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Why are most empirical networks, with the prominent exception of social ones, generically degree-

degree anticorrelated? To answer this long-standing question, we define the ensemble of correlated

networks and obtain the associated Shannon entropy. Maximum entropy can correspond to either

assortative (correlated) or disassortative (anticorrelated) configurations, but in the case of highly

heterogeneous, scale-free networks a certain disassortativity is predicted—offering a parsimonious

explanation for the question above. Our approach provides a neutral model from which, in the absence

of further knowledge regarding network evolution, one can obtain the expected value of correlations.

When empirical observations deviate from the neutral predictions—as happens for social networks—one

can then infer that there are specific correlating mechanisms at work.
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Complex networks, whether natural or artificial, have
nontrivial topologies which are usually studied by analyz-
ing a variety of measures, such as the degree distribution,
clustering, average paths, modularity, etc. [1–3]. The
mechanisms which lead to a particular structure and their
relation to functional constraints are often not clear and
constitute the subject of much debate [2,3]. When nodes
are endowed with some additional ‘‘property,’’ a feature
known as mixing or assortativity can arise, whereby edges
are not placed between nodes completely at random, but
depending in some way on the property in question. If
similar (dissimilar) nodes tend to wire together, the net-
work is said to be assortative (disassortative) [4].

An interesting situation is when the property taken into
account is the degree of each node—i.e., the number of
neighboring nodes connected to it. It turns out that a high
proportion of empirical networks—whether biological,
technological, information-related or linguistic—are dis-
assortatively arranged (high-degree nodes, or hubs, are
preferentially linked to low-degree neighbors, and vice
versa) while social networks are usually assortative. Such
degree-degree correlations have important consequences
for network characteristics such as connectedness and
robustness [4].

However, while assortativity in social networks can be
explained taking into account homophily [4] or modularity
[5], the widespread prevalence and extent of disassortative
mixing in most other networks remains somewhat myste-
rious. Maslov et al. found that the restriction of having at
most one edge per pair of nodes induces some disassorta-
tive correlations in heterogeneous networks [6], and Park
and Newman showed how this analogue of the Pauli ex-
clusion principle leads to the edges following Fermi sta-
tistics [7] (see also [8]). However, this restriction is not
sufficient to fully account for empirical data. In general,
when one attempts to consider computationally all the

networks with the same distribution as a given empirical
one, the mean assortativity is not necessarily zero [9]. But
since some ‘‘randomization’’ mechanisms induce positive
correlations and others negative ones [10], it is not clear
how the phase space can be properly sampled numerically.
In this Letter, we show that there is a general reason,

consistent with empirical data, for the ‘‘natural’’ mixing of
most networks to be disassortative. Using an information-
theory approach we find that the configuration which can
be expected to come about in the absence of specific
additional constraints turns out not to be, in general, un-
correlated. In fact, for highly heterogeneous degree distri-
butions such as those of the ubiquitous scale-free networks,
we show that the expected value of the mixing is usually
disassortative: there are simply more possible disassorta-
tive configurations than assortative ones. This result pro-
vides a simple topological answer to a long-standing
question. Let us caution that this does not imply that all
scale-free networks are disassortative, but only that, in the
absence of further information on the mechanisms behind
their evolution, this is the neutral expectation.
The topology of a network is entirely described by its

adjacency matrix â; the element âij represents the number

of edges linking node i to node j (for undirected networks,
â is symmetric). Among all the possible microscopically
distinguishable configurations a set of L edges can adopt
when distributed among N nodes, it is often convenient to
consider the set of configurations which have certain fea-
tures in common—typically some macroscopic magnitude,
like the degree distribution. Such a set of configurations
defines an ensemble. In a seminal series of papers Bianconi
has determined the partition functions of various ensem-
bles of random networks and derived their statistical-
mechanics entropy [11]. This allows the author to estimate
the probability that a random network with certain con-
straints belongs to a particular ensemble, and thus assess
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the relative importance of different magnitudes and help
discern the mechanisms responsible for a given real-world
network. For instance, she shows that scale-free networks
arise naturally when the total entropy is restricted to a
small finite value. Here we take a similar approach: we
obtain the Shannon information entropy encoded in the
distribution of edges. As we shall see, both methods yield
the same results [12], but for our purposes the Shannon
entropy is more tractable.

The Shannon entropy associated with a probability dis-
tribution pm is s ¼ �P

mpm lnðpmÞ, where the sum ex-
tends over all possible outcomes m. For a given pair of
nodes (i, j), pm can be considered to represent the proba-
bility of there being m edges between i and j. For sim-
plicity, we shall focus here on networks such that âij can

only take values 0 or 1, although the method is applicable
to any number of edges allowed. In this case, we have only
two terms: p1 ¼ �̂ij and p0 ¼ 1� �̂ij, where �̂ij � EðâijÞ
is the expected value of the element âij given that the

network belongs to the ensemble of interest. The entropy
associated with pair (i, j) is then sij ¼ �½�̂ij lnð�̂ijÞ þ ð1�
�̂ijÞ lnð1� �̂ijÞ�, while the total entropy of the network is

S ¼ P
N
ij sij:

S ¼ �XN
ij

½�̂ij lnð�̂ijÞ þ ð1� �̂ijÞ lnð1� �̂ijÞ�: (1)

Since we have not imposed symmetry of the adjacency
matrix, this expression is in general valid for directed
networks. For undirected networks, however, the sum is
only over i � j, with the consequent reduction in entropy.

For the sake of illustration, we shall estimate the entropy
of the Internet at the autonomous system (AS) level and
compare it with the values obtained in [11] assuming the
network belongs to two different ensembles: the fully
random graph, or Erdős-Rényi (ER) ensemble, and the
configuration ensemble with a scale-free degree distribu-

tion [pðkÞ � k��] [2] and structural cutoff, ki <
ffiffiffiffiffiffiffiffiffiffihkiNp

,
8 i [11] (hki is the mean degree). In this example, we
assume the network to be sparse enough to expand the term
lnð1� �̂ijÞ in Eq. (1) and keep only linear terms. This re-

duces Eq. (1) to Ssparse’�P
N
ij �̂ij½lnð�̂ijÞ�1�þOð�̂2ijÞ. In

the ER ensemble, each of N nodes has an equal probability
of receiving each of 1

2 hkiN undirected edges. So, writing

�̂ERij ¼hki=N, we have SER¼�1
2hkiN½lnðhki=NÞ�1�. The

configuration ensemble, which imposes a given degree
sequence (k1; . . . ; kN), is defined via the expected value
of the adjacency matrix: �̂cij ¼ kikj=ðhkiNÞ [2,13]. This

value leads to Sc ¼ hkiN½lnðhkiNÞ þ 1� � 2Nhk lnki,
where h�i � N�1

P
ið�Þ stands for an average over nodes.

Figure 1 displays the entropy per node obtained in [11]
for the first two levels of approximation (ensembles) to the
Internet at the AS level, first taking into account only the
numbers of nodes N and edges L ¼ 1

2 hkiN, and then also

the degree sequence. Alongside these, we plot the Shannon
entropy both for an ER random network (which coincides
exactly with Bianconi’s expression), and for a scale-free
network with � ¼ 2:3 (the slight disparity arising from this
exponent’s changing a little with time).
We shall now go on to analyze the effect of degree-

degree correlations on the entropy. In the configuration
ensemble, the expected value of the mean degree of the
neighbors of a given node is knn;i ¼ k�1

i

P
j�̂

c
ijkj ¼

hk2i=hki, which is independent of ki. However, as men-
tioned above, real networks often display degree-degree
correlations, with the result that knn;i ¼ knnðkiÞ. If knnðkÞ
increases (decreases) with k, the network is assortative
(disassortative). A measure of this phenomenon is
Pearson’s coefficient applied to the edges [2–4]: r ¼
ð½klk0l� � ½kl�2Þ=ð½k2l � � ½kl�2Þ, where kl and k0l are the de-

grees of each of the two nodes belonging to edge l, and
½�� � ðhkiNÞ�1

P
lð�Þ is an average over edges. WritingP

lð�Þ ¼
P

ijâijð�Þ, r can be expressed as

r ¼ hkihk2knnðkÞi � hk2i2
hkihk3i � hk2i2 : (2)

The ensemble of all networks with a given degree sequence
(k1; . . . ; kN) contains a subset for all members of which
knnðkÞ is constant (the configuration ensemble), but also
subsets displaying other functions knnðkÞ. We can identify
each one of these subsets (regions of phase space) with an
expected adjacency matrix �̂ which simultaneously satis-
fies the following conditions: (i)

P
jkj�̂ij ¼ kiknnðkiÞ, 8 i,

and (ii)
P

j�̂ij ¼ ki,8 i (for consistency). An ansatz which

fulfills these requirements is any matrix of the form

SB
ER
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c

3/0110/0010/9910/9811/97
Date (month/year)

SER

 10

 15

 20

E
nt

ro
py

 p
er

 n
od

e

Sc(γ=2.3)

FIG. 1 (color online). Evolution of the Internet at the AS level.
Empty (blue) squares and circles: entropy per node of random-
ized networks in the fully random and in the configuration
ensembles, as obtained by Bianconi (hence the ‘‘B’’ superscrip-
tion) [11]. Filled (red) triangles and diamonds: Shannon entropy
for an ER network and a scale-free one with � ¼ 2:3, respec-
tively.
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�̂ ij ¼
kikj
hkiN þ

Z
d�

fð�Þ
N

�ðkikjÞ�
hk�i � k�i � k�j þ hk�i

�
;

(3)

where � 2 R and the function fð�Þ is in general arbitrary,
although depending on the degree sequence it shall here be
restricted to values which maintain �̂ij 2 ½0; 1�, 8 i, j.

This ansatz yields

knnðkÞ ¼ hk2i
hki þ

Z
d�fð�Þ��þ1

�
k��1

hk�i �
1

k

�
(4)

(the first term being the result for the configuration en-
semble), where �bþ1 � hkbþ1i � hkihkbi. In practice, one
could adjust Eq. (4) to fit any given function knnðkÞ and
then wire up a network with the desired correlations: it
suffices to throw random numbers according to Eq. (3)
with fð�Þ as obtained from the fit to Eq. (4) [14]. To prove
the uniqueness of a matrix �̂ obtained in this way [i.e., that
it is the only one compatible with a given knnðkÞ] assume
that there exists another valid matrix �̂0 � �̂. Writing �̂0ij �
�̂ij � hðki; kjÞ ¼ hij, then (i) implies that

P
jkjhij ¼ 0,

8 i, while (ii) means that
P

jhij ¼ 0, 8 i. It follows that

hij ¼ 0, 8 i; j.

In many empirical networks, knnðkÞ has the form
knnðkÞ ¼ Aþ Bk�, with A, B> 0 [3,15]—the mixing
being assortative (disassortative) if� is positive (negative).
Such a case is fitted by Eq. (4) if fð�Þ ¼ C½�ð�� ��
1Þ�2=��þ2 � �ð�� 1Þ�, with C a positive constant, since

this choice yields

knnðkÞ ¼ hk2i
hki þ C�2

�
k�

hk�þ1i �
1

hki
�
: (5)

After plugging Eq. (5) into Eq. (2), one obtains

r ¼ C�2

hk�þ1i
�hkihk�þ2i � hk2ihk�þ1i

hkihk3i � hk2i2
�
: (6)

Inserting Eq. (3) in Eq. (1), we can calculate the entropy of
correlated networks as a function of � and C—or, by using
Eq. (6), as a function of r. Particularizing for scale-free
networks, then given hki,N, and �, there is always a certain
combination of parameters � and C which maximizes the
entropy; we shall call these �� and C�. For � & 5=2 this
point corresponds to C� ¼ 1. For higher �, the entropy can
be slightly higher for largerC. However, for these values of
�, the assortativity r of the point of maximum entropy
obtained with C ¼ 1 differs very little from the one corre-
sponding to �� and C� (data not shown). Therefore, for the
sake of clarity but with very little loss of accuracy, in the
following we shall generically set C ¼ 1 and vary only �
in our search for the level of assortativity r� that maximizes
the entropy given hki, N and �. Note that C ¼ 1 corre-
sponds to removing the linear term, proportional to kikj, in

Eq. (3), and leaving the leading nonlinearity, ðkikjÞ�þ1, as

the dominant one.

Figure 2 displays the entropy curves for various scale-
free networks, both as functions of � and of r: depending
on the value of �, the point of maximum entropy can be
either assortative or disassortative. This can be seen more
clearly in Fig. 3, where r� is plotted against � for scale-free
networks with various mean degrees hki. The values ob-
tained by Park and Newman [7] as those resulting from the
one-edge-per-pair restriction are also shown for compari-
son: notice that whereas this effect alone cannot account
for the Internet’s correlations for any �, entropy consid-
erations would suffice if � ’ 2:1. As shown in the inset, the
results are robust in the large system-size limit [16].

FIG. 2 (color online). Shannon entropy of correlated scale-free
networks against parameter � (left panel) and against Pearson’s
coefficient r (right panel), for various values of � (increasing
from bottom to top). hki ¼ 10, N ¼ 104.
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FIG. 3 (color online). Lines from top to bottom: r at which the
entropy is maximized, r�, against � for random scale-free net-
works with mean degrees hki ¼ 1

2 , 1, 2, and 4 times k0 ¼ 5:981,

and N ¼ N0 ¼ 10697 nodes (k0 and N0 correspond to the values
for the Internet at the AS level in 2001 [7], which had r ¼ r0 ¼
�0:189). Symbols are the values obtained in [7] as those
expected solely due to the one-edge-per-pair restriction (with
k0, N0 and � ¼ 2:1, 2.3, and 2.5). Inset: r� against N for
networks with fixed hki=N (same values as the main panel)
and � ¼ 2:5; the arrow indicates N ¼ N0.
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Since most networks observed in the real world are
highly heterogeneous, with exponents in the range � 2
ð2; 3Þ, it is to be expected that these should display a certain
disassortativity—the more so the lower � and the higher
hki. In Fig. 4 we test this prediction on a sample of
empirical, scale-free networks quoted in Newman’s review
[2] (p. 182). For each case, we found the value of r that
maximizes S according to Eq. (1), after inserting Eq. (3)
with the quoted values of hki, N, and �. In this way, we
obtained the expected assortativity for six networks, rep-
resenting: a peer-to-peer (P2P) network, metabolic reac-
tions, the nd.edu domain, actor collaborations, protein
interactions, and the Internet (see [2] and references
therein). For the metabolic, Web domain and protein net-
works, the values predicted are in excellent agreement with
the measured ones; therefore, no specific anticorrelating
mechanisms need to be invoked to account for their dis-
assortativity. In the other three cases, however, the predic-
tions are not accurate, so there must be additional
correlating mechanisms at work. Indeed, it is known that
small routers tend to connect to large ones [15], so one
would expect the Internet to be more disassortative than
predicted, as is the case [17]—an effect that is less pro-
nounced but still detectable in the more egalitarian P2P
network. Finally, as is typical of social networks, the actor
graph is significantly more assortative than predicted,
probably due to the homophily mechanism whereby highly
connected, big-name actors tend to work together [4].

In summary, we have shown how the ensemble of net-
works with a given degree sequence can be partitioned into
regions of equally correlated networks and found, using an
information-theory approach, that the largest (maximum

entropy) region, for the case of scale-free networks, usually
displays a certain disassortativity. Therefore, in the ab-
sence of knowledge regarding the specific evolutionary
forces at work, this should be considered the most likely
state. Given the accuracy with which our approach can
predict the degree of assortativity of certain empirical net-
works with no a priori information thereon, we suggest this
as a neutral model to decide whether or not particular
experimental data require specific mechanisms to account
for observed degree-degree correlations.
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