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ABSTRACT

This paper describes a perceptually motivated computational au-
ditory scene analysis (CASA) system that combines sound sepa-
ration according to spatial location with ‘missing data’ techniques
for robust speech recognition in noise. Missing data time-frequency
masks are produced using cross-correlation to estimate interaural
time differenre (ITD) and hence spatial azimuth; this is used to
determine which regions of the signal constitute reliable evidence
of the target speech signal. Three experiments are performed that
compare the effects of different reverberation surfaces, localisa-
tion methods and azimuth separations on recognition accuracy, to-
gether with the effects of two post-processing techniques (morpho-
logical operations and supervised learning) for improving mask
estimation. Both post-processing techniques greatly improve per-
formance; the best performance occurs using a learnt mapping.

1. INTRODUCTION

It is well known that speech recognition by human listeners is ro-
bust even in the presence of interfering sounds, such as the voice
of another speaker. In contrast, error rates for automatic speech
recognition are often more than an order of magnitude greater than
those for human listeners, and are particularly large in the presence
of background noise and room reverberation [1].

There is much evidence that a process of auditory scene anal-
ysis (ASA) contributes to the robustness of human speech recogni-
tion, in which listeners perceptually group sound components that
are likely to have arisen from the same acoustic source [2]. An im-
portant perceptual grouping cue is spatial location; specifically, it
appears that listeners can exploit a difference in location between
target and masking sound sources. For example, the intelligibility
of two overlapping speech signals improves as the spatial separa-
tion between them is increased [3].

Human listeners are able to localise sounds mainly using in-
formation about differences in sound intensity and time of arrival
at the two ears; so-called interaural time differences (ITD) and
interaural intensity differences (IID) [4]. Computational auditory
scene analysis (CASA) systems which use these cues may offer an
effective means for machine separation of sounds, as a precursor
to automatic speech recognition. In particular, such perceptually-
motivated systems may offer an approach to sound separation which
makes fewer assumptions about the number of sound sources and
their characteristics than blind statistical techniques (for a review,
see [5]).

This work was funded by EPSRC grant GR/R47400/01.

In this paper, we describe a CASA system which combines
sound separation according to ITD with ‘missing data’ techniques
for robust speech recognition in noise [6]. In our approach, a bin-
aural auditory model is used to construct a time-frequency mask
which indicates whether each acoustic feature constitutes reliable
evidence of the target speech signal or not. The acoustic features
and corresponding mask are then passed to a missing data speech
recogniser, which treats reliable and unreliable regions differently
during decoding. Our particular concern is how localisation cues,
and subsequent image processing operations, can be used to derive
a near-optimal time-frequency mask.

The current paper extends our previous work ([7], [8]) in sev-
eral respects. Firstly, we compare the effectiveness of a number of
localisation algorithms. Secondly, we investigate post-processing
of time-frequency masks using morphological image processing
operations (erosion/dilation) and supervised learning techniques.
Thirdly, we use a wider variety of test conditions that are more
representative of real acoustic scenes, including randomised inter-
fering speech utterances. Finally, we compensate for the effects
of reverberation by training the recogniser on reverberated speech,
rather than by correcting for spectral distortion using normalisa-
tion.

2. OVERVIEW OF METHODS

2.1. ‘Missing data’ speech recognition

The missing data recogniser was based on Hidden Markov models
(HMMs) trained on clean spatialised and reverberated utterances
from the TI digits corpus [9]. The Roomsim simulator1 was used
to produce impulse responses for a room of size 6 m x 4 m x 3 m
with MIT data for a KEMAR head2 in the centre of the room, 2 m
above the ground, with a source at azimuth 0, 5, 10, 20 or 40 de-
grees at a radial distance of 1.5 m. The left and right ear impulse
responses for the appropriate azimuth and reverberation surface
were convolved with the monaural data to produce binaural rever-
berated data. All surfaces within the room were assumed to have
the same reverberation characteristics. Two reverberation surfaces
were used, ‘acoustic plaster’ and ‘platform floor wooden’, with
the characteristics listed in table 1. Eight-state ten-mixture HMMs
with delta coefficients were trained using 4228 clean speech ut-
terances by 55 male speakers3 at azimuth 0 for each of the two
surfaces.

1http://media.paisley.ac.uk/˜campbell/Roomsim/
2http://sound.media.mit.edu/KEMAR.html
3female speakers would be expected to perform equally well
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Table 1. Reverberation surface characteristics, showing the esti-
mated T60 reverberation time at standard frequencies for two sur-
faces, ‘acoustic plaster’ (AP) and ‘platform floor wooden’ (PFW).
Times are in seconds.

Surface Frequency (Hz)
125 250 500 1000 2000 4000 Mean

AP 1.02 0.49 0.17 0.14 0.11 0.11 0.34
PFW 0.22 0.31 0.49 0.48 0.65 0.89 0.51

Recognition was performed using a separate test set of 240
utterances, also at azimuth 0, each mixed at 0 or 20 dB with one
of a set of 240 interfering male utterances, matched in length to
the original 240 utterances; the interfering speech was reverber-
ated and spatialised at one of the other azimuths listed above. The
signal-to-noise ratio (SNR), i.e. test utterance to interfering utter-
ance, was calculated from data spatialised at azimuth 0.

Each signal was processed to form an auditory spectrogram
(figure 1), which constituted the acoustic features for the recog-
niser. These were produced using a 64-channel gammatone fil-
terbank with centre frequencies ranging from 50 Hz to 8 kHz, an
analysis window of 20 ms and frame shift of 10 ms on data sam-
pled at 20 kHz. The mixed speech signal entering the ear furthest
from the interfering speech was used for recognition.
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Fig. 1. Auditory spectrograms for the utterance ‘one one five nine’
at azimuth 0 mixed at SNR 0 dB with utterance ‘nine nine four’ at
azimuth 40, both by male speakers: left, anechoic; right, reverber-
ated, surface ‘platform floor’ (see table 1).

2.2. Localisation for the missing data mask

In addition to the mixed speech signal to be recognised, the miss-
ing data speech recogniser requires a time-frequency mask indi-
cating regions of the signal that can be considered as reliably be-
longing to the source of interest (figure 2). Localisation cues were
used to separate the two sources and to determine the mask. In this
case, the reliable regions were considered to be those that appeared
to originate from a source close to azimuth 0. For comparison, a
priori masks were also produced: these are ideal masks created us-
ing a priori knowledge of the difference between the clean speech
and the mixed speech signals (figure 2, left).

The azimuth of each source was determined from the cross-
correlogram for each time frame produced by passing each of the
two binaural inputs through an auditory filterbank, computing the
cross-correlation between each frequency channel to estimate the
ITD, warping the ITD to its corresponding azimuth and then em-
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Fig. 2. Missing data masks for the reverberated data in figure 1:
left, a priori mask; right, produced using localisation.

phasising the peaks by convolving each peak with a Gaussian to
produce a ‘skeleton’ cross-correlogram (figure 3, left: see [7] for
details). Peaks in the cross-correlogram indicated the possible lo-
cation of a sound source.
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Fig. 3. Left, the skeleton cross-correlogram, for time frame 42,
for the two utterances in figure 1; right, the summary cross-
correlogram for the same time frame.

Two methods were used to determine the missing data mask
from the cross-correlogram. The first (the ‘summary’ method)
used a summary cross-correlogram, produced by summing over
all channels in each frame, to identify the dominant azimuths as-
sociated with that frame (figure 3, right); the cross-correlogram
channel energy at these azimuths was compared and the azimuth
of the largest value was used as the azimuth of the dominant source
in that channel and frame. The second method (the ‘no summary’
method) used the energy in each channel directly, selecting the az-
imuth of the largest peak as the azimuth of the dominant source.
In each case, an element of the mask corresponding to a particu-
lar time frame and frequency channel was set to 1 if the dominant
source was at azimuth 0 (to a given tolerance: in this case plus
or minus one degree); otherwise the element was set to 0. Note
that it is also possible to define ‘soft’ masks (as opposed to dis-
crete masks) in which each element of the mask takes a real value
between 0 and 1: this type of mask was used in experiment 3.

2.3. Post-processing the masks

Two techniques were applied to the localisation masks described
above in order to improve recognition accuracy: (a) erosion and
dilation to remove noise from and fill holes in the masks (figure 4,
left); (b) using artificial neural networks (ANNs) to transform the
masks to be more similar to a priori masks (figure 4, right).
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Fig. 4. Missing data masks produced by post-processing the local-
isation mask shown in figure 2: left, after erosion and dilation with
a square of side 3 (see section 3.2); right, soft mask learned from
ANN (see section 3.3)

3. EXPERIMENTS

3.1. Experiment 1 - baseline localisation masks

Experiment 1 investigated the effects of localisation method, re-
verberation surface and azimuth separation on recognition perfor-
mance. Localisation masks were produced using the ‘summary’
and ‘no summary’ methods described in section 2.2. The recog-
nition accuracy when using a priori masks (section 2.2) was also
measured.

Figure 5 (circles) shows the basline recognition accuracy for
the two localisation methods and the two reverberation surfaces,
for SNR 0 dB. The baseline results were better for the ‘no sum-
mary’ method than for the ‘summary method’ in all cases except
one (azimuth 40, acoustic plaster) in which the results differed by
less than 0.5%; the difference between localisation methods was
most pronounced for the smallest azimuth separation. In all con-
ditions, accuracy was better for larger azimuth separation. The
a priori mask results were around 96% for the ‘acoustic plaster’
surface and 91-92% for the ‘platform floor’ surface.

Recognition accuracy for SNR 20 dB was very similar for both
localisation methods, being around 97-98% for the ‘acoustic plas-
ter’ surface and around 94% for the ‘platform floor’ surface. The
a priori mask results for these two surfaces were around 98% and
95% respectively.

3.2. Experiment 2 - post-processing using morphological op-
erations

In experiment 2, the localisation masks produced by experiment 1
were post-processed using the morphological operations of erosion
and dilation. Each of these operations treats the mask as an image
and applies a structuring element, which defines the neighbouring
pixels, to each pixel in turn. Erosion removes noise from the mask
by setting the neighbouring pixels to zero if the input pixel is zero;
dilation fills holes in the mask by setting the neighbouring pixels
to one if the input pixel is one. Performing erosion followed by
dilation removes small objects from the image while preserving
the shape and size of larger objects. Each mask was processed
using a structuring element consisting of a square of side 2 pixels
(condition ‘ed2’) or of side 3 pixels (condition ‘ed3’).

Figure 5 (triangles) shows the recognition accuracy for these
two conditions. In general, applying erosion and dilation was ben-
eficial, especially for the smaller azimuth separations, and reduced
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Fig. 5. Results of experiments 1 (baseline), 2 (ed2/ed3) and 3 (nn
discrete/nn soft), using two localisation methods and two reverber-
ation surfaces, for SNR 0 dB.

the differential effects of the localisation method: performance us-
ing the ‘no summary’ method with condition ‘ed2’ was similar to
that for the ‘summary’ method with condition ‘ed3’. This applied
to both reverberation surfaces.

Recognition accuracy for SNR 20 dB was within 1% of that
for experiment 1.

3.3. Experiment 3 - post processing using a learnt mapping

Rather than post process the localisation masks using an ad hoc
morphological operation it may be possible to learn a better map-
ping directly from the data. To investigate this idea, artificial neu-
ral networks (ANNs) were trained to estimate the a priori mask
from the unprocessed localisation masks. Each point in the lo-
calisation mask, ltf , was formed into a feature vector by supple-
menting it with the points in a square context window extending
n frames backward and forward in time, and n channels up and
down in frequency. The ANN was trained to map this input onto
the corresponding value of the a priori mask, atf . The input con-
text size, n, was set to either 3, 4, or 5. For each value of n, ANNs
were trained with either 20, 60, or 120 hidden units. Thus a total of
nine different ANN topologies were considered. In all cases linear
output nodes were employed.

Training data consisted of 24 utterance pairs mixed at 0 dB
in the ‘acoustic plaster’ reverberation condition. The pairs were
mixed with separations of 5, 10, 20 and 40 degrees (making 96
pairs in total). 500 training examples were constructed from each
of the 96 mixtures by randomly sampling points from the localisa-
tion mask to form a 48,000 example ‘azimuth-independent’ train-
ing set. The random sampling was designed to avoid points at
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the mask edges to ensure that the time-frequency context window
could be accommodated.4 Where the localisation map and its con-
text were uniformly 0, the target was set to 0 regardless of the
actual value in the a priori mask. This was found to be necessary
to prevent undue influence of ‘noisy’ regions in the a priori mask
where the target is only just above the masking threshold. The
ANN was trained using 100 iterations of scaled conjugate gradient
descent. Performance was monitored during training using a small
cross validation set to safeguard against over-fitting.

Discrete mask estimates were constructed by selecting zero
or one depending on whether the network outputs were less than
or greater than 0.5. Continuously-valued (soft) masks were also
constructed in which the ANN outputs were used directly, except
that values greater than one were set to one, and negative values
were set to zero so as to preserve a probabilistic interpretation.

ANNs were trained for each of the 9 topologies described
above. The localisation masks for the 240 utterance test set mixed
in the ‘acoustic plaster’ condition were processed by each network.
For each topology the percentage decrease in L1 distance between
the localisation mask and the a priori mask was measured. The de-
creases were relatively small, i.e. around 10–15%. The ANN with
a context size of 3 and with 60 hidden units performed as well as
any of the larger networks and was therefore selected for use in the
recognition experiments.

The above procedure was used to train ANNs for post process-
ing localisation masks produced using both the ‘summary’ and the
‘no summary’ methods The resulting ANNs were applied to the
test data in both the ‘acoustic plaster’ condition (used in ANN
training) and the ‘platform floor’ condition (unseen during train-
ing). The resulting discrete and soft masks were tested in conjunc-
tion with the recognition system described earlier. In the case of
soft masks, mask values are treated as a probability that the data is
reliable, and the missing data acoustic model probability calcula-
tion becomes an interpolation between the ‘missing’ and ‘present’
interpretations (see [10] for details).

Figure 5 (solid lines) presents results for both the discrete and
soft masks. The discrete masks performed as well as, or better
than any of the discrete masks generated by the morphological op-
erations. Using the ANN outputs to form soft masks produced a
further increase in recognition performance. Largest gains were
observed for the ‘acoustic plaster’ condition on which the ANNs
were trained; however, the system also performed well in the more
severe, unseen ‘platform floor’ condition, i.e. the ANN was able to
generalise from one reverberation condition to another.

4. CONCLUSIONS

Recognition accuracy for the baseline results (i.e. without any post-
processing) was better for the simpler ‘no summary’ localisation
method than for the ‘summary’ method, but there was little dif-
ference between the two methods after post-processing using mor-
phological operations (erosion/dilation); these operations produced
a large improvement in performance, and tended to reduce the ef-
fect of azimuth separation. An even greater increase in perfor-
mance was seen for the second post-processing technique using
a learnt mapping. This technique provides a more principled ap-
proach than the rather ad hoc hand-tuning used in experiment 2

4Note, when processing the test data, points close to the edge of the lo-
calisation masks which do not have sufficient context were copied directly
to the a priori mask estimate unaltered.

and in [7], and generalised well to a second reverberation surface
and across different azimuth separations. It is likely, however, that
the greater improvement seen for the soft masks over the discrete
masks was due largely to the transformation of a hard decision
(which may be wrong) into a softer decision [10]. It may be pos-
sible to improve performance further by creating masks learnt di-
rectly from cross-correlograms or from soft masks that make use
of more of the underlying information, rather than from discrete
masks from which information has already been removed.

In these experiments, we have assumed that the target source
location is at azimuth zero. This is a safe assumption for many ap-
plications and simplifies the early stages of determining the masks,
but is not a strict requirement: we assume only that the position of
the target source is known, whereas the distracting sources may
have unknown locations. Furthermore, although only one distract-
ing source was used in these experiments, no assumptions were
made about the number of sources present and the techniques de-
scribed are expected to work well for multiple distractors. Future
work will deal with targets at unknown locations as well as multi-
ple distracting sources and moving sources, and will also test the
generality of this approach, using a wider variety of test conditions.
We will also investigate whether improved localisation masks can
be obtained by combining information from interaural level and
time differences.
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