due to the uncertainty of the Internet. It is not
negligible when the system is applied.

B. Hexapod Monster Operation
1) RCS Implementation

Another Hexapod Monster robot control experiment is
implemented with the architecture to test the P2P stream media
transfer service based on JXTA. The experiment is carried out
with three computers.The server computer is the same as above.

Robot and Operator Computers:
CPU: AMD2800+
Memory: 512M DDR 266
Operating system: Microsoft Windows XP SP2
Connection: CERNET
Maximum Bandwidth: 100M
IP: static assigned, firewalled and NAT

(a) Hexapod Monster Robot (b) Simulation of Hexapod Monster

Figure 5. The photo and simulation of the Hexapod Monster robot

Num of
Joints

Bytes/
Package

Test
Packages

Min Delay
(ms)

Max Delay
(ms)

Avg Delay
(ms)

6 683 30 351 160 243
12 1158 31 441 170 273
18 1633 37 1302 190 419
24 2108 31 1102 200 342
30 2583 30 511 180 315
36 3058 35 631 250 320

The Hexapod Monster is a 15 DOF robot controlled by 15
high-resolution servo motor with a serial port through which it
can be connected to and controlled by a PC. In the operator’s
end, a simulation model of this robot is built to show the state
of the remote robot. Video information is put into the window
to augment the virtual environment. The photo and simulation
of the Hexapod Monster robot is shown in Figure.5. The
augmented reality operation interface is shown in Figure.6.

Figure 6. The Hexapod Monster in Operation

Two experiments, with and without P2P stream media
transfer, were finished with the above environment.

2) Performance
The data in TABLE II show the average delay of

control/state packages. Comparing with Table I, the CERNET
provide a poorer quality of data transfer.

TABLE II. AVERAGE DELAY OF CONTROL/STATE PACKAGES

Control/State Packages(Bytes) Average delay(s)
20 1.0
30 1.1
40 1.1

TABLE III shows the delay of media packages transferred
by the Transfer Server and TABLE IV shows the delay of
media packages transferred directly from the robot to the
operator through P2P.

TABLE III. RESULTS OF AUDIO/VIDEO TRANSFER WITHOUT P2P

Sending speed(bit/s) Reveiving speed(bit/s) Average delay(s)
24K 11.2K 9
36K 16.0K 9.5
48K 18.4K 9.8
72K 24.0K 10.5

TABLE IV. RESULTS OF AUDIO/VIDEO TRANSFER WITH P2P

Data
packages(Bytes)

Max time(ms) Min time(ms) Avg
transfer time (ms)

6K 181 15 21
12K 188 16 24
18K 156 15 28
24K 234 15 30
30K 235 18 38

Data in tables III and IV show that by means of P2P,
performance of the media transfer can be greatly improved in
some specified cases. In table IV, the column “Avg transfer
time” means the time from the first data packet sent to the last
data packet received, including not only the “Average delay”.

V. CONCLUTION
An RCS architecture based on a senior communication

protocol Jabber/XMPP with P2P media transfer as its
supplement is designed, implemented, instanced and evaluated.
The system is firewall/NAT traversal and with it different
application can be run concurrently. Experiments show that the
RCS paradigm is available for many applications. There are
some obvious advantages in this RCS:

1) User management is handled at the network level.

2) A cross-platform can be easily generated since Jabber
can provide broad, cross-platform environment.

3) A lot of features are brought with the protocol-XMPP,
for example, security and authentication, communication with
foreign net, etc.

4) The architecture makes the RCS much more flexible: it
provides ways to construct not only One-To-One, but also One-
To-Many, Many-To-One or Many-To-Many RCS.

However, there is still a lot of work left undone and is now
undergoing, for example, multi-server experiment, many-to-
many RCS, scalability issues, etc.

REFERENCES
[1] Igor R. Belousov, JiaCheng Tan, Gordon J. Clapworthy, Teleoperation

and Java3D Visualization of a Robot Manipulator over the World Wide
Web

[2] Hartmut Ewald, Client-Server and Gateway-Systems for Remote
Control, IMTC 2003 Instmentation and Mcasunmcnt Technology
Conference Vail, CO, USA, 20-22 May 2003

[3] Peter X. Liu, Max Q.-H. Meng, Polley R. Liu, and Simon X. Yang, An
End-to-End Transmission Architecture for the Remote Control of Robots
Over IP Networks, IEEE/ASME TRANSACTIONS ON
MECHATRONICS, VOL. 10, NO. 5, OCTOBER 2005

[4] Draien BrSEiC, Tool for Remote Control of Mobile Robots with
Visualization by Means of Virtual Reality, 7th International Conference
on Telecommunications - ConTEL 2003

[5] Xiaoli Yang, Dorina C. Petriu, Thorn E. Whalen, Emil M. Petriu, A
Web-Based 3D Virtual Robot Remote Control System, CCECE 2004-
CCGEI 2004, Niagara Falls, May/mai 2004.

[6] Jabber Protocols. Available at: http://www.jabber.org/protocol/
[7] Mikko Laukkanen. Extensible Messaging and Presence Protocol

(XMPP). University of Helsinki Department of Computer Science.
[8] JXTA Protocol Specifications. Available at: https://jxta-

spec.dev.java.net/
[9] S.Josefsson, Ed., The Base16, Base32, and Base64 Data Encodings,

RFC 3548[S], July 2003; www.ietf.org/rfc/rfc3548.txt.
[10] ITU-T Recommendation H.263. Video Coding for Low Bit Rate

Communication. 1998
[11] ITU-T Recommendation G.729. Coding of Speech At 8 kbit/s Using

Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-
ACELP). Geneva, 1996-03.

[12] Chen Yimin, Zhang Tao, Wang Di, He Yongyi, A robot simulation,
monitoring and control system based on network and Java3D,
Proceedings of the 4th World Congress on Intelligent Control and
Automation. Shanghai, China, 2002 vol.1, pp.139-143

[13] BRUNO CAIADO' LUIS CORREIA' JOAO BRISSON LOPES, Three-
dimensional Interactive Visualization in Java3D, 1530-1834/01 2001
IEEE

