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In this paper, the system of nonlinear partial differential-algebraic equations is solved by the well-
known variational iteration method and the results with high accuracy are obtained by only one
iteration. Furthermore, some nanoelectronics models are expressed by partial differential-algebraic
equations and one of them is successfully solved by the proposed method. Although solving nonlinear
PDAEs is difficult but it is shown that the variational iteration method using Taylor expansion is an

efficient method to solve these nonlinear problems.
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INTRODUCTION

The mathematical model of dynamical systems often
results from some network approach, which yields time-
dependent systems of differential algebraic equations
(DAEs). That is, we consider ideally joint lumped
elements, without spatial coordinate, but with the
topology information given by the incidences of these
elements. In contrast, spatial physical effects are
described by partial differential equations (PDEs) in
space or time/space. Thus an enhanced model requires a
coupling of DAEs and PDEs, which yields systems of so-
called partial differential algebraic equations (PDAEs).
Such systems of PDAEs arise in many technologies like
mechanical engineering as coupled multibody systems
with sole or flexible/plastic systems (Buttner and Simeon,
2003); in nanoelectronics and others (Ali et al., 2005;
Bartel, 2004; Bodestedt and Tischendorf, 2007; Gunther
and Feldmann, 1997).

Furthermore, the wording PDAE is also used for
singular implicit PDEs, that is, where singular matrices
arise in front of partial derivatives. In case of electronic
circuits, a specific multivariate model yields an efficient
representation of amplitude and/or frequency modulated
signals including widely separated time scales. The

*Corresponding author. E-mail: niroumandh@gmail.com.

introduction of different time variables (for the occurring
scales) transforms the circuit’'s DAE into a PDAE in the
sense of a singular PDE.

In this paper, we present a different approach for
solving PDAEs. The main aim of this paper is to use the
variational iteration method (VIM), proposed by the
Chinese mathematician (He, 1997) to find the solution of
nonlinear PDAEs. The VIM and its modifications have
successfully been applied to many situations (Ates and
Yildirim, 2009; Ghorbani and Saberi-Nadjafi, 2009;
Hosseini et al., 2010; Tatari and Dehghan, 2009). We
have illustrated the efficiency and accuracy of this
method by presenting some numerical examples and the
last gives some applications of PDAEs.

VARIATIONAL ITERATION METHOD

The VIM, which is a modified general Lagrange’s
multiplier method, has been shown to solve effectively,
easily and accurately a large class of nonlinear problems
(Abbasbandy, 2007; Biazar and Eslami, 2010; He, 2008;
Jafari et al.,, 2010; Mohyud-Din et al., 2009; Noor and
Mohyud-Din, 2008; Soltanian et al., 2009). The main
feature of the method is that the solution of a
mathematical problem with linearization assumption is
used as initial approximation or trial function. Then a
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more highly precise approximation at some special point
can be obtained.

This approximation converges rapidly to an accurate
solution. To illustrate the basic concepts of the VIM, we
consider the following nonlinear differential equation:

Ly+ Ny = g(x), (1)

Where L is a linear operator, N is a nonlinear operator,

and g(x)is an inhomogeneous term. According to the

VIM (He, 1999; He et al.,, 2010), we can construct a
correction functional as follows:

Vest(0) = 00+ [ Ml (0 485,00 —g (), n20, @)

Where 4 is a general Lagrangian multiplier, which can be

identified optimally via the variational theory, the
subscript 72 denotes the nth-order approximation, ¥, is

considered as a restricted variation (He, 1999; He et al.,
2010), that is dw,, = 0.

NUMERICAL EXAMPLE

In this section, to show the ability and efficiency of the
proposed method an example is provided. In mentioned

example, to perform the VIM, for natural numberv =20,
every coefficient of function g, (x,f) is expressed by

MTaylor series.
Consider the nonlinear PDAE system:

u,,<m>3%<m>+2xmw>—r2v (-2 =g, (51)

v (x,t)+v (60 —2u (D) +ux0) €™ =61 =&, (1)
WX D+2Ux1)+g(xH)=0

With u(x,0) =1,u,(x,0) =0.

Where g,(x,1),i =
solutions:

1,2,3 are computable to the exact

wty=costn),  g=sing), Yost)=te. )

To solve the PDAE, in the following we expand the
coefficient of functions g,(x,7),i=12,3 at x,t by
MTaylor expansion with v = 20.

To solve by means of He’s variational iteration method,
system (3) can be written as:

V=20 (o) —gy(x),
Vo= 0ct ™ oty Ot (e ™ —g, (),

P b1l 2t e e
0

205" (x-g D)

Where ﬁ["](x,t) is considered as restricted variations,

which mean i'"'(x,1)=0 . The Lagrange multiplier,
therefore, can be identified as:

1,
Ar)=—(T——)
2 T and the following variational iteration
formula is obtained:

VAot =208 (ot)—gy ),
V0= el -2 o sl g

d’””(xt):d”'(xtHj;(réXdéﬁ(x@*;LL”‘(M)—M@”(xﬁﬂzﬁ’fl(x@

205" D+8 (c) Y

Using initial solution u' (x,1) =1, we have:

W) =te— t3x34»tx5 1t +——X+-
120 5040 362880

. (5)
640237378000

LIV
720

Y =t+tx+ t)3+ :

U (xt)=1—

4)8%
24

Note that, the MTaylor series of the exact solutions (4)
with order 20 are as:

»(xt)ztx-ff-%ff PRI T I
120 5040 362880 39916800

)()gt)#—l—tﬁtf+ + St ! -
2 6402373281500 12164508832000

—l—t4 —
)= XZJEA{SX 7203‘? e

(6)

It is easy to see that the obtained results in the first
iteration (5) are same with the MTaylor expansion of the
exact solutions (6) withv =20, and this shows that a
very suitable solution is obtained only with one iteration.
Also it illustrates the high rate of convergence of the VIM



for this PDAE.

APPLICATIONS OF PDAEs

In this paper, we focus on PDAE models in
nanoelectronics setting with PDE-enhancement of DAE
models, rather than singular PDEs. Modified nodal
analysis yields large systems of DAEs for ideal circuits
(Gunther and Feldmann, 1997). We write such a system
in the general form:

FRXRXI >R, fX,Y.H=0, tel=[0T], (7)

Where Y : I — R* denotes unknown node voltages and
branch currents. A consistent initial value Y(0) =Y,
completes the usual electric network model. In addition,

we formulate schematically a system of PDEs
corresponding to a parasitic effect via an operator:
L:DXIXV—R", L(xtv)=0, xeDeR', tel, (8)

With a solution v:DXI — R"in some function space

V . Initial and/or boundary conditions have to be
specified appropriately. Coupling the systems (7) and (8)
using some variables/functions results in a PDAE. The
coupling can be done via artificial variables, source
terms, boundary conditions (BCs) or even more
sophisticated constructions.

In the following classifications of some important PDAE
models arising in ongoing research with in the field of
nanoelectronics have been introduced.

After that an example of PDAE which mentioned in the
above classifications has been solved to show the
efficiency and accuracy of our proposed method.

Refined modeling

Usually semiconductors, transmission lines and other
components with spatial distribution are given by sub
circuits of lumped electric elements (companion models).
To obtain a somewhat more precise model (also
considering down-scaling phenomena), we replace one
or several of these sub circuit descriptions by a PDE
model for the corresponding electric effect in the network.
These can be one or several semiconductor elements,
which behave critical in an electronic network, and where
it makes sense to simulate these elements more detailed.
Another possibility is to replace a transmission line model
based on DAEs by an according PDE. This is a natural
way, which bypasses a huge number of more or less
artificial parameters of the companion model.

This approach is called refined modeling. It has a
special type of coupling. Boundary conditions for the
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Ohmic contacts of the PDE model are the node potentials
of the connect network nodes (Dirichlet condition). At the
remaining boundaries in multiple dimensions, where
there is no electric contract, one may have von-Neumann
conditions with no flux or field conditions at insulated
contacts. On the other hand, the output of the PDE model
is an electric current, which is eventually a source term to
the network’s DAE. Abstractly, we obtain systems of the type

AU, +L,U~hU,t)=0
Ulr, =g(v)

(PDEin IxD)

i (Dirichlet BC) 9)

a—U‘Q =nh(Y) (von— NeumannBC)
n

JX.Y',0)=Au) (DAE in 1),

Where L, represents a differential operator with respect

to space. The involved PDE can be of mixed type (elliptic,
hyperbolic and parabolic). Thereby, the coupling is

performed via the input A , and the boundary conditions
g and h (where we have a decomposition of the

boundary: dD =TI, NT, Furthermore, analyzing

complex systems (9) may yield simpler but still highly
accurate companion models for the underlying
component. In nanoelectronics, the PDAE systems,
which have been considered in the literature or are part
of ongoing research, can principally be categorized into
the following cases:

1. Semiconductors: Here transistors are described by
drift-diffusion or quantum mechanical equations coupled
with the electric network. Existence and uniqueness
results for no stationary and stationary drift-diffusion
network systems are found in Ali et al., 2005; for an index
analysis of the arising PDAE, we refer to Bodestedt and
Tischendorf, 2007. Currently, efficient numerical codes
are being developed.

2. Transmission line effects: Also down-scaling causes a
decreasing distance of transmission lines and thus an
undesired interaction arises. Telegrapher's equation
describes the underlying physical effect. The coupling of
PDEs and DAEs accords to the form (9). Now the
involved PDE is exclusively of hyperbolic type, which
implies a specific numerical treatment.

3. Electromagnetic fields: The DAEs (7) result from a
network approach to avoid a simulation of the complete
circuit using Maxwell’s equations. However, if some
crucial parts of the circuit demand a refined model, a
separation from the network can be done. Thus we apply
Maxwell’s equations to represent the small part, whereas
we use the network DAEs for the major part.

Multiphysical extension

This modeling is much more complex, since we do not
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add a physical dimension to the electric network, but
have a distributed additional effect:

1. Thermal aspects: The increase of the clock rate in
chips causes a higher power loss in the electronic
network. Thus we have to consider heat distribution and
conduction between the circuit's elements. In contrast to
the effects described above, the heat evolution runs in
parallel to the time-dependence of voltages and currents.
Thus a thermal network can be associated to the electric
network. In the thermal part, specific OD elements can be
refined into elements with spatial distribution or elements
can be located in macro structures. Combining the heat
equation for the spatial elements with the network yields

AU+LU~hU,H=sx), PDEin IxD

UdD=g(x) (BO 10)
F,Y 1, 10) ) =0 (DAEin I),

In this case, the included PDE is of parabolic type
(Fourier Law). The coupling is present in the source
terms and boundary conditions s, y, g: Here dissipated
power is not only entering the boundary conditions, but is
also a source term for the evolution equation; on the
other hand, the temperature enters the electric network
as parameter and thus causes a more general
dependence. For further details, we refer to Bartel, 2004.
2. Electromagnetics: In principle, one can interpret an
electromagnetic field influencing the complete circuit as a
multiphysical case, too. Consequently, the contribution of
the field to each component has to be modeled
appropriately.

Example: Consider the nonlinear PDAE system in form
(10):
u, (1) —u_ (x,0)+v (x, D+t (xt)= g (x1)

v, (D) +u (1) =g,(x1)
V'(O—=20(x,1) 2(t) = g, (x,1)
2(0-2e™ =g, (x1) )

A=W +Wx,1) = g5(x,1)

With u(0,¢) =1,v(0,¢) = y(0) =z(0)=0 .
Where g.(x,1),i =1,2,3,4,5are computable to the exact
solutions:

Wd=" )=o) NSl ) tai()=—s.  (12)

e

), in the following we expand the
g.(x,1,i=123,45 at x,t by

To solve the PDAE (11
coefficient of functions

MTaylor expansion with v = 20. To solve by means of
He’s variational iteration method, system (11) can be
written as:

sty ostrH A0 s oL o5 st e

W sty=l oty AL s D007 05 D+ s DG Lo
Wio=2"r+" 0cir-g, )
M=o ADRE-2E g our

o= o+ A0 00 o-g e

By using the variatinal iteration method it is clear
that A,(7)=4,(0)=A4,(r)=A,(r)=-1 . Finally by

assuming ' (x,1) =1,V (x,0) = y' (1) = "' (1) =0
the following results are obtained

Wi, t)— Lop L tx LNV
720

(1) =114 +5 £xt

WO=1-1+*— '+ (13)

1 1, 25 443861162,
DO+ +—L o
3 15 185615699425

yﬂ](t)ztz‘lt 4*1[6 .. _|—1[18+. ..
6 120 355687468

LN L NI
6 720

Note that, the MTaylor series of exact solution (12) with
order 20 is as:

1
W);sz lﬁ 417265‘6 410356‘8 1
L()gt)zl—t)%-kztx—6 e+ )cl i dcl

w(t)—l—t2+t4 gL (14)

z(t)=t+ t3 443861 1?2 1 888846698

15 1856156692 194896008625
}(t)=t2—1t4 Lt 1 e
6 120 3556876068 12164508832000

The obtained results in the first iteration (13) are same
with the MTaylor expansion of the exact solutions (14)
with v =20, and this shows that an high appropriate
approximate solution can be obtained with only one
iteration. Also it illustrates the high rate of convergence of
the VIM for this PDAE.



CONCLUSION

In this paper, a new and effective approach has been
proposed for solving nonlinear system of PDAEs.
Appropriate solutions were obtained by only one iteration
of the VIM. It was shown that some nanoelectronics
models, which presented by PDAEs, can be easily solved
by using VIM. Using the mentioned method for system of
PDAEs with higher index could be a subject of further
researches.
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