
A molecular dynamics boundary condition for heat exchange between walls and a fluid

E.A.T. van den Akkera*, A.J.H. Frijnsa, P.A.J. Hilbersb and A.A. van Steenhovena

aDepartment of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; bDepartment of Biomedical
Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

(Received 21 July 2010; final version received 23 February 2011)

In molecular dynamics simulations of heat transfer in micro channels, a lot of computation time is used when the wall
molecules are explicitly simulated. To save computation time, implicit boundary conditions, such as the Maxwell
conditions, can be used. With these boundary conditions, heat transfer is still a problem. In this work, we derive a new
boundary condition based on a vibrating potential wall. The heat-transfer properties of the new boundary condition are
shown to be comparable with those of the explicit wall. The computation time needed for the implicit boundary condition is
very small compared with that needed for the explicit simulation.
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1. Introduction

Computer chips of last decades have become more

powerful and smaller in size [1]. As a consequence of this

technological improvement, the heat produced per area by

a computer chip has increased, and is expected to increase

further [2]. A conventional way to remove this heat is by

air cooling, but the limits of air cooling are being reached.

Micro-channel cooling is a promising way to solve the

cooling problem for computer chips. In micro-channel

cooling, a fluid flows through a micro channel in close

contact with the computer chip. Owing to the large area to

volume ratio of the micro channel, the amount of heat

removed is larger than by conventional air cooling. Heat

transfer by forced convection for gases is in the range of

25–250 kWm22 [3], whereas experimental micro chan-

nels with water have shown a heat flux of 500 kWm22 [4].

The heat removal is optimal when evaporation takes place

in the micro channel [5]. To optimise micro-channel

configurations, the heat and flow problems in the micro

channel need to be understood, including the heat transfer

between the channel wall and the fluid.

Because of the small size of the micro channel, the

continuum approximation is not valid in the gas phase [6].

This means that evaporation, an important contributor to

heat removal, cannot be analysed with continuum

techniques. Other techniques, which include the particle

nature of the fluids, should be used to study evaporation

and condensation in the micro channel. One of these

methods is molecular dynamics (MD) [7,8]. In MD, the

trajectories of the particles are calculated by analysing the

interactions between all particles. It is possible to

explicitly include wall particles in the MD simulation.

Explicit walls are expected to give the best results, but at

the price of high computational costs. Because several

layers in the wall need to be calculated, the number of

particles in the wall may be larger than the number of

particles in the fluid, so the majority of the computation

time is needed for the simulation of the wall particles.

A solution to the computation-time problem in the

simulation of explicit walls is to fix the position of the wall

particles and to only simulate their influence on fluid

particles. Although this is time saving, there is no energy

exchange from the fluid particles to the wall particles, so the

heat transfer between the fluid and the wall is impossible.

To replace the explicit wall with a computationally less

expensive method that is capable of handling heat transfer,

an implicit boundary condition originating from vibrating

walls is derived. This boundary condition is shown to work

for walls with a continuous potential energy function,

for example the Lennard-Jones potential, as well as for

walls with a discontinuous potential, for example the

hard-sphere potential. The resulting power input by the

vibrating wall corresponds to granular theory.

2. Theory

2.1 Vibrating wall

In MD, the motion of particles is simulated, dealing with

the interactions by means of a force between the particles

that are derived from their potential energy V. MD

simulations work for gases, liquids and solids. MD can be

used to simulate micro channels, in which heat is

transferred from the solid wall to the fluid inside the

micro channel.
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The wall particles, positioned in an fcc-lattice, are

vibrating due to their thermal motion, as shown in

Figure 1(a). Because of the computational effort needed to

simulate this thermal motion, methods have been

developed to replace the explicit wall by a computationally

cheaper solution. The Maxwell model [9] is a commonly

used model, but the accommodation coefficient in that

model is not a priori known [10]. We follow a different

approach here, in which a particle moving towards a wall

interacts with a small part of the wall, as if the wall

particles are one rigid vibrating body, as shown in

Figure 1(b). The interacting part of the wall is vibrating as

if it is connected with a spring with spring constant kw. If a

(section of the) wall is vibrating with total energy Ew, mass

Mw and wall spring constant kw, and interaction with fluid

particles can be neglected, the position y of the wall is

given as

yðwÞ ¼

ffiffiffiffiffiffiffiffi
2Ew

kw

r
cosðwÞ; w ¼

ffiffiffiffiffiffiffi
kw

Mw

r
t; ð1Þ

where w is the phase.

The spring constant kw is estimated by looking at an

explicit wall. For example, in the case of a wall made of

calcium atoms in an fcc-lattice, all neighbouring particles

vibrate around the equilibrium distance of 21=6 sCa (with

sCa being the atomic diameter of calcium). A Taylor

expansion shows that the interaction is approximated as a

spring with spring constant kw ¼ 22=31Ca=s
2
Ca < 3001Ar=

s2
Ar; the total spring constant is of the same order [11].

The wall energy Ew (the potential and kinetic energy of the

interacting part of the wall) is of the order of 1Ar. This

means that the amplitude of the vibration, calculated from

(1), is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ew=kw

p
< 0:1 sCa, so the wall vibrations are

relatively small. The velocity of the wall vw is

vwðwÞ ¼ 2

ffiffiffiffiffiffiffiffi
2Ew

Mw

r
sinðwÞ; ð2Þ

which shows that the magnitude of the velocity is

independent of the spring constant kw.

2.2 Collision model

In MD, the interaction between particles is specified by a

potential energy function, giving the potential energy V

due to the interaction of two particles at distance r.

The commonly used potential energy function is the

Lennard-Jones potential [7,8,12]. Other potentials can also

be used for the interaction between a fluid particle and a

solid wall, for example the Stillinger–Weber potential

[13]. Further on, the Lennard-Jones potential is used as an

example; the calculations for other continuous potentials

are similar. As an example for a non-continuous potential,

the hard-sphere potential is used. For both types of

potentials, the collision between a fluid particle and the

wall is analysed.

2.2.1 Collision with a potential wall

If the interaction between a fluid particle and the

wall is modelled with a potential energy function V,

the force between the two particles F is given as

F ¼ 2V 0ðxÞ ¼ ›V=›~x. According to Newton’s second law,
the differential equation for the position of the particle x is

given by

d2x

dt 2
¼ 2

V 0ðx2 yÞ

m
; ð3Þ

where m is the mass of the particle and y is the position of

the wall. The motion of the wall is determined by the force

between thewall and the particle, and the force of the spring.

If the spring has spring constant kw, then the differential

equation for the position y of the wall is given by

d2y

dt 2
¼

V 0ðx2 yÞ2 kwy

Mw

; ð4Þ

whereMw is the mass of the part of the wall involved in the

interaction. Here, the part of the wall involved in the

(a)

(b)

Figure 1. Interaction between a particle and a wall. In panel
(a), the explicit wall interaction is shown, in which inside the
wall, all interactions are calculated, and all particles can have
different velocities. The interaction between a particle and part of
a wall seen as a rigid vibrating body is shown in panel (b). There,
during the collision, the other particles (here in lighter colour) are
ignored.
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interaction is seen as one bigger and heavier wall particle.

The first right-hand term corresponds to the fluid–wall

interaction and the second to the spring–wall interaction.

2.2.2 Collision with a reflective wall

In the case of a non-continuous potential such as the hard

sphere, the velocities of the particle and wall change

instantly. If a particle with mass m and velocity

perpendicular to the wall vx hits the wall when the wall

has a velocity vw, conservation of momentum and kinetic

energy determines that the velocities v*w and v*x directly

after the collision, are

v*w ¼
2

1þ m
vx 2

12 m

1þ m
vw;

v*x ¼
12 m

1þ m
vx þ

2m

1þ m
vw;

ð5Þ

where m ¼ Mw=m. The wall speed before the collision vw
depends, according to Equation (2), on the phase w of the

wall at the moment of collision. Not every phase has the

same probability; the particle is less likely to interact with

the wall if the wall is moving away from an impending

particle, and is more likely to interact with the wall if the

wall is moving towards the particle. Two situations can be

distinguished by the relative velocity vr, given by

vr ¼ 2
vx

vMAX
w

¼ 2vx

ffiffiffiffiffiffiffiffi
Mw

2Ew

r
; ð6Þ

with vMAX
w being the maximal velocity of the wall as seen

from (2). If vr is larger than 1, the situation is as shown in

Figure 2(a): the particle is always moving faster than the

wall, and the wall can be hit in every phase, although not

all phases have the same probability.

The probability that the first impact happens before

phase w* is equal to the probability that at time zero, when

the wall position is maximal, the particle is closer to the

wall than the position that would result in an impact at

phase w*. At the last instant when the wall position is

maximal before the collision, the particle is between

dimensionless positions 1 and 1þ 2p vr. Because it is

before the collision, every position is equally probable, so

uniformly distributed, so the probability that the impact

happens before phase w* has the cumulative distribution

function given by

Pðw , w*Þ ¼ P cosðwÞ þ w vr , cosðw*Þ þ w*vr
� �

¼
cosðw*Þ þ w*vr

2p vr
:

ð7Þ

Therefore, the probability density function p of impact at

phase w is given by

pðwÞ ¼
1

2p
2

sinðwÞ

2pvr
: ð8Þ

This is only the probability for the first collision; it can

happen that when a particle approaches the wall, there are

multiple collisions, as depicted in Figure 3. This will be

dealt with later.

If vr is smaller than 1, the situation is as depicted in

Figure 2(b): the particle is sometimes moving slower than

the wall, and when the wall is moving backwards faster

than the particle is moving forwards, the wall cannot be hit

in that phase. The ‘critical path’ that separates the

accessible from the inaccessible phases is given by

xðwÞ ¼ cos arc sinðvrÞð Þ þ vr arc sinðvrÞ2 w
� �

; ð9Þ

so phase w is accessible if

cosðwÞ þ vrw . cos arc sinðvrÞð Þ þ vrarc sinðvrÞ: ð10Þ
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Figure 2. Possible paths for a particle (dotted lines) with a
relative velocity larger than 1 (panel a) and smaller than 1
(panel b), colliding with a vibrating wall (solid line). If the
relative velocity is larger than 1, the wall can always be hit by a
particle, which means that every phase is accessible. The collision
is more probable when the wall is moving towards the particle.
If the relative velocity is smaller than 1, not every phase is
accessible.
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The probability of collision at phase w when vr , 1 is

analysed in the same way as when vr . 1, with the same

result: if phase w is accessible, the probability pðwÞ of a

collision at phase w is also given by (8). This is also only

valid for the first collision; if a particle collides multiple

times with the wall (similar to Figure 3), the total energy

exchange between wall and particle increases, and phase

probabilities become more complicated.

From (2) and (5) it is seen that the minimum velocity

of a particle after a single collision is

minðv*xÞ ¼
12 m

1þ m
vx 2

2m

1þ m

ffiffiffiffiffiffiffiffiffiffi
2
Ew

Mw

r
; ð11Þ

and the maximum velocity of the wall after the collision is

maxðv*wÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Ew þ DE

Mw

s
<

ffiffiffiffiffiffiffiffiffiffi
2
Ew

Mw

r
; ð12Þ

where DE is the exchanged energy during the collision,

typically small compared with Ew. If the minimal velocity

of the particle after the collision is larger than the maximal

velocity of the wall after the collision, they will never

collide for a second time:

vr ¼ 2vx

ffiffiffiffiffiffiffiffi
Mw

2Ew

r
.

1þ 3m

12 m
: ð13Þ

If the relative velocity is smaller than this, multiple

collisions may occur.

2.3 Energy exchange

During the interaction between a fluid particle and the

wall, energy is exchanged. When the wall potential is

discontinuous, as the hard-sphere potential, this energy

is exchanged instantaneously, but if the potential is

continuous, the energy exchange takes some time and is

more complicated to be determined.

2.3.1 Energy exchange with potential wall

From a dimensional analysis of the problem, three

dimensionless parameters are extracted:

d ¼

ffiffiffiffiffiffiffiffiffiffiffi
2Ew

kws2

r
; l ¼

1=2mv20 þ Vðx0Þ

kBTw

; and

m ¼
Mw

m
;

ð14Þ

where kB is Boltzmann’s constant for the interaction

between a wall and a particle at position x0 with velocity

v0. Here, d can be interpreted as the dimensionless wall

amplitude directly related to the temperature, l is the ratio

of energies of the particle and the wall, and m is the mass

ratio between the particle and the part of the wall that is

involved in the interaction. From the literature [14], a

value of m ¼ 3:6 is shown to be reasonable in similar

problems, and is assumed here. The total energy of the

particle Ep (kinetic and potential) is a function of these

three dimensionless parameters d; l and m; the initial

phase of the wall w0 and the time t, so

Ep ¼ Epðt; d; l;m;w0Þ: ð15Þ

The mean exchanged energy during a collision is defined

as the difference between the total energy of the particle

before and after the collision, averaged over the initial wall

phases w0, so

DEðd; l;mÞ ¼
1

2p

ð2p
0

Epðt0; d; l;m;w0Þ
�

2 Epðt1; d; l;m;w0Þ
�
dw0;

ð16Þ

where t0 is the time before the collision and t1 is the time

directly after the first collision. After the first collision

between a fluid particle and an explicit wall, internal wall

vibrations will influence the outer wall behaviour and the
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Figure 3. The trajectories of the vibrating wall (solid line) and
an incoming particle (dashed line), colliding two times (left
image) and three times (right image). In both pictures, the mass
ratio m ¼ 3:6 and the relative velocity before the collision
vr ¼ 1:3.
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model in Section 2.2 will not be accurate anymore, so the

collisions after the first collision are ignored. Here, a linear

approximation of the exchanged energy in d and l is used,

DEðd; l;mÞ < DEðd0; 0;mÞ þ
›DE

›d

� �
l

ðd2 d0Þ

þ
›DE

›l

� �
d

l; ð17Þ

with ½›DE=›d�l and ½›DE=›l�d are constants. Further-

more, d0 corresponds to the dimensionless wall amplitude

corresponding to a typical temperature of the problem, and

l ¼ 0 corresponds to a particle that almost escapes from

the wall.

In our approach, Equation (17) is taken as a starting

point. In the exact situation, as shown in Figure 4(a), a

particle close to the wall interacts with the wall over a

short period of time, with an energy change that depends

on the initial phase of the wall w0. In the new model, as

shown in Figure 4(b), the particle is not influenced by the

presence of the wall until it crosses the ‘interaction

boundary’ of the wall. At that moment, the energy

exchange according to (17) takes place, and the particle

reverses its direction. The ‘interaction boundary’, found

from examining situations as shown in Figure 4(a), is put

at 0:8s from the wall. This is approximately the distance

at which the kinetic energy from the particle is completely

changed into potential energy, adjusted for the small

distance that the wall moves. This distance is slightly

dependent on the energy of the particle, but this small

influence is ignored in the analysis, as it will not influence

the results much. Hence, the distance of 0:8s is used for

all interactions.

In this boundary condition, three parameters have to be

specified: DEðd0; 0;mÞ; ½›DE=›d�l and ½›DE=›l�d. Two
of them are found by analysing the situation of an ideal gas

in contact with the boundary condition. In the model as

shown in Figure 4(b), the potential energy contribution

from the wall is neglected, so the dimensionless parameter

l ¼ Ekin=kBTw, where Ekin is the kinetic energy of the

particle. The kinetic energy Ekin ¼ 1=2mv2 of an ideal gas

particle with temperature Tg passing through a plane,

normal to that plane, is distributed according to Ref. [15]

pðEkinÞ ¼
1

kBTg

exp 2
Ekin

kBTg

� �
; so

pðlÞ ¼
Tw

Tg

exp 2l
Tw

Tg

� �
:

ð18Þ

With this distribution, the expected energy exchange

E½DE� between a wall with temperature T and an ideal gas

with temperature T is

E½DE� ¼
ð1
0

DEðlÞpðlÞdl

¼ DEðd0; 0;mÞ þ
›DE

›d

� �
l

ðd2 d0Þ

þ
›DE

›l

� �
d

: ð19Þ

If the wall and the gas have the same temperature T, on

average no heat is exchanged [16], so E½DE� ¼ 0. This
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Figure 4. Left panel: The motion of a particle (upper lines)
hitting a vibrating wall (lower lines), as the numerical solution of
(3) and (4), with initial conditions (22), where x0 ¼ 1:5s; v ¼
5s=t and Ew ¼ 1: The different small lines are the results for
different initial phases of the wall w0. Also shown as the thick
line is the solution for a non-vibrating wall. Right panel: The new
model, based on Figure 4(a). A particle moving towards the wall
is not influenced by the wall until it crosses the interaction
boundary, at a distance 0:8s of the wall. At that moment energy
is exchanged according to (24), and the particle is reflected with
the velocity according to the new energy.
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holds for every value of d, so

›DE

›d

� �
l

¼ 0 and DEðd0; 0;mÞ ¼ 2
›DE

›l

� �
d

: ð20Þ

This shows that DE is independent of d, and the problem is

reduced to finding the coefficient ½›DE=›l�d. This is

estimated first by treating the energy transfer as

instantaneous. In that case, the transferred energy found

from the conservation of energy andmomentum is (see also

(25)) given by

DEinst ¼ 22Ew

12 2mþ 2lm

ð1þ mÞ2
; so

›ðDEinstÞ

›l

� �
d

¼ 2
4m

ð1þ mÞ2
Ew:

ð21Þ

Because the energy transfer is not instantaneous, (21)

is not exact for the potential wall, but the coefficient is

still expected to be proportional to the wall energy Ew, and

for the rest dependent on the mass ratio m only. The

coefficient ½›DE=›l�d was found from MD simulations.

The temperature in problems of interest typically varies

from 0:5 to 2:0 1=kB (corresponding to temperatures

between 60 and 240K for Argon), so 0:1 , d , 0:2.
Because in practical situations the temperature of the wall

and the fluid in contact with the wall will be similar, l will

be around 1 according to (14); here, l is sampled from

random distribution (18). In this parameter region,

one-dimensional (1D) MD simulations were performed,

solving the equations of motion from Section 2.2.

The initial conditions are given as

x½0� ¼ x0; x0½0� ¼ v;

kw

2
y½0�2 þ

M

2
y0½0�2 ¼ Ew;

y½0� ¼

ffiffiffiffiffiffiffiffi
2Ew

kw

r
cosðw0Þ; ð22Þ

where w0 is the initial phase of the wall, 0 # w0 , 2p.

These equations were solved numerically in a 1D MD

simulation using the leap-frog algorithm [8]. The result for

initial conditions, x0 ¼ 1:5s; v ¼ 5s=t and Ew ¼ 1

(where s, t and 1 are the length scale, time scale and

energy scale of the Lennard-Jones potential, respectively)

and various initial phases of the wall w0 is shown in

Figure 4(a), together with the solution for a non-vibrating

wall. If a particle hits a non-vibrating wall, no energy is

exchanged: the outgoing velocity is equal to the incoming

velocity. The solution in which the particle hits a vibrating

wall clearly shows lower outgoing velocities; this shows

that during the interaction, energy was transferred from the

particle to the wall.

The remaining coefficient in (20) was fitted as

›DE

›l

� �
d

¼ ð20:531^ 0:01ÞEw: ð23Þ

In comparison, the estimated coefficient from (21) with

m ¼ 3:6 is ›DE=›l
� 	

d
¼ 20:68Ew. The result of the fit is

shown in Figure 5.

There is a small probability that a particle with high

energy ðl . 5Þ interacts with the wall. According to (13),

this particle interacts in a single collision, and approxi-

mation (21) still holds, so no deviation from the fit in

Figure 5 is expected. Combining the above results, the

relation for the exchanged energy during a collision, used

in the model, is

DEðd; l;mÞ ¼ 0:531 12 lð ÞEw: ð24Þ

Directly after the collision of a particle with the wall, the

part of the wall involved in the collision has a different

energy level than the rest of the wall; because the time

scale for heat conduction in a solid is much smaller than

between a solid and a gas [17], in the model the energy is

immediately redistributed over the wall.

2.3.2 Exchanged energy with reflective wall

The dimensionless parameters d; l and m from (14) are

used here too. The energy transferred from the wall to the

particle in this single collision DE is directly found from

(5) as

DE ¼
m

2
v*2x 2 v2x
� �

¼ 2
2mmðvx 2 vwÞðvx þ mvwÞ

ð1þ mÞ2
: ð25Þ
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Figure 5. Shown in dots is the exchanged energy during the first
collision, for several values of dð0:1 , d , 0:2Þ, between a
particle and a vibrating wall for varying l, and m ¼ 3:6 fixed,
found from MD simulations. The linear approximation with
½›DE=›l�d ¼ 20:531Ew is shown with a line.
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In this case, when only simple collisions can occur, the

probability of the impact phase is as given in (8). The

expected value of the exchanged energy E½DE� can,

therefore, be calculated as

E½DE� ¼
ð2p
0

DEðwÞpðwÞdw ¼ 22Ew

1þ 2v2r 2 2m

ð1þ mÞ2

¼ 22Ew

12 2mþ 2lm

ð1þ mÞ2
; ð26Þ

where l is the same as in (14). This expected value is not

only exact for single collisions but also a good approxi-

mation for multiple collisions, as shown in Figure 6.

There, the exchanged energy E½DE� predicted by (26) is

compared with simulation results. In these simulations, for

different relative velocities vr, many particles were

simulated which collide with a reflective vibrating wall.

For relative velocities 0:5 , vr , 3:5, the number of

collisions per interaction can be more than 1, so the mean

exchanged energy is higher than the energy given by (26),

but from the figure it is seen that the difference is never

large. If the relative velocity vr is close to 0 ð0 , vr , 0:5Þ,
not all phases are accessible although the calculation still

assumes it, and the energy exchange is overestimated.

Although the prediction for the mean exchanged

energy E½DE� is not exact, it is accurate enough to be used
for the new wall model that uses this mean exchanged

energy for every interaction, such that the phase w

becomes irrelevant.

3. Results and discussion

3.1 Explicit MD

To validate the new boundary condition, it is tested in a MD

simulation of an Argon gas between a hot and a cold wall.

The argon molecules were simulated with a Lennard-Jones

potential with molecular diameter sAr ¼ 0:340 nm, poten-

tial well depth 1Ar=kB ¼ 121K [18] and mass

mAr ¼ 6:63 £ 10226 kg. The calcium wall is approximated

as Lennard-Jones substance with molecular diameter

sCa ¼ 0:360 nm, mass mCa ¼ 6:65 £ 10226 kg and poten-

tial well depth 1Ca=kB ¼ 2497K [19]. The interaction

between argon and calcium is by a Lennard-Jones potential

with 1Ar2Ca=kB ¼ 1Ar=kB ¼ 121K. The simulation uses

two walls of 18,000 calcium particles each, with 28,154

argon particles placed in two sections between them. Each

section has a size of 32 £ 46:9 £ 46:9 s3
Ar, so the volume is

70; 387 s3
Ar ¼ 2767 nm. With 14,077 gas particles per

section, the gas density is n ¼ 0:2mAr=s
3
Ar ¼ 338 kgm23,

and the Knudsen number Kn ¼ 0:027, so a continuum

approximation should still work well. One calcium wall is

initially ‘hot’, Th ¼ 240K, the other is ‘cold’, Tc ¼ 120K

and the argon has an initial uniform temperature

Tg ¼ 180K. First, the simulation is allowed to reach an

equilibrium with Berendsen thermostats [20] on both walls,

so that they maintain their temperature. Then, the

thermostats are removed and the temperature developed is

calculated. The temperatures of the hot wall and the cold

wall converge to 180K in several 100 ns.

3.2 MD simulation with vibrating potential wall

To test the model with the vibrating walls, simulations of

particles interacting with a vibrating potential wall were

performed, according to the model from Figure 4(b) and

relation (24). The simulation described above was done

again, with the same number of argon gas particles, but

the walls were replaced by the new model, according to

Figure 7.

The total wall energy Ewall is related to the wall

energy Tw by the assumption that all 18,000 wall particles

have a mean energy (kinetic and potential) of 3kBT .

Similar to the explicit wall, the temperatures of the hot

wall and the cold wall converge to 180K in several

100 ns. The temperature development for the explicit wall

simulation and for the implicit wall simulation is

compared in Figure 8.

These results were achieved in different simulation

times; the explicit wall simulation lasted about 70 h,

whereas the simulation with the new boundary condition

needed about 10 h on a single processor.

Although the linear relation (24) appears to be a good

approximation over a large parameter region, it is not

exact, and can differ for certain values of d and l, so the

model might not work for special situations outside the

scope of this research. Furthermore, the derivation of (24)

is based on an ideal gas, and the numerical parameter in

(23) has been fitted from a model with only one particle

and a wall, whereas in real situations the fluid can be

far from ideal, and more particles can simultaneously

interact with the wall. The good agreement of time scale
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Simulation results

Single–collision
approximation

Figure 6. Mean total energy exchange in collisions. The solid
line shows the result from (26) in which only single collisions are
taken into account, the dashed line shows MD simulation results
in which multiple collisions can occur, the mass ratio m ¼ 3:6.
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in Figure 8 suggests that the heat exchange of the more

complex explicit wall is still predicted accurately by the

model based on the vibrating wall.

3.3 MD simulation with vibrating reflective walls

The reflective wall boundary condition was analysed with

a similar set-up as the potential wall, only at lower density.

This was done as the reflective wall ignores the potential

energy contribution of the interaction between wall and

gas, and this contribution is the lowest at low density.

In total, 1300 argon gas molecules were used here, this

corresponds to a density of 31.2 kgm23, and a Knudsen

number of Kn ¼ 0:37. Similar to the potential wall

analysis, the gas was first allowed to reach equilibrium,

and a temperature gradient in the gas developed. After

that, the thermostats that kept the walls at their initial

temperature were removed, and the temperature develop-

ments of the walls were compared.

The results for the simulations done with explicit walls

and with the newly developed boundary condition are

shown in Figure 9(a). The results are similar; the tempera-

ture development is the same in the simulation with the

vibrating reflective wall boundary conditions as in the

simulation with the explicit walls.

To check the sensitivity in the mass ratio m, the

simulation was done again with m ¼ 8. After 4.3ms, the

temperatures of the cold and hot walls were 150 and 212K,

respectively, compared with 141 and 223K with mass ratio

m ¼ 3:6. Because a change in mass ratio of more than

100% results in a change in temperature of only around

5–10%, the sensitivity on parameter m is low.

The situation is also shown for a variation of the

diffusive-specular model [21]. Because the standard

diffusive-specular model prescribes a constant wall

Hot wall
(240 K)

Cold wall
(180 K)

III IV IIII

y
x

Copy of
hot wall
(240 K)

Figure 7. Simulation set-up with new boundary conditions: at
(I) and (II) vibrating reflective walls with mass 9000mCa and
initial temperature 120K, at (III) and (IV) vibrating reflective
walls with mass 9000mCa and initial temperature 240K.
The temperature of the hot wall is defined as the mean
temperature between (I) and (II), and the temperature of the cold
wall is defined as the mean temperature between (III) and (IV).
Periodic boundary conditions are used in all directions, such that
all the walls are infinitely large, and there is a copy of the hot wall
on the right of the cold wall.
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Figure 8. The temperature development of a hot wall (starting
at T ¼ 240K), a cold wall (starting at T ¼ 120K) and the gas
(starting at average temperature T ¼ 180K) in the complete MD
simulation compared with the temperature development of the
MD simulation with the new boundary condition. The initial gas
density in both simulations is n ¼ 0:2mAr=s

3
Ar ¼ 338 kgm23.
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Figure 9. Temperature development of a hot wall (starting at
T ¼ 240K) and a cold wall (starting at T ¼ 120K), both of mass
18; 000mCa, with a gas with mean temperature T ¼ 180K and
1300 particles with mass mAr in between. Left panel: explicit
walls (solid lines) and vibrating reflective wall boundary
conditions (grey line); right panel: explicit walls (solid lines),
diffusive-specular boundary conditions with fitted
accommodation coefficient a ¼ 0:05 (grey line).
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temperature, the model was adapted to a varying wall

temperature, by keeping the total energy in the system

constant, such that in a collision between a gas particle and

the wall, the change in kinetic energy of the particle

became equal to the change in thermal energy in the part of

the wall that was affected by the collision. By trial and

error, the accommodation coefficient was fitted at a ¼ 0:5,
for which the results are shown in Figure 9(b).

The accommodation coefficient is high in comparison

with the earlier mentioned value a ¼ 0:12 in Ref. [22],

probably due to a lower density or varying wall

temperature. The accommodation coefficient is not a

constant value, but depends on the temperature; so, in a

different situation a different accommodation coefficient is

needed that might not be a priori known.

The simulation with explicit wall and with a boundary

condition at the wall differs in calculation time. Both

simulations with vibrating reflective and with diffusive-

specular walls were more than 60 times faster than the full

MD simulation, in which all computations were performed

with the MD-code PumMa.

3.4 Discussion

The computation times for the explicit wall simulation and

the simulation with the vibrating wall model are compared

in Table 1. In general, the computation time at lower

density is smaller because there are less particles. At lower

density, the new model decreases the simulation time by a

factor of 60, whereas at higher density it is only decreased

by a factor of 6; this is because at a lower density, the

contribution of the wall to the calculation time is relatively

high, so relatively more time can be saved by eliminating

the need to calculate their positions.

The heat transfer Pb between the vibrating wall and the

fluid according to both (24) and (26) corresponds to the

granular media result of Pb ¼ pVLf ðU=VÞ [23], where f is,
respectively, given by

f
U

V
¼

2m2

ð1þ mÞ2

ffiffiffiffiffiffi
3

2p

r
V

U
2

U

V

� �
;

f
U

V
¼

2m2

ð1þ mÞ2

ffiffiffiffiffiffi
3

2p

r
12

1

2m

� �
V

U
2

U

2V

� �
:

ð27Þ

This is close to the result for infinitely massive walls

ðm!1Þ, for which f ðU=VÞ ¼ V=U.

Because in the vibrating wall model only the velocity

components of the gas particles normal to the wall are

affected, the vibrating wall model presented above cannot

be used to model the slip velocity, for this a modification

of the theory is needed. Because the particles moving away

from the wall exchange some energy with the wall, their

energy levels are different from those of the particles

going towards the wall; this results in a temperature jump.

4. Conclusions

The heat transfer in MD between solid and fluid was

simplified by analysing the solid wall as a vibrating rigid

particle with finite mass. On the basis of this model, the

energy transfer from the wall to the particle was predicted

for a potential wall and a reflective wall. This is used as an

implicit boundary condition that replaces the explicit wall.

Both results were tested by MD simulations of explicit

walls and implicit walls. The implicit wall gives the same

results as the explicit wall, in a simulation time that is up to

60 times smaller.

The heat transfer with the vibrating wall model is

comparable with that with the explicit wall model, as no

parameters had to be fitted for this result, which puts the

method above the diffusive-specular model, in which the

accommodation coefficient has to be known. The only

parameter in the model, the mass ratio m between a particle

and the interacting part of the wall, is known from the

literature results, and has only a minor influence on the

results.
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