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Abstract. This paper deals with the Helmholtz-Hodge decomposition of
a vector field in bounded domain. We present a practical algorithm to
compute this decomposition in the context of divergence-free and curl-free
wavelets satisfying suitable boundary conditions. The method requires the
inversion of divergence-free and curl-free wavelet Gram matrices. We
propose an optimal preconditioning which allows to solve the systems
with a small number of iterations. Finally, numerical examples prove the
accuracy and the efficiency of the method.
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1 Introduction

Vector field analysis is ubiquitous in engineering, physics or applied mathematics.
Most of the solutions of problems arising from these domains are vector fields and
they have some compatibility properties related to the nature of the problem.
This is the case in the numerical simulation of incompressible fluid flows where
the velocity field is divergence-free or in electromagnetism where the electric field
contained in the electromagnetic field is curl-free.

The Helmholtz-Hodge decomposition, under certain smoothness assumptions,
allows to separate any vector field into the sum of three uniquely defined compo-
nents: divergence-free, curl-free and gradient of a harmonic function. Thus, the
Helmholtz-Hodge decomposition provides a powerful tool for several applications
such as the resolution of partial differential equations [14], aerodynamic design
[25], detection of flow features [22] or computer graphics [21]. Therefore, it is
important to have at hand an efficient algorithm to deal with such decomposition
numerically.

In case of periodic boundary conditions, Fourier domain offers an ideal setting
to compute the Helmholtz-Hodge decomposition, thanks to the Leray projector
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which writes explicitly [11]. For more general (physical) boundary conditions,
this decomposition is usually achieved by solving a Poisson equation relative
to each field component: this is the case when using finite element or finite
difference methods [14]. The well known drawback of these methods is their
cost, for example in particle-based physical simulations. Then, one resorts to
mesh-less method [21] or methods leading to variational equations [22].

In the wavelet setting the Helmholtz-Hodge decomposition will not use the
resolution of a Poisson equation, since one knows explicit bases for the divergence-
free and curl-free function spaces [12,13,19,26]. In this context, Urban [27], and
latter Deriaz and Perrier [11] introduced methods to compute the orthogonal pro-
jections onto divergence-free and curl-free wavelet bases. These wavelet methods
provide accuracy for a small number of degrees of freedom, due to the good non-
linear approximation property provided by wavelet bases [7]. However, the works
of [11,27] were limited to periodic boundary conditions for lack of suitable bases.

The main objective of this paper is to extend the works of [11,27] to more
general physical boundary conditions. We first recall the principles of the tensor-
product divergence-free and curl-free wavelet construction on the cube, that was
detailed in [18] for the 2D case (see also [17]). Similar constructions, leading to
different bases, were proposed by Stevenson in general dimension [23,24]. Then
we propose an effective method for the Helmholtz-Hodge decomposition based
on the computation and inversion of corresponding Gram matrices. The tensor
structure of the bases is fully exploited to reduce the computational complexity.
Moreover the system is solved with a low complexity, thanks to an optimal
preconditioning.

The layout of this paper is as follows. In section 2, we recall the theoretical
definition and mathematical background of the Helmholtz-Hodge decomposi-
tion on a bounded domain of Rd. In section 3 we explicit the construction
of divergence-free and curl-free wavelets on [0, 1]d with desired boundary con-
ditions. Section 4 is devoted to the description of the numerical method for
the Helmholtz-Hodge decomposition, and numerical examples will illustrate its
performance.

2 Helmholtz-Hodge decomposition

We recall in this section some definitions related to the Helmholtz-Hodge de-
composition on a bounded Lipschitz domain Ω of Rd [14]. We assume that the
domain Ω and its boundary Γ have sufficient regularities (see [1,14]).

2.1 Definitions

The Helmholtz-Hodge decomposition theorem [6,14] states that any vector field
u ∈ (L2(Ω))d can be uniquely decomposed into the sum of its divergence-free,
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curl-free and gradient of harmonic function components:

u = udiv + ucurl + uhar (1)

with:
∇ · udiv = 0 and ∇× ucurl = 0 (2)

The last component uhar is both divergence-free and irrotational:

∇ · uhar = 0 and ∇× uhar = 0 (3)

Following [1,14], this decomposition may alternatively be written using scalar
potentials. There exist a scalar potential q ∈ H1

0 (Ω) and a harmonic potential
h ∈ H1(Ω) such as:

ucurl = ∇q and uhar = ∇h

Moreover, the scalars q and h are uniquely defined.

In terms of spaces, the decomposition (1) corresponds to an orthogonal split-
ting of (L2(Ω))d:

(L2(Ω))d = Hdiv(Ω)⊕Hcurl(Ω)⊕Hhar(Ω) (4)

where Hdiv(Ω) is the space of divergence-free vector functions of (L2(Ω))d with
vanishing normal boundary condition:

Hdiv(Ω) = {u ∈ (L2(Ω))d : div(u) = 0, u · n|Γ = 0} (5)

For d = 2, 3, the space Hdiv(Ω) coincides with the curl of potential space (see
[1,2,14]):

Hdiv(Ω) = {u = curl(Ψ) : Ψ ∈ (H1
0 (Ω))d}, (Ψ ∈ H1

0 (Ω) if d = 2) (6)

In this case, the component udiv of (1) reads: udiv = curl(Ψ)

On the other hand, the space Hcurl corresponds to the gradient of H1(Ω)-
potentials which vanish on Γ :

Hcurl(Ω) = {u = ∇q : q ∈ H1
0 (Ω)} (7)

Finally, Hhar corresponds to the gradient of H1(Ω)-harmonic potentials:

Hhar(Ω) = {u = ∇h : h ∈ H1(Ω), ∆h = 0} (8)

Other splittings exist, for example in (H1
0 (Ω))d to incorporate homogeneous

boundary conditions [14].

In the whole space Rd or with periodic boundary conditions, the decompo-
sition (1) is explicit in Fourier domain and the third term vanishes: uhar = 0
(one obtains the Helmholtz decomposition in this case [11,27]). In the wavelet
context, an iterative procedure was proposed by Deriaz and Perrier [11]. The
purpose here is to extend such method with boundary conditions for the spaces
Hdiv(Ω), Hcurl(Ω) and Hhar(Ω) introduced in (5, 7, 8).
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3 Divergence-free and curl-free wavelets on [0, 1]d

This section introduces the principles of the construction and main properties
of divergence-free and curl-free wavelets on the hypercube [0, 1]d. The two di-
mensional case d = 2 has been detailed in [18], with explicit examples (spline,
Daubechies wavelets), and practical tools for the implementation (filters, fast
wavelet transform, ..). We develop below the extension to more general dimen-
sions d ≥ 3. Recently, Stevenson proposed a first construction [23,24], which led
to alternative wavelet bases. A first advantage of our construction is that it fits
perfectly with the classical multiresolution analysis construction on the interval
[0, 1].

The construction is based on 1D multiresolution analysis generators (ϕ1, ϕ̃1)
and (ϕ0, ϕ̃0) linked by differentiation / integration, and introduced by Lemarié-
Rieusset and collaborators in original works [16,19]. It follows two steps, de-
scribed in the two forthcoming sections:

(i) Construction of two biorthogonal MRAs of L2(0, 1) linked by differentia-
tion / integration.

(ii) Construction of MRAs and wavelet bases of Hdiv(Ω) and Hcurl(Ω).

3.1 Multiresolution analyses of L2(0, 1) linked by differentiation /
integration

The construction of regular biorthogonal multiresolution analyses (BMRA) on
the interval [0, 1] is now classical (see [5,9,15,20]). It begins with a pair of
biorthogonal compactly supported scaling functions (ϕ1, ϕ̃1) [8] of L2(R), with
some r polynomial reproduction:

x` =
∑
k∈Z
〈x`, ϕ̃1(x− k)〉 ϕ1(x− k) for 0 ≤ ` ≤ r − 1 (9)

and similarly for ϕ̃1, with r̃ polynomial reproduction.

Following classical constructions, one defines finite dimensional biorthogonal
multiresolution spaces:

V 1
j = span{ϕ1

j,k ; 0 ≤ k ≤ Nj−1} and Ṽ 1
j = span{ϕ̃1

j,k ; 0 ≤ k ≤ Nj−1} (10)

whose dimension Nj ' 2j depends on some free integer parameters (δ0, δ1). The
scaling functions ϕ1

j,k satisfy ϕ1
j,k = 2j/2ϕ1(2jx − k) ”inside” the interval [0, 1],

but this is no more true near the boundaries 0 and 1 (idem for ϕ̃1
j,k). In practice,

the scale index j must be great than some index jmin, to avoid boundary effects.
The biorthogonality between bases writes: < ϕ1

j,k/ϕ̃
1
j,k′ >= δk,k′

The approximation order provided by such MRA (V 1
j ) in L2(0, 1) is r:

∀ f ∈ Hs(0, 1), inf
fj∈V 1

j

‖f − fj‖L2(0,1) ≤ C2−js, 0 ≤ s ≤ r (11)
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whereas (Ṽ 1
j ) has for approximation order r̃.

Homogeneous Dirichlet boundary conditions can be simply imposed on (V 1
j )

by removing one scaling function at each boundary 0 and 1:

V Dj = V 1
j ∩H1

0 (0, 1) = span{ϕ1
j,k ; 1 ≤ k ≤ Nj − 2} (12)

A possibility to adjust the dimension of the two biorthogonal spaces (V Dj , Ṽ Dj )
is to impose Ṽ Dj = Ṽ 1

j ∩H1
0 (0, 1), and Ṽ Dj rewrites (keeping the same notation

for the basis functions, which have changed after biorthogonalization):

Ṽ Dj = span{ϕ̃1
j,k ; 1 ≤ k ≤ Nj − 2} (13)

As usual, biorthogonal wavelet spaces (W 1
j , W̃

1
j ) are defined by:

W 1
j = V 1

j+1 ∩ (Ṽ 1
j )⊥ W̃ 1

j = Ṽ 1
j+1 ∩ (V 1

j )⊥ (14)

and generated by finite dimensional wavelet bases on the interval [15,20]:

W 1
j = span{ψ1

j,k ; 0 ≤ k ≤ 2j−1} and W̃ 1
j = span{ψ̃1

j,k ; 0 ≤ k ≤ 2j−1} (15)

The difficulty now is to derive a new biorthogonal MRA (V 0
j , Ṽ

0
j ) of L2(0, 1)

such that:
d

dx
V 1
j = V 0

j

The existence of such biorthogonal MRA was already proved by Jouini and
Lemarié-Rieusset [16] and it should be based on generators (ϕ0, ϕ̃0) introduced
in [19] satisfying:

(ϕ1(x))′ = ϕ0(x) − ϕ0(x−1) and (ϕ̃0(x))′ = ϕ̃1(x+1) − ϕ̃1(x) (16)

Let us introduce the primitive space for Ṽ 1
j :∫ x

0

Ṽ 1
j = {g : ∃ f ∈ Ṽ 1

j such that g(x) =
∫ x

0

f(t)dt}

In [18], we proposed a practical construction of spaces (V 0
j , Ṽ

0
j ):

V 0
j = span{ϕ0

j,k ; 0 ≤ k ≤ Nj−2} and Ṽ 0
j = span{ϕ̃0

j,k ; 0 ≤ k ≤ Nj−2} (17)

different from the underlying spaces of [24], but satisfying the following propo-
sition.
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Proposition 1.
The two BMRAs (V εj , Ṽ

ε
j )ε=0,1 of L2(0, 1) constructed in [18] from biorthogonal

generators (ϕε, ϕ̃ε)ε=0,1satisfying relation (16), verify :

(i)
d

dx
V 1
j = V 0

j and
d

dx
◦ P1

j f = P0
j ◦

d

dx
f, ∀ f ∈ H1(0, 1)

(ii) Ṽ 0
j = H1

0 (0, 1) ∩
∫ x

0

Ṽ 1
j and

d

dx
◦ P̃0

j f = P̃1
j ◦

d

dx
f, ∀ f ∈ H1

0 (0, 1)

where (Pεj , P̃εj ) are the biorthogonal projectors on (V εj , Ṽ
ε
j ).

Wavelet bases of the biorthogonal MRA (V 0
j , Ṽ

0
j )j≥jmin are simply defined

by respectively differentiating and integrating the wavelets of (V 1
j , Ṽ

1
j )j≥jmin

, as
stated by the following proposition [16,18].

Proposition 2. [16,18]
Let {ψ1

j,k} and {ψ̃1
j,k} be biorthogonal wavelet bases of respectively W 1

j and W̃ 1
j .

Then, the wavelets defined by:

ψ0
j,k = 2−j(ψ1

j,k)′ and ψ̃0
j,k = −2j

∫ x

0

ψ̃1
j,k (18)

are respectively biorthogonal wavelet bases of W 0
j and W̃ 0

j :

W 0
j = V 0

j+1 ∩ (Ṽ 0
j )⊥ and W̃ 0

j = Ṽ 0
j+1 ∩ (V 0

j )⊥ (19)

Remark 1.
The wavelets ψ0

j,k and ψ̃0
j,k defined by (18) differ from the standard wavelet con-

struction [5,9,20] in BMRA (V 0
j , Ṽ

0
j ): indeed, the usual wavelets on the interval

do not lead to the differentiation/integration relation (18), except for interior
wavelets.

3.2 Divergence-free scaling functions and wavelets on [0, 1]d

Le Ω be the hypercube Ω = [0, 1]d. The objective in this section is to derive
wavelet bases of the spaceHdiv(Ω), with vanishing outward normal at the bound-
ary Γ = ∂Ω. Following (5), Hdiv(Ω) is the curl of the space H1

0 (Ω) (d = 2) or
(H1

0 (Ω))d (d = 3) of scalar (vector for d = 3) stream functions [1]. We begin
with the description of basis functions in the 2D case (already detailed in [18]),
then we propose a generalization of the construction for d ≥ 3.

Two-dimensional case:
We start with the 2D MRA (V Dj ⊗V Dj )j≥jmin of H1

0 (Ω), where (V Dj )j≥jmin is the
1D MRA of H1

0 (0, 1) defined in section 3.1 (12). For each scale index j ≥ jmin,
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divergence-free scaling functions on Ω = [0, 1]2 are constructed by taking the
curl of scaling functions of V Dj ⊗ V Dj :

Φdiv
j,k := curl[ϕDj,k1 ⊗ ϕ

D
j,k2 ] =

∣∣∣∣∣∣
ϕDj,k1 ⊗ (ϕDj,k2)′

−(ϕDj,k1)′ ⊗ ϕDj,k2
, 1 ≤ k1, k2 ≤ Nj − 2 (20)

The choice of space V Dj ensures that the divergence-free scaling functions satisfy
the boundary condition Φdiv

j,k · n = 0 by construction. Let Vdiv
j be the space

spanned by these divergence-free scaling functions:

Vdiv
j = span{Φdiv

j,k}, 1 ≤ k1, k2 ≤ Nj − 2 (21)

By construction, the spaces Vdiv
j form a multiresolution analysis of Hdiv(Ω),

since it can be proven from proposition 1 that we have [18]:

Vdiv
j = (V Dj ⊗ V 0

j )× (V 0
j ⊗ V Dj ) ∩Hdiv(Ω) (22)

In the same manner, the corresponding anisotropic divergence-free wavelets
on Ω are defined by taking the curl of the three types of scalar anisotropic
wavelets associated to V Dj ⊗ V Dj : for j = (j1, j2), with j1, j2 > jmin,

Ψdiv,1j,k := curl[ϕDjmin,k
⊗ ψDj2,k2 ], 1 ≤ k ≤ Njmin

− 2, 0 ≤ k2 ≤ 2j2 − 1

Ψdiv,2j,k := curl[ψDj1,k1 ⊗ ϕ
D
jmin,k

], 0 ≤ k1 ≤ 2j1 − 1, 1 ≤ k ≤ Njmin
− 2

Ψdiv,3j,k := curl[ψDj1,k1 ⊗ ψ
D
j2,k2

], 0 ≤ k1 ≤ 2j1 − 1, 0 ≤ k2 ≤ 2j2 − 1

(ψDj,k) being the wavelet basis of WD
j = V Dj+1 ∩ (Ṽ Dj )⊥.

Three-dimensional case:
Divergence-free scaling functions and wavelets on Ω = [0, 1]3 are constructed by
taking the curl of suitable scaling functions and wavelets of (H1(Ω))3 [1,14]. We
will focus on the scaling function construction, since the same technique is used
for wavelets. The divergence-free scaling functions are defined by:

Φdiv
1,j,k := curl

∣∣∣∣∣∣
0
0
ϕDj,k1 ⊗ ϕ

D
j,k2
⊗ ϕ0

j,k3

=

∣∣∣∣∣∣
ϕDj,k1 ⊗ (ϕDj,k2)′ ⊗ ϕ0

j,k3

−(ϕDj,k1)′ ⊗ ϕDj,k2 ⊗ ϕ
0
j,k3

0
(23)

Φdiv
2,j,k := curl

∣∣∣∣∣∣
ϕ0
j,k1
⊗ ϕDj,k2 ⊗ ϕ

D
j,k3

0
0

=

∣∣∣∣∣∣
0
ϕ0
j,k1
⊗ ϕDj,k2 ⊗ (ϕDj,k3)′

−ϕ0
j,k1
⊗ (ϕDj,k2)′ ⊗ ϕDj,k3

(24)

Φdiv
3,j,k := curl

∣∣∣∣∣∣
0
ϕDj,k1 ⊗ ϕ

0
j,k2
⊗ ϕDj,k3

0
=

∣∣∣∣∣∣
−ϕDj,k1 ⊗ ϕ

0
j,k2
⊗ (ϕDj,k3)′

0
(ϕDj,k1)′ ⊗ ϕ0

j,k2
⊗ ϕDj,k3

(25)



8 S. Kadri Harouna & V. Perrier

These functions are contained in Hdiv(Ω) by construction. Let Vdiv
j be the space

spanned by this family: Vdiv
j = span{Φdiv

1,j,k, Φ
div
2,j,k, Φ

div
3,j,k}.

Since Hdiv(Ω) = curl(H1
0 (Ω))3, Vdiv

j is no more than the intersection of the
following standard BMRA of (L2(Ω))3:

Vj =
(
V 1
j ⊗ V 0

j ⊗ V 0
j

)
×
(
V 0
j ⊗ V 1

j ⊗ V 0
j

)
×
(
V 0
j ⊗ V 0

j ⊗ V 1
j

)
(26)

with Hdiv(Ω).
To each scaling function, we can associate 7 types of anisotropic divergence-free
generating wavelets by taking respectively the curl of wavelets of {0} × {0} ×
(V Dj ⊗V Dj ⊗V 0

j ), (V 0
j ⊗V Dj ⊗V Dj )×{0}×{0} and {0}× (V Dj ⊗V 0

j ⊗V Dj )×{0},
among which we can extract a wavelet basis.

The construction may extend to larger dimensions d ≥ 3 in the same way.
As in the isotropic construction of Lemarié-Rieusset [19], we obtain in this case
d types of divergence-free scaling functions For 1 ≤ i ≤ d, the general formula
of these scaling functions is given by:

Φdiv
i,j,k :=

0
...
0

row i → ϕ0
j,k1
⊗ · · · ⊗ ϕ0

j,ki−1
⊗ ϕDj,ki

⊗ (ϕDj,ki+1
)′ ⊗ · · · ⊗ ϕ0

j,kd

row i+ 1→ −ϕ0
j,k1
⊗ · · · ⊗ (ϕDj,ki

)′ ⊗ ϕDj,ki+1
⊗ ϕ0

j,ki+2
⊗ · · · ⊗ ϕ0

j,kd

0
...
0

(27)
(for i = d, replace row i+ 1 by row d). These scaling functions Φdiv

i,j,k satisfy the

boundary condition : Φdiv
i,j,k ·n = 0, by construction. The space Vdiv

j spanned by
this family is included into the following vector-valued multiresolution analysis
of (L2(Ω))d:

Vj = V
(1)
j × · · · × V (d)

j with V
(i)
j = V

δ1,i

j ⊗ · · · ⊗ V δd,i

j , 1 ≤ i ≤ d (28)

where δj,i denotes the Kronecker symbol. The corresponding wavelet family,
generated by the d(2d− 1) types of corresponding divergence-free wavelets, con-
stitutes an alternative family to the basis built in Stevenson’s work [24].

3.3 Curl-free scaling functions and wavelets on [0, 1]d

The construction of irrotational scaling functions and wavelets is easier than in
the case of divergence-free functions, since it does not depend on the dimension d.
According to the definition (7) of Hcurl(Ω), basis functions will be constructed
by taking the gradient of scaling functions and wavelets of a multiresolution
analysis of H1

0 (Ω).
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The starting point is again a regular multiresolution analysis of H1
0 (Ω) given

by d tensor-product of V Dj :

Vj = V Dj ⊗ · · · ⊗ V Dj (29)

Then, the curl-free scaling functions of Hcurl(Ω) are defined by:

Φ∇
j,k = ∇[ϕDj,k1 ⊗ · · · ⊗ ϕ

D
j,kd

] and V∇j = span{Φ∇
j,k} (30)

where 1 ≤ ki ≤ Nj − 2 for 1 ≤ i ≤ d. By construction we have:

V∇j = ∇[V Dj ⊗ · · · ⊗ V Dj ]

The multiresolution decomposition of the space V∇j leads to:

V∇j = ∇

V Djmin
⊗ · · · ⊗ V Djmin

⊕
jmin≤ji≤j−1

∑
ω∈Ω∗d

Wω
j

 , 1 ≤ i ≤ d (31)

with:

Ω∗d = {0, 1}d \ (0, · · · , 0) and Wω
j = Wω1

j1
⊗ · · · ⊗Wωd

jd

where the spaces Wωi
ji

correspond to:

Wωi
ji

= WD
ji if ωi = 1, Wωi

ji
= V Djmin

if ωi = 0

Denoting by Ψωj,k the wavelets of Wω
j , we define the curl-free wavelets and spaces

by:
Ψω,∇j,k = ∇ [Ψωj,k] and Wω,∇

j = span{Ψω,∇j,k } (32)

where ji ≥ jmin and 0 ≤ ki ≤ 2j − 1, for 1 ≤ i ≤ d.

From proposition 1, the spaces spanned by these curl-free functions are con-
tained in the following BMRA of (L2(Ω))d:

V+
j = V1

j × · · · ×Vd
j with Vi

j = V
1−δ1,i

j ⊗ · · · ⊗ V 1−δd,i

j , 1 ≤ i ≤ d

δi,j denotes the Kronecker symbol. This property allows fast coefficient compu-
tations on irrotational bases.

Since the spaces Vj defined in (29) constitute a multiresolution analysis of
H1

0 (Ω), we get:

H1
0 (Ω) = Vjmin

⊕
ji≥jmin

∑
ω∈Ω∗d

Wω
j

 , 1 ≤ i ≤ d (33)
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Taking the gradient of relation (33) and using again proposition 1, we obtain:

Hcurl(Ω) = V∇jmin

⊕
ji≥jmin

∑
ω∈Ω∗d

Wω,∇
j

 , 1 ≤ i ≤ d (34)

This relation (34) was proved in [18] in the case of 2D construction.

4 Wavelet Helmholtz-Hodge decomposition

4.1 Description of the method

The Helmholtz-Hodge decomposition, introduced in section 2, provides the or-
thogonal splitting of any vector field u ∈ (L2(Ω))d into a divergence-free part,
a curl-free part, and a gradient of a harmonic function:

u = udiv + ucurl + uhar (35)

where:

∇ · udiv = 0 and udiv · n = 0

∇× ucurl = 0 and ucurl · τ = 0

∇× uhar = 0 and ∇ · uhar = 0

n and τ are respectively the unit outward normal and tangent to the boundary
∂Ω.

Our aim in this section is to describe a practical way to compute the compo-
nents udiv and ucurl when Ω = [0, 1]3. The most natural way, already followed in
[23] for the Helmholtz decomposition, is to use the divergence-free and curl-free
scaling functions and wavelet bases constructed in the previous section. Since
Hdiv(Ω) = span{Ψdivj,k} and Hcurl(Ω) = span{Ψ∇j,k} (we adopt a unified notation

for the wavelet bases), the components udiv and ucurl are searched under the
form of their wavelet series:

udiv =
∑
j,k

ddiv
j,k Ψdivj,k and ucurl =

∑
j,k

d∇j,k Ψ∇j,k (36)

By orthogonality of the decomposition (35) in (L2(Ω))d, we obtain:

〈u, Ψdivj,k〉 = 〈udiv, Ψ
div
j,k〉 and 〈u, Ψ∇j,k〉 = 〈ucurl, Ψ

∇
j,k〉 (37)

Accordingly the computation of coefficients (ddiv
j,k) and (d∇j,k) is reduced to the

resolution of two linear systems:

Mdiv(ddiv
j,k) = (〈u, Ψdivj,k〉) and Mcurl(d∇j,k) = (〈u, Ψ∇j,k〉) (38)
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where Mdiv and Mcurl are respectively the Gram matrices of the bases {Ψdivj,k}
and {Ψ∇j,k}.

The above method is nothing but orthogonal projections from (L2(Ω))d to
Hdiv(Ω) and Hcurl(Ω) respectively. In practice, udiv is searched as ujdiv ∈ Vdiv

j

for some j, and ucurl as ujcurl ∈ Vcurl
j . Then we recover from the usual Jackson-

type estimations:

∀ u ∈ Hdiv(Ω) ∩ (Hs(Ω))d, ‖u− ujdiv‖(L2(Ω))d ≤ C2−js, 0 ≤ s ≤ r − 1

and

∀ u ∈ Hcurl(Ω) ∩ (Hs(Ω))d, ‖u− ujcurl‖(L2(Ω))d ≤ C2−js, 0 ≤ s ≤ r − 1

where r denotes the approximation order provided by the generator ϕ1.

The last component uhar of the decomposition (35) is computed by subtract-
ing udiv and ucurl from u:

uhar = u− udiv − ucurl (39)

4.2 Divergence-free and curl-free Gram matrices computation

In this section we present a practical computation of matrices Mdiv and Mcurl.
For easy reading, we focus on the matrix Mcurl in the 2D case. The extension
to larger dimensions d > 2 follows readily from this two-dimensional case.

The key idea is to use the tensor structure of Mcurl to reduce the computation.
Let Mj and Rj denote respectively the Gram and stiffness matrices of the 1D
basis {ψDj,k}:

[Mj ]k,k′ = 〈ψDj,k, ψDj,k′〉 and [Rj ]k,k′ = 〈(ψDj,k)′, (ψDj,k′)
′〉 (40)

The tensor structure of the basis {Ψ∇j,k} allows to express the inner product

〈Ψ∇j,k, Ψ
∇
j′,k′〉 in terms of matrix elements (40). By definition of the basis func-

tions we get:

〈Ψ∇j,k, Ψ
∇
j′,k′〉 = 〈(ψD

j1,k1)′⊗ψD
j2,k2 , (ψ

D
j′1,k′1

)′⊗ψD
j′2,k′2
〉+〈ψD

j1,k1⊗(ψD
j2,k2)′, ψD

j′1,k′1
⊗(ψD

j′2,k′2
)′〉

which rewrites:

〈Ψ∇j,k, Ψ
∇
j′,k′〉 = [Mj ]k1,k′1 · [Rj ]k2,k′2 + [Rj ]k1,k′1 · [Mj ]k2,k′2 (41)

Then Mcurl can be decomposed as:

Mcurl = Mj ⊗Rj + Rj ⊗Mj (42)

The tensorial decomposition (42) has for main interest to reduce a 2D matrix-
vector product with Mcurl to matrix-matrix products with Mj and Rj . More
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precisely, if (d∇j,k) denotes the vector of curl-free wavelet coefficients of ucurl,

defined in (36), equation (42) leads to:

[Mcurl(d∇j,k)] = Mj [d∇j,k]Rj + Rj [d∇j,k]Mj (43)

where [d∇j,k] denotes the matrix of elements d∇j,k. In practice the matrices only
needed to compute and to store are the 1D matrices Mj and Rj .

Finally, the matrix Mcurl has a sparse structure, due to the compact support
of basis functions. Figure 1 shows the shape of Mcurl, for j = 6, in the case
of Daubechies generators with r = 3 vanishing moments. Remark that in 2D
Mdiv = Mcurl (which is also the stiffness matrix of the Laplacian onto the wavelet
basis {ψDj1,k1 ⊗ ψ

D
j2,k2
}), since we have:

∀ u,v ∈ H1
0 (Ω);

∫
Ω

curl(u) · curl(v) dx =
∫
Ω

∇u · ∇v dx (44)

Fig. 1. Gram matrices of divergence-free scaling functions (left) and wavelets (right)
built from Daubechies generators with r = 3, jmin = 4, j = 6.

4.3 Right-hand side computations

To solve system (38), we need to compute efficiently inner products 〈u, Ψdivj,k〉
and 〈u, Ψ∇j,k〉. This is achieved by using the decomposition of u in the wavelet

bases in the suitable multiresolution analyses of (L2(Ω))d that contain alterna-
tively the divergence-free or curl-free functions. To illustrate, we will explain the
computation of 〈u, Ψ∇j,k〉 in the two dimensional case.
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Let (d1
j,k) and (d2

j,k) denote respectively the coefficients of the decomposition

of u = (u1,u2) on the wavelet basis of (V 0
j ⊗ V Dj )× (V Dj ⊗ V 0

j ):

u1 =
∑
j,k

d1
j,k ψ0

j1,k1 ⊗ ψ
D
j2,k2 u2 =

∑
j,k

d2
j,k ψDj1,k1 ⊗ ψ

0
j2,k2

The computation of inner product 〈u, Ψ∇j′,k′〉 writes:

〈u, Ψ∇j′,k′〉 =
∑
j,k

d1
j,k 〈ψ

0
j1,k1 ⊗ ψ

D
j2,k2 , (ψ

D
j′1,k

′
1
)′ ⊗ ψDj′2,k′2〉

+
∑
j,k

d2
j,k 〈ψ

D
j1,k1 ⊗ ψ

0
j2,k2 , ψ

D
j′1,k

′
1
⊗ (ψDj′2,k′2)′〉

In terms of coefficient matrices [d1
j,k] and [d1

j,k], it becomes:

[〈u, Ψ∇j′,k′〉] = C0
j [d1

j,k] Mj + Mj [d2
j,k] (C0

j )
t

where C0
j is the stiffness matrix of elements: 〈ψ0

j,k, (ψ
D
j′,k′)

′〉. The computation
of the Gram and stiffness matrices Mj , C0

j is classical [4] (see also [17,20]).

4.4 Divergence-free and curl-free Gram matrices preconditioning

The tensorial decomposition (42) of Mcurl is used to deduce a preconditioner
from those of matrices Mj ⊗Rj and Rj ⊗Mj . Let Ij be the identity matrix of
dimension (Nj − 2) and IR be the diagonal matrix of Rj :

[Ij ]k,k′ = δk,k′ and [IR]k,k′ = [Rj ]k,k′δk,k′ , 1 ≤ k, k′ ≤ Nj − 2

On one hand, as an optimal (and diagonal) preconditioner of Rj is given by
the inverse of IR (see [7,10]), readily we deduce optimal diagonal preconditioners
of matrices Mj⊗Rj and Rj⊗Mj by respectively the inverse of matrices Ij⊗IR
and IR ⊗ Ij .

On the other hand, since Mcurl is the 2D stiffness matrix of a scalar Laplacian
on the basis {ψDj1,k1⊗ψ

D
j2,k2
}, an optimal preconditioner is given by the inverse of

its diagonal matrix [7,10]. Then, the inverse of the diagonal matrix Dj defined
by:

Dj = Ij ⊗ IR + IR ⊗ Ij

is an optimal diagonal preconditioner for Mcurl.

However, the matrix Dj has the same size as Mcurl. To reduce the complex-
ity, we replace the 2D matrix-vector product Dj(d∇j,k) by the following matrix-
matrix products:

[Dj(d∇j,k)] = [d∇j,k]IR + IR[d∇j,k] (45)
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Because of the diagonal structure of IR, equation (45) is then reduced to term
by term matrix product:

[Dj(d∇j,k)]k,k′ = [d∇j,k]k,k′ · [I∗R]k,k′ where [I∗R]k,k′ = [IR]k,k + [IR]k′,k′ (46)

From equation (46), multiplying (d∇j,k) by the matrix D−1
j is therefore equivalent

to divide term by term the matrix [d∇j,k] by I∗R.

The preconditioner I∗R is also valid for the matrix Mdiv in dimension two
(d = 2) since Mdiv = Mcurl.

The performance of the above preconditioner for Mcurl was tested in two and
three dimensions, using a preconditioned conjugate gradient method to solve
system (43), with a random right hand side. Then we study the number of
iterations needed to reach a given residual, first with respect to the dimension
index j, second with respect to the regularity (approximation order r) of the
basis functions. Figure 2 shows that the number of iterations does not increase
significantly with the dimension index j, in the periodic and non periodic cases,
which indicates that our preconditioner is quasi-optimal.
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Fig. 2. Preconditioned conjugate gradient residual versus iteration number, for differ-
ent values of the dimension index j: periodic case (left) and non periodic case (right).
Daubechies generators ψ1 with r = 3 vanishing moments, jmin = 3 in non periodic
(2D case).

Figure 3 (two-dimensional case) and figure 4 (three-dimensional case) high-
light that the approximation order r speed up the convergence of the resolution.
The behaviour of the slopes are less regular in the non periodic case, because of
the influence of the smallest scale jmin > 0 (see [10] for similar conclusions).
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Fig. 3. Preconditioned conjugate gradient residuals versus iteration number, for dif-
ferent values of the approximation order r: periodic case (left) and non periodic case
(right). Daubechies generators ψ1 with r = 3 and r = 4 vanishing moments. The
resolution is j = 10 in two dimension (d = 2).
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Fig. 4. Preconditioned conjugate gradient residuals versus iteration number, for dif-
ferent values of the approximation order r: periodic case (left) and non periodic case
(right). Daubechies generators ψ1 with r = 3 and r = 4 vanishing moments. The
resolution is j = 7 in three dimension (d = 3).

4.5 Examples of Helmholtz-Hodge and Helmholtz decomposition

In this section, we carry out some experiments to illustrate and study the con-
vergence rate of the Helmholtz-Hodge decomposition. First we show in dimen-
sion two, the Helmholtz decomposition of a vector field u (Figure 5), and its
Helmholtz-Hodge decomposition (Figure 7). The vector field u was constructed
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analytically:
u2D = udiv + ucurl + uhar

where:

udiv =
∣∣∣∣ sin(2πx)2 sin(4πy)
− sin(4πx) sin(2πy)2 , ucurl =

∣∣∣∣ sin(4πx) sin(2πy)2

sin(2πx)2 sin(4πy) , uhar = (1/2,−1/4)

The terms of the decompositions are computed using the method described pre-
vioulsy.
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Fig. 5. Example of Helmholtz decomposition.
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Fig. 6. Example of Helmholtz-Hodge decomposition.

Then we investigate the convergence rate of the projection error onto the
divergence-free vector space Vdiv

j , in two and three dimensions. The tests have
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been performed on analytic fields, which we know the exact solutions. We used
u2D in two dimensions and u3D in three dimensions:

u3D =

∣∣∣∣∣∣
sin(2πx)2 sin(4πy) sin(4πz) + sin(4πx) sin(2πy)2 sin(2πz)2

sin(4πx) sin(2πy)2 sin(4πz) + sin(2πx)2 sin(4πy) sin(2πz)2

−2 sin(4πx) sin(4πy) sin(2πz)2 + sin(2πx)2 sin(2πy)2 sin(4πz)
(47)

The solutions verify homogeneous Dirichlet boundary conditions by construction.
Figure 7 plot the `2-projection errors in terms of the dimension index j with
generators of approximation order r = 3. For both experiments (2D and 3D),
the convergence rate follows the theoretical law of −2 predicted in (11).
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Fig. 7. `2-projection error onto Vdiv
j versus j. Two-dimensional case (left) and three-

dimensional case (right). The generators (ϕ1, ϕ̃1) correspond to biorthogonal splines
with: r = r̃ = 3.

5 Conclusion

In this paper, we have presented a practical algorithm to compute the Helmholtz-
Hodge decomposition of a vector field in the hypercube. Our method is based on
the existence of divergence-free and irrotational wavelet bases satisfying bound-
ary conditions. After presenting the principles of their construction in any di-
mension, we have detailed the computation of each term of the decomposition,
which requires the inversion of divergence-free and curl-free wavelet Gram matri-
ces. We have used the tensorial structure of the bases to propose an optimal and
diagonal preconditioning, to invert the system using a preconditioned conjugate
gradient. Numerical tests on 2D and 3D analytical vector fields illustrate the
potential of the approach, in terms of complexity and storage.
Since the Helmholtz-Hodge decomposition is a key ingredient for the analysis
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and simulation of incompressible flows, future works will present its application
in numerical schemes for the Stokes and Navier-Stokes equations [17].
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