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Abstract—This paper studies the effect of optimal power
allocation on the performance of communication systems utilizing
automatic repeat request (ARQ). Considering Type-I ARQ, the
problem is cast as the minimization of the outage probability
subject to an average power constraint. The analysis is based
on some recent results on the achievable rates of finite-length
codes and we investigate the effect of codewords length on
the performance of ARQ-based systems. We show that the
performance of ARQ protocols is (almost) insensitive to thelength
of the codewords, for codewords of length≥ 50 channel uses.
Also, optimal power allocation improves the power efficiency of
the ARQ-based systems substantially. For instance, consider a
Rayleigh fading channel, codewords of rate1 nats-per-channel-
use and outage probability 10

−3
. Then, with a maximum of

2 and 3 transmissions, the implementation of power-adaptive
ARQ reduces the average power, compared to the open-loop
communication setup, by 17 and 23 dB, respectively, a result
which is (almost) independent of the codewords length. Also,
optimal power allocation increases the diversity gain of the ARQ
protocols considerably.

I. I NTRODUCTION

Due to the fast growth of wireless networks and of data-
intensive applications, green communication and improving
the power efficiency are becoming increasingly important for
wireless communication. As reported by [1], the network data
volume is expected to increase by a factor of2 every year,
associated with a16− 20% increase of energy consumption,
which contributes about2% of globalCO2 emissions. Hence,
minimizing the power consumption is a very important design
consideration, and power-efficient data transmission schemes
must be taken into account in wireless networks [2]–[6].

From another perspective, automatic repeat request (ARQ)
is a well-established approach aiming towards reliable wire-
less communication [7]–[16]. Utilizing both forward error
correction and error detection, ARQ techniques reduce the
data outage probability by retransmitting the data which has
experiencedbad channel conditions. Consequently, as we
show in the following, the joint implementation of adaptive
power controllers and ARQ protocols can improve the power
efficiency of outage-limited communication systems.

Adaptive power allocation in ARQ protocols is addressed in
various papers, e.g., [10]–[16], where the results are obtained
under the assumption of asymptotically long codewords. On
the other hand, in many applications, such as vehicle to
vehicle and vehicle to infrastructure communications for traffic

efficiency/safety or real-time video processing for augmented
reality, the codewords are required to be short (in the orderof
∼ 100 bits) [17]–[19]. Thus, it is interesting to investigate the
performance of power-adaptive ARQ protocols in the presence
of finite-length codewords.

In this paper, we study the power efficiency of the ARQ
protocols utilizing codewords of finite length. We use the
recent results of [20]–[22] on the achievable rates of finite
block-length codes to investigate the power-limited outage
probability of the ARQ protocols. The performance analysisis
presented for Type-I ARQ where both the error-detecting and
the forward error correction information are added to each
message and the receiver disregards the previous messages,if
received in error.

We investigate the effect of the codeword length on the op-
timal power allocation and the outage probability of the ARQ
protocols. In particular, we show that, for codewords of length
L ≥ 50 channel uses, the performance of ARQ protocols is
(almost) insensitive to the length of the codewords, in the sense
that the changes in the outage probability are negligible for dif-
ferent codeword lengths. As demonstrated, considerable power
efficiency improvement is achieved by the implementation of
power-adaptive ARQ. For instance, consider Rayleigh fading
channels, codewords of rate1 nats-per-channel-use (npcu) and
target outage probability10−3. Then, compared to the open-
loop communication setup, implementation of ARQ with a
maximum of 2 and 3 transmissions reduces the average power
by 17 and 23 dB, respectively, a result which is (almost)
independent of the codewords length. With a maximum of
M = 2 transmissions, we derive closed-form solutions for the
optimal, in terms of power-limited outage probability, power
allocation between the ARQ transmissions. Finally, it is shown
that with a maximum ofM = 2 transmissions the diversity
gain of the ARQ protocol increases from 2 to 3, if optimal
power allocation is utilized.

II. SYSTEM MODEL

Consider a communication setup where the power-limited
input messageX multiplied by the fading coefficienth is
summed with an independent and identically distributed (iid)
complex Gaussian noiseZ ∼ CN (0, 1) resulting in the output

Y = hX + Z. (1)



We study the block-fading conditions where the channel
coefficients remain constant in a fading block, determined by
the channel coherence time, and then change to other values
according to the fading probability density function (pdf). Let
us defineg

.
= |h|2 which is referred to as the channel gain

in the following. The results are given for Rayleigh fading
channels whereh ∼ CN (0, 1) and, as a result,fg(x) = e−x

with fg denoting the channel gain pdf. In each block, the
channel coefficient is assumed to be known by the receiver,
which is an acceptable assumption in block-fading channels
[7]–[16], [20]–[22]. However, there is no instantaneous chan-
nel state information available at the transmitter except the
ARQ feedback bits1.

We consider Type-I ARQ with a maximum ofM − 1
retransmissions, i.e., the data is transmitted a maximum of
M times, and in each round the receiver disregards the
previous messages, if received in error. Also, we define a
packet as the transmission of a codeword along with all its
possible retransmissions. Finally, the results are obtained for a
frequency-hopping based scheme where the fading coefficient
changes in each transmission independently.

III. PERFORMANCE ANALYSIS

Using power-adaptive ARQ,b information nats are encoded
into a codeword of lengthL channel uses. Thus, the codeword
rate isR = b

L
npcu. In themth, m = 1, . . . ,M, transmission

round, the codeword is scaled to have powerPm which, as the
noise variance is set to1, represents the transmission signal-
to-noise ratio (SNR) as well (in dB, the SNR is given by,
e.g.,10 log10(Pm)). The codewords are transmitted until the
receiver correctly decodes the data or the maximum permitted
transmission round is reached.

If the data is correctly decoded at the end of themth round,
the total consumed energy isξ(m) = L

∑m
i=1 Pi. Also, the

total consumed energy isξ(M) = L
∑M

i=1 Pi if an outage
occurs, where all possible transmissions are used. In this
way, with some manipulations, the expected energy consumed
within a packet period is found as

ξ̄ = L

M
∑

m=1

PmΦm−1, (2)

where Φm represents the probability that the data is not
correctly decoded by the receiver in roundsn = 1, . . . ,m,

andΦ0
.
= 1.

Following the same arguments, the total number of channel
uses isτ(m) = mL, if the data transmission is stopped at the
end of roundm. Hence, the expected number of channel uses
within a packet period is given by

τ̄ = L

M
∑

m=1

Φm−1, (3)

1The transmitter is assumed to know the long-term channel statistics, as it
is required for parameter optimization.

and the average power, defined in, e.g., [23], is obtained by

P̄ =
ξ̄

τ̄
=

∑M

m=1 PmΦm−1
∑M

m=1 Φm−1

. (4)

Finally, by the definition, the outage probability is found as
Pr(Outage) = ΦM which rephrases the power-limited outage
minimization problem as

min
Pm,m=1,...,M

ΦM ,

s.t.

∑M
m=1 PmΦm−1
∑M

m=1 Φm−1

= π, (5)

with π representing the power constraint. As discussed in, e.g.,
[12]–[14], (5) is a complex problem and, depending on the fad-
ing pdf and the maximum number of transmissions, there may
be no closed-form solution for the optimal powers minimizing
the outage probability. Also, note that optimizing the power
terms based on (5) affects the expected delay for a packet
transmission and, consequently, the throughput. However,with
a limit on the maximum number of transmissions, the expected
delay is not of interest in outage-limited data transmission
scenario, because the throughput is not an objective function
in this case. Moreover, as shown in [14], unless the SNR is
very low, the throughput changes are negligible if, insteadof
uniform power allocation, the power terms are optimized in
terms of power-limited outage probability.

Up to now the results are general in the sense that they
are independent of the fading pdf, ARQ protocol and the
codewords length. Also, to study the power-limited outage
probability of different schemes the final step is to calculate
the probabilitiesΦm,m = 1, . . . ,M. For Type-I ARQ, in
particular, we have

Φm =

{

∏m

j=1 φj if m 6= 0

1 if m = 0,
(6)

whereφj is the probability that the data is not decoded in
roundj. Here, (6) is based on the fact that 1) an independent
fading realization is experienced in each round, 2) a scaled
version of the initial codeword is sent in each transmissionof
a packet and 3) in each round, the receiver decodes the data
only based on the received signal in that round.

In the following, we use the recent results of [20]–[22] to
find φm for the cases with codewords of finite length. Let us
first define an(L,N, P, ǫ) code as the collection of

• An encoderΓ : {1, . . . , N} 7→ CL which maps the
messagen ∈ {1, . . . , N} into a length-L codeword
cn ∈ {c1, . . . , cN} satisfying the power constraint

1

L
‖cj‖2 ≤ P, ∀j. (7)

• A decoderΩ : CL 7→ {1, . . . , N} satisfying the maximum
error probability constraint

max
∀j

Pr(Ω(y) 6= J |J = j) ≤ ǫ (8)



with y denoting the channel output induced by the
transmitted codeword according toy.

The maximum achievable rate of the code is defined as

Rmax(L, P, ǫ) = sup

{

logN

L
: ∃(L,N, P, ǫ)code

}

(npcu).

(9)

Considering block-fading conditions, [21], [22] have recently
presented a very tight approximation for the maximum achiev-
able rate (9) as

Rmax(L, P, ǫ) = sup {R : Pr(log(1 + gP ) < R) < ǫ}

− O
(

logL

L

)

(npcu), (10)

which, for codes of rateR npcu, leads to the following error
probability [21], [22]

ǫ(L,R, P ) ≈ E

[

Q

(

√
L
(

log(1 + gP ) + logL
2L −R

)

√

1− 1
(1+gP )2

)]

.

(11)

Here, U(x) = O(V (x)), x → ∞ is defined as
limx→∞ sup |U(x)

V (x) | < ∞ andE[.] represents the expectation
with respect to the channel gaing. Also, Q denotes the
GaussianQ-function. Note that, according to [21], [22], the
approximations in (10) and (11) are very tight for sufficiently
large values ofL.

Using (6) and (11), the probability that the data is not
decodable in roundsn = 1, . . . ,m, i.e.,Φm, is found as

Φm =

{

∏m
j=1 ǫ(L,R, Pj) if m 6= 0

1 if m = 0,
(12)

from which we can investigate the power-limited outage
minimization problem (5). For instance, using (5) and (12),
Fig. 1 demonstrates the outage probability of Type-I ARQ
with different numbers of transmissionsM . Here, the results
are obtained for codewords of rateR = 1 npcu and length
L = {50, 200,∞} channel uses. Also, the optimal power
allocation, in terms of (5), is derived with the same procedure
as in [14, Algorithm 1]. As it can be seen, the system
performance is not sensitive to the length of the codewords,
for lengthL ≥ 50 channel uses. Note that, as the codeword
length decreases the tightness of the approximation (11) is
reduced. This is the reason why we present the results for the
cases withL ≥ 50 channel uses, for which the approximation
is tight enough, and we do not consider shorter codewords.
In the meantime, although the approximation is not tight for
small L’s and the results should not be fully trusted in that
case, we observe the same qualitative conclusions as in the
case ofL ≥ 50, when the simulations are run for very short
(practically not interesting) codewords (see [21], [22] for more
discussions on the tightness of (11) and [18] for practical codes
of interest in, e.g., vehicle to vehicle communication).

As demonstrated in Fig. 1, the power efficiency is consider-
ably improved by the implementation of ARQ. For instance,
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Figure 1. Outage probability for different maximum numbersof transmis-
sions. The transmission powers are optimized, in terms of (5). Rayleigh fading
channel,R = 1 npcu.

with an outage probability10−3 the implementation of ARQ
with a maximum ofM = 2 and3 transmissions improves the
power efficiency, compared to the open-loop setup (M = 1),
by 17 and23 dB, respectively; this is a big step towards green
communication. The intuition for the significant performance
gain of ARQ is as follows. With an outage probability con-
straint, the initial transmission(s) of the ARQ is set to have
a small power. If the channel isbad, the message can not be
decoded and is retransmitted. On the other hand, if the channel
experiences good conditions, this gambling brings high return.
In other words, the ARQ makes it possible to exploit the time
diversity and split the total power between the slots which,
with high probability, are not used.

A. ARQ with a maximum ofM = 2 transmissions

To further elaborate on (5), let us concentrate on the case
with a maximum ofM = 2 transmissions, for which (5) is
rephrased as

min
P1,P2

ǫ(L,R, P1)ǫ(L,R, P2),

s.t.
P1 + P2ǫ(L,R, P1)

1 + ǫ(L,R, P1)
= π. (13)

Particularly, Theorem 1 studies the optimal power allocation
and the diversity gain of Type-I ARQ with a maximum of
M = 2 transmissions. Interestingly, the theorem indicates that,
with M = 2, the diversity gain of Type-I ARQ is increased
from 2 with uniform (non-adaptive) power allocation to 3, if
the powers are optimized in terms of (13).2

Theorem 1. Considering Type-I ARQ with a maximum of
M = 2 transmissions, the following assertions are valid:

2Following the same procedure as in Theorem 1 part 3, the diversity gain of
the considered ARQ protocol is found asD = 2 if uniform power allocation,
i.e., Pm = π, ∀m, is utilized.



1) P1 ≤ P2, ∀π, L,R.

2) At high SNRs, the optimal power allocation rule is given
by P1 = 2π

3 , P2 = 2π2

9θ , θ
.
= eR − 1.

3) The diversity gain isD = 3, if the powers are optimized
in terms of (13).

Proof. To prove part 1, we consider two cases,
{Case 1 : (P1 = P +∆, P2 = P )} and {Case 2 :
(P1 = P, P2 = P +∆)}, P,∆ ≥ 0, and show that less
average transmission power is obtained in the second
case. Note that, based on (13), there is no preference
between the transmission powers from the outage probability
perspective, because the powers are interchangeable in
Φ2 = ǫ(L,R, P1)ǫ(L,R, P2). Thus, the same outage
probability is achieved in the two considered cases. Then,
based on the following inequalities

πCase 1=
P +∆+ Pǫ(L,R, P +∆)

1 + ǫ(L,R, P +∆)

≥ P + (P +∆)ǫ(L,R, P )

1 + ǫ(L,R, P ))
= πCase 2

⇔
(

P +∆+ Pǫ(L,R, P +∆)
)(

1 + ǫ(L,R, P )
)

≥
(

P + (P +∆)ǫ(L,R, P )
)(

1 + ǫ(L,R, P +∆)
)

⇔ 1 ≥ ǫ(L,R, P +∆)ǫ(L,R, P ), (14)

less average power is achieved in the second case. Therefore,
in the optimal case, we haveP1 ≤ P2, ∀π, L,R.

Part 2 follows from the fact that at high SNRs the maximum
achievable rate (10) converges to the one with asymptotically
long codewords, i.e.,

Rmax(L, P, ǫ) = sup {R : Pr(log(1 + gP ) < R) < ǫ}
for P → ∞. Thus, definingθ

.
= eR − 1, we have

φm = Pr(log(1 + gPm) < R) = 1− e
−

θ

Pm

at high SNRs, where the last equality is for Rayleigh fading
channels. In this way, using the Taylor expansione−x = 1 −
x, the high-SNR outage probability is found asΦ2 = θ2

P1P2

and the power-limited outage minimization problem (13) is
rephrased as










min
P1,P2

θ2

P1P2

,

s.t.
P1+

P2θ

P1

1+ θ

P1

= π
≡

{

max
P1,P2

P1P2,

s.t. P2 =
π(P1+θ)−P 2

1

θ
.

(15)

Hence, the optimal power allocation rule is obtained by
∂((π(P1+θ)P1−P 3

1
)

∂P1

= 0 which, ignoring its lowest term at high

SNRs, results inP1 = 2π
3 , P2 = 2π2

9θ .

Finally, part 3 is a consequence of part 2; replacing the
optimal power termsP1 = 2π

3 , P2 = 2π2

9θ into the high-
SNR outage probabilityΦ2 = θ2

P1P2

, the diversity gainD =

− limπ→∞

log(Pr(Outage))
log π

[7, eq. 14] is found as

D = − lim
π→∞

log(27θ
3

4π3 )

log π
= 3, (16)
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Figure 2. Outage probability vs the transmission SNR10 log10 π dB.
Rayleigh fading channel,R = 1 npcu.

as stated in the theorem.

Here, we should mention that the same result as in part
1 has been previously reported by [16] for the cases with
asymptotically long codewords. Also, [14] has shown the same
conclusion as in Theorem 1 part 1 in the cases with infinitely
long codewords and Types-II and -III hybrid ARQ (HARQ).
Finally, the theorem emphasizes that the outage probability
and the optimal power allocation rule become independent of
the codeword length as the SNR increases.

SettingR = 1 npcu, Figs. 2-4 analyze the performance of
ARQ protocols with a maximum ofM = 2 transmissions.
Compared to uniform power allocation, i.e.,Pm = π, ∀m,

the optimal power allocation leads to considerable outage
probability reduction, especially at high SNRs. Also, setting
L = 50 channel uses, Fig. 3 shows the optimal powers, in
terms of (13), and compares the results with those achieved
via the theoretical approximations of Theorem 1 part 2. For
moderate/high SNR, the approximations match the exact val-
ues with very high accuracy. Moreover, the figure emphasizes
the validity of Theorem 1 part 1 whereP1 ≤ P2, ∀π (see the
black dashed lines in Fig. 3). Finally, Fig. 4 investigates the
effect of the codeword length on the outage probability and the
optimal power terms of the ARQ protocol. In harmony with
Figs. 1-3, the results emphasize that the system performance
is not affected by the length of the codewords, ifL ≥ 50
channel uses.

IV. CONCLUSION

This paper studied the outage-limited power efficiency of
ARQ-based systems in the presence of finite-length codes.
We utilized the recent results on the achievable rates of
finite-length codes to investigate the effect of the codeword
length on the performance of ARQ protocols. We showed
that, for codewords of lengthL ≥ 50 channel uses, the
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performance of ARQ protocols is (almost) insensitive to the
length of the codewords, in the sense that the changes in outage
probability are negligible for different codeword lengths. Also,
the results show that substantial power efficiency improvement
is obtained via the combination of optimal power control and
ARQ protocols. The diversity gain of ARQ-based systems
is also increased if the power terms are optimally allocated
between the transmissions.
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