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Abstract—The paper presents results on representation of
the basic structures related to ternary fuzzy relations by the
structures related to ordinary ternary relations, such as Galois
connections, closure operators, and trilattices (structures of
maximal Cartesian subrelations). These structures appear as
the fundamental structures in relational data analysis such as
formal concept analysis or association rules. We prove several
representation theorems that allow us to automatically transfer
some of the known results from the ordinary case to fuzzy case.
The transfer is demonstrated by examples.

I. INTRODUCTION

Relations play a fundamental role in mathematics, computer
science, and their applications. Many results about ordinary
relations have been generalized to the setting of fuzzy relations
in the past. There has always been a fundamental question
of how the various fuzzifications are related to the ordinary
notions and results. Needless to say, this question is important
both from a practical and theoretical point of view and is
treated to some extent in textbooks, see e.g. [15].

In this paper we deal with basic structures associated
to ternary relations that appear as fundamental ones in the
methods of relational data analysis, namely the closure-like
structures such as Galois connections, closure operators, struc-
tures of their fixpoints and the like. Such structures appear
e.g. in formal concept analysis [11], association rules [25],
relational databases [19], or relational equations [10]. We focus
on ternary relations and provide hints to generalize the results
in a straightforward way to general n-ary relations. Note that
ternary and higher order relations are becoming increasingly
important for their role in the analysis of three-way and n-
way data [9], [14], [16], [17]. In particular, we look at the
structures associated to ordinary ternary relations and their
relationships to their counterparts associated to ternary fuzzy
relations. Since the very basic structures are induced by Galois
connections, we focus on these and the structures of their
fixpoints. Such structures appear directly in triadic concept
analysis [18], [23], triadic association rules [14], or in factor
analysis of triadic data [5], [7].

The most common way of looking at the relationship
between ordinary notions and their fuzzy counterparts is in
terms of a-cuts of fuzzy relations (see e.g. [15]) but there are
additional possible views at the question as well. One of them,
utilized in this paper, is provided in [3, Section 3.1.2].

Our paper is organized as follows. We first provide prelim-
inaries in Section II. In Section III, we introduce the Galois

connections induced by ternary fuzzy relations and provide
their axiomatization. In Section IV, we describe two kinds
of representation of these Galois connections by means of
Galois connections induced by ordinary relations and present
an application of our results, namely a theorem showing that
every fuzzy concept trilattice is isomorphic to some ordinary
concept trilattice. Due to lack of space, the proofs are omited
and left for the full version of this paper.

II. PRELIMINARIES

A. Fuzzy logic and fuzzy sets

This section contains preliminaries regarding the structures
of truth degrees and basic notions used in fuzzy logic and
fuzzy sets. More information can be found in [3], [13].

We assume that the degrees form a bounded partially
ordered set L which is a complete lattice. Furthermore, we
assume that L is equipped with certain aggregation operators
which are known from mathematical fuzzy logic [12], [13].
In particular, we assume that the scale L of degrees forms a
complete residuated lattice, i.e. an algebra

L = 〈L,∧,∨,⊗,→, 0, 1〉

such that 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being
the least and greatest element of L, respectively; 〈L,⊗, 1〉 is a
commutative monoid (i.e. ⊗ is commutative, associative, and
a ⊗ 1 = a for each a ∈ L); ⊗ and → satisfy the so-called
adjointness property:

a⊗ b ≤ c iff a ≤ b→ c (1)

for each a, b, c ∈ L. In fuzzy logic, elements a of L are
called truth degrees and ⊗ and → are considered as the (truth
functions of) many-valued conjunction and implication.

A common choice of L is a structure with L = [0, 1]
(unit interval), ∧ and ∨ being minimum and maximum, ⊗
being a continuous (or at least left-continuous) t-norm (i.e. a
commutative, associative, and isotone operation on [0, 1] with
1 acting as a neutral element) with the corresponding→ given
by a → b = max{c | a ⊗ c ≤ b}. The three most important
pairs of adjoint operations on the unit interval are: Łukasiewicz
(a⊗ b = max(a+ b−1, 0), a→ b = min(1−a+ b, 1); Gödel
(a ⊗ b = min(a, b), a → b = 1 if a ≤ b, = b if a > b;
Goguen (a⊗ b = a · b, a→ b = 1 if a ≤ b, = b/a if a > b).
Another common choice is a finite linearly ordered L. For
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instance, one can put L = {a0 = 0, a1, . . . , an = 1} ⊆ [0, 1]
(a0 < · · · < an) with ⊗ given by ak⊗al = amax(k+l−n,0) and
the corresponding→ given by ak → al = amin(n−k+l,n). Such
an L is called a finite Łukasiewicz chain. Another possibility
is a finite Gödel chain which consists of L and restrictions
of Gödel operations from [0, 1] to L. A special case of a
complete residuated lattice is the two-element Boolean algebra
〈{0, 1},∧,∨,⊗,→, 0, 1〉, denoted by 2, which is the structure
of truth degrees of classical logic. This is important because
for the particular case L = 2, the notions and results become
the ones regarding ordinary sets and relations.

Given a complete residuated lattice L, we define the usual
notions [3], [13]: an L-set (fuzzy set, graded set) A in a
universe U is a mapping A : U → L, A(u) being interpreted
as “the degree to which u belongs to A”. Let LU denote
the collection of all L-sets in U . Operations with L-sets
are defined componentwise. For instance, the intersection of
L-sets A,B ∈ LU is an L-set A ∩ B in U such that
(A ∩ B)(u) = A(u) ∧ B(u) for each u ∈ U , etc. 2-sets and
operations with 2-sets can be identified with ordinary sets and
operations with ordinary sets, respectively. Binary L-relations
(binary fuzzy relations) between X and Y can be thought of
as L-sets in the universe X×Y ; similarly for ternary relations.
Given A,B ∈ LU , we define the degree S(A,B) of inclusion
of A in B by

S(A,B) =
∧

u∈U
(
A(u)→ B(u)

)
(2)

and the degree of equality of A and B by

A ≈ B =
∧

u∈U
(
A(u)↔ B(u)

)
(3)

Note that (2) generalizes the ordinary subsethood relation ⊆.
Described verbally, S(A,B) represents a degree to which
every element of A is an element of B. In particular, we
write A ⊆ B iff S(A,B) = 1. As a consequence, A ⊆ B
iff A(u) ≤ B(u) for each u ∈ U . Likewise, (3) generalizes
the ordinary equality relation =. A ≈ B represents a degree to
which every element belongs to A iff it belongs to B. Clearly,
A = B iff A ≈ B = 1.

B. Triadic concept analysis and Galois connections

In this section, we provide the basic notions regarding
the structures related to ternary relations, mainly in terms of
formal concept analysis which is the main intended application
area of our results. More information can be found in [18],
[23], see also [11].

A triadic context is a quadruple 〈X,Y, Z, I〉 where X , Y ,
and Z are non-empty sets, and I is a ternary relation between
X , Y , and Z, i.e. I ⊆ X ×Y ×Z. The sets X , Y , and Z are
interpreted as the sets of objects, attributes, and conditions,
respectively; I is interpreted as the incidence relation (“to
have-under relation”). That is, 〈x, y, z〉 ∈ I is interpreted as:
object x has attribute y under condition z. In this case, we
say that x, y, z (or x, z, y, or the result of listing x, y, z in any
other sequence) are related by I . For convenience, a triadic
context is denoted by 〈X1, X2, X3, I〉.

Let K = 〈X1, X2, X3, I〉 be a triadic context. For
{i, j, k} = {1, 2, 3} and Ck ⊆ Xk, consider the dyadic
context [11]

Kij
Ck

= 〈Xi, Xj , I
ij
Ck
〉

defined by

〈xi, xj〉 ∈ IijCk
iff

for each xk ∈ Ck : xi, xj , xk are related by I.

The concept-forming operators induced by Kij
Ck

are denoted
by (i,j,Ck). That is, for Ci ⊆ Xi and Cj ⊆ Xj we have

C
(i,j,Ck)
i = {xj ∈ Xj : for each xi ∈ Ci : 〈xi, xj〉 ∈ IijCk

},

C
(i,j,Ck)
j = {xi ∈ Xi : for each xj ∈ Cj : 〈xi, xj〉 ∈ IijCk

}.

A triadic concept of 〈X1, X2, X3, I〉 is a triplet
〈C1, C2, C3〉 of C1 ⊆ X1, C2 ⊆ X2, and C3 ⊆ X3, such
that for every {i, j, k} = {1, 2, 3} we have

Ci = C
(i,j,Ck)
j , Cj = C

(j,k,Ci)
k , and Ck = C

(k,i,Cj)
i .

Note that the latter conditions hold for every 3-element set
{i, j, k} = {1, 2, 3} if and only if they hold for any single
3-element set {i, j, k} = {1, 2, 3}. C1, C2, and C3 are called
the extent, intent, and modus of 〈C1, C2, C3〉. Geometrically,
triadic concepts are just the maximal cuboids contained in I ,
i.e. maximal subrelations of I that result as Cartesian products
of sets of objects, attributes, and modi. The set of all triadic
concepts of 〈X1, X2, X3, I〉 is denoted by T (X1, X2, X3, I)
and is called the concept trilattice of 〈X1, X2, X3, I〉; we refer
to Section IV for the notion of a trilattice. Note that complete
trilattices (and n-lattices) are the appropriate generalizations
of complete lattices (i.e. dyadic lattices) that result as naturally
structured sets of fixpoints of the connections induced by
ternary (and n-ary) relations.

For {i, j, k} = {1, 2, 3}, a triadic context 〈X1, X2, X3, I〉
induces the operators

(i)I : 2Xj × 2Xk → 2Xi

defined by

(Cj , Ck)
(i)I = C

(j,i,Ck)
j

for any Cj ⊆ Xj and Ck ⊆ Xk. The triplet 〈(1)I , (2)I , (3)I 〉,
denoted also simply by 〈(1), (2), (3)〉, forms an (ordinary)
triadic Galois connection [8], see also Section III. That is,
for every Ci ⊆ Xi, Cj ⊆ Xj , and Ck ⊆ Xk, one has

C3 ⊆ (C1, C2)
(3) iff C1 ⊆ (C2, C3)

(1)

iff C2 ⊆ (C1, C3)
(2). (4)

Conversely, every triplet 〈(1)I , (2)I , (3)I 〉 satisfying (4) is in-
duced by some triadic context [8].



III. TRIADIC FUZZY GALOIS CONNECTIONS

A. Triadic fuzzy contexts and their Galois connections

The basic notions of triadic concept analysis have been
generalized for data with fuzzy attributes, i.e. for ternary fuzzy
relations, in [6] and have been utilized for factor analysis of
three-way data in [7]. We now recall the notions needed.

A triadic L-context (triadic fuzzy context, or just triadic
context) is a quadruple 〈X,Y, Z, I〉 where X , Y , and Z are
non-empty sets, and I is a ternary fuzzy relation between
X , Y , and Z, i.e. I : X × Y × Z → L. Again, X , Y ,
and Z are interpreted as the sets of objects, attributes, and
conditions, respectively, and for x ∈ X , y ∈ Y , and z ∈ Z,
the degree I(x, y, z) ∈ L is interpreted as the degree to which
object x has attribute y under condition z. In this case, we
also say that I(x, y, z) is the degree to which x, y, z (or
x, z, y or z, x, y, etc.) are related and, for convenience, denote
I(x, y, z) also by I{x, y, z} or I{x, z, y} or I{z, x, y}, etc.
As in the ordinary case, we denote a triadic fuzzy context
by 〈X1, X2, X3, I〉. Except for mathematical arguments, the
motivation for considering triadic fuzzy context is that in
several situations, the relationship between objects, attributes,
and modi appear. For example, a degree to which object x has
feature y under condition z may be interpreted as the degree
to which customer z considers product x as having feature y
(e.g., the degree 3/4 means that customer z considers food
product x as having a good taste), see [6].

For every {i, j, k} = {1, 2, 3} and a fuzzy set Ak ∈ LXk ,
a triadic L-context K = 〈X1, X2, X3, I〉 induces a dyadic
L-context

Kij
Ak

= 〈Xi, Xj , I
ij
Ak
〉

in which the fuzzy relation IijAk
between Xi and Xj is defined

by

IijAk
(xi, xj) =

∧
xk∈Xk

(Ak(xk)→ I{xi, xj , xk})

for every xi ∈ Xi and xj ∈ Xj . Dyadic L-contexts and the
associated structures including concept-forming operators and
concept lattices were studied in a series of papers, see e.g.
[3], [4], [20]. The concept-forming operators induced by Kij

Ak

are denoted by (i,j,Ak). That is, for a fuzzy set Ai in Xi, we
define a fuzzy set A(i,j,Ak)

i in Xj by

A
(i,j,Ak)
i (xj) =

∧
xi∈Xi

Ai(xi)→ IijAk
(xi, xj).

Similarly,

A
(i,j,Ak)
j (xi) =

∧
xj∈Xj

Aj(xj)→ IijAk
(xi, xj).

A triadic L-concept (triadic fuzzy concept) of
〈X1, X2, X3, I〉 is a triplet 〈A1, A2, A3〉 consisting of
fuzzy sets A1 ∈ LX1 , A2 ∈ LX2 , and A3 ∈ LX3 , such
that for every {i, j, k} = {1, 2, 3} we have Ai = A

(i,j,Ak)
j ,

Aj = A
(j,k,Ai)
k , and Ak = A

(k,i,Aj)
i . In this case, A1, A2, and

A3 are called the extent, intent, and modus of 〈A1, A2, A3〉.
The set of all triadic concepts of K = 〈X1, X2, X3, I〉 is

denoted by T (X1, X2, X3, I) and is called the L-concept
trilattice (fuzzy concept trilattice) of K.

Remark 1. Clearly, the notions introduced in this section
generalize the corresponding ordinary notions reviewed in
Section II. Namely, putting L = {0, 1}, the notions of a triadic
L-context, the induced operators and so on may be identified
with the ordinary notions.

B. Axiomatizing Galois connections of triadic fuzzy contexts

As in the ordinary case, a triadic L-context 〈X1, X2, X3, I〉
induces three operators

(i)I : LXj × LXk → LXi

for {i, j, k} = {1, 2, 3} which are defined by

(Aj , Ak)
(i)I = A

(j,i,Ak)
j (5)

for any Aj ∈ LXj and Ak ∈ LXk . The triplet 〈(1)I , (2)I , (3)I 〉,
denoted also just by 〈(1), (2), (3)〉, is axiomatized below. In fact,
we provide an axiomatization of a wider class of operators for
reasons that become apparent later.

Remark 2. For convenience, we use also (A2, A1)
(3) with the

meaning (A2, A1)
(3) = (A1, A2)

(3); same for (1) and (2).

Recall that an order filter in a partially ordered set 〈L,≤〉 is
any subset K ⊆ L for which a ∈ K and a ≤ b imply b ∈ K
for any a, b ∈ L.

Definition 1. Let K be an order filter in 〈L,≤〉. A triadic
LK-Galois connection between sets X1, X2, and X3 is a
triplet 〈(1), (2), (3)〉 of mappings (1) : LX2 × LX3 → LX1 ,
(2) : LX1 × LX3 → LX2 , and (3) : LX1 × LX2 → LX3 ,
satisfying for every A1 ∈ LX1 , A2 ∈ LX2 , and A3 ∈ LX3 ,
that if S(A3, (A1, A2)

(3)) ∈ K or S(A1, (A2, A3)
(1)) ∈ K or

S(A2, (A1, A3)
(2)) ∈ K, then

S(A3, (A1, A2)
(3)) = S(A1, (A2, A3)

(1)) =

= S(A2, (A1, A3)
(2)). (6)

Remark 3. (a) One can easily see that for L = {0, 1},
triadic LK-Galois connections become ordinary triadic Galois
connections (observe that in this case, there are only two
filters, namely K = L and K = {1} and both lead to the
same notion of an LK-Galois connection).

(b) In accordance with [1], we use the term L-Galois
connections for LL-Galois connections.

The following theorem provides an alternative characteri-
zation of LK-Galois connections in terms of extensivity ond
antitony.

Theorem 1. For {i, j, k} = {1, 2, 3}, a triplet 〈(1), (2), (3)〉
is a triadic LK-Galois connection iff the following conditions
hold for all Ai, A

′
i ∈ LXi , Aj ∈ LXj , Ak ∈ LXk :

(a) Ai ⊆ (Aj , (Ai, Aj)
(k))(i) (extensivity),

(b) if S(Ai, A
′
i) ∈ K then

S(Ai, A
′
i) ≤ S((A′i, Aj)

(k), (Ai, Aj)
(k)) (antitony).



Next, we provide some properties that are needed to show a
bijective correspondence between ternary fuzzy relations and
triadic L-Galois connections, i.e. proving that triadic L-Galois
connections are represented by ternary fuzzy relations.

Lemma 1. For {i, j, k} = {1, 2, 3}, index sets P , Q, and
fuzzy sets Aip ∈ LXi , and Ajp ∈ LXj the following equality
holds:

(
∨
p∈P

Aip,
∨
q∈Q

Ajq)
(k) =

∧
p∈P,q∈Q

(Aip, Ajq)
(k) (7)

Lemma 2. Let ((1), (2), (3)) be a triadic L-Galois connection.
Then for {i, j, k} = {1, 2, 3} and Ai ∈ LXi let the mappings
↑Ai

: LXj → LXk and ↓Ai
: LXk → LXj be defined as

A
↑Ai

k = (Ak, Ai)
(j)

A
↓Ai
j = (Aj , Ai)

(k).

Then 〈↑Ai
, ↓Ai
〉 forms a dyadic L-Galois connection between

Xj and Xk [1].

Lemma 3. For {i, j, k} = {1, 2, 3} it holds
(a) a→ ({1/xi}, {1/xj})(k) = ({a/xi}, {1/xj})(k),
(b)

∧
xi∈Xi

Ai(xi)→ ({1/xi}, {1/xj})(k)=(Ai, {1/xj})(k).

The next theorem, which can be proved using the above
lemmas, shows that triadic L-Galois connections are just the
mappings obtained from ternary fuzzy relations by (5).

Theorem 2. Let I ∈ LX1×X2×X3 . Let 〈(1), (2), (3)〉 be a
triadic L-Galois connection between X1, X2, and X3 and
define a ternary relation I〈(1),(2),(3)〉 ∈ LX1×X2×X3 by

I〈(1),(2),(3)〉(x1, x2, x3) = ({1/x1}, {1/x2})(3) =
= ({1/x1}, {1/x3})(2) = ({1/x2}, {1/x3})(1).

Then
(a) The triplet 〈(1)I , (2)I , (3)I 〉 forms a triadic L-Galois con-

nection.
(b) I = I〈(1)I ,(2)I ,(3)I 〉.

(c) 〈(1), (2), (3)〉 = 〈
(1)I
〈(1),(2),(3)〉 ,

(2)I
〈(1),(2),(3)〉 ,

(3)I
〈(1),(2),(3)〉 〉.

Therefore, (6) provides an axiomatization of the mappings
induced by ternary fuzzy relations by (5).

IV. REPRESENTATION OF TRIADIC FUZZY GALOIS
CONNECTIONS BY ORDINARY CONNECTIONS

In this section, we provide two kinds of representation of
triadic fuzzy Galois connections using ordinary tradic Galois
connections. In Section IV-A, we present a representation
which is based on looking at a fuzzy set A in U as the area
below the membership function, i.e. a subset of the Cartesian
product U ×L of U and the set L of truth degrees. In Section
IV-B, we present another representation, a cut-like one, using
which a triadic fuzzy Galois connection is represented as a
nested system of ordinary triadic connections. In Section IV-C,
we present an application of the Cartesian representation in
showing that every fuzzy concept trilattice is isomorphic to
some ordinary concept trilattice.

A. Cartesian representation

For the first type of representation, we utilize the following
mappings, studied in [2] and further developed in [3] (note
that these mappings were independently introduced in [20]).
For a fuzzy set A ∈ LU put

bAc = {〈u, a〉 ∈ U × L | a ≤ A(u)};

For an ordinary set B ⊆ U × L, define a fuzzy set dBe in U
by

dBe(u) =
∨

〈u,a〉∈B

a.

bAc may be thought of as the area below A while dBe may
be thought of as an upper envelope of B. In what follows, we
use the properties of b c and d e which may be found in [3].

Definition 2. An (ordinary) triadic Galois connection
〈〈1〉, 〈2〉, 〈3〉〉 between X1 × L, X2 × L, X3 × L is called
commutative with respect to bdec iff

(bdAiec, bdAjec)〈k〉 = bd(Ai, Aj)ec〈k〉 (8)

holds for any {i, j, k} = {1, 2, 3} and any sets A1 ∈ X1×L,
A2 ∈ X2 × L, and A3 ∈ X3 × L.

The following definition shows how triplets of mappings on
fuzzy sets in Xis may be defined from triplets of mappings on
subsets of Xi×Ls and vice versa. (By small abuse of notation
we utilize (i)(i) to denote the mapping induced by (i).)

Definition 3. Let {i, j, k} = {1, 2, 3}. For a triadic Galois
connection 〈〈1〉, 〈2〉, 〈3〉〉 between X1 × L, X2 × L, X3 × L,
and fuzzy sets Ai ∈ LXi , Aj ∈ LXj , and Ak ∈ LXk we define
mappings (i)〈i〉 : LXj × LXk → LXi by

(Aj , Ak)
(i)〈i〉 = d(bAjc, bAkc)(i)e (9)

Let 〈(1), (2), (3)〉 be a triadic L-Galois connection between
X1, X2, and X3. Then for sets Ai ∈ Xi × L, Aj ∈ Xj × L,
and Ak ∈ Xk × L, we define mappings 〈i〉(i) : (Xj × L) ×
(Xk × L)→ Xi × L by

(Aj , Ak)
〈i〉(i) = b(dAje, dAke)(i)c (10)

The following theorem provides the first way to represent
triadic fuzzy Galois connections using ordinary connections.

Theorem 3. Let 〈(1), (2), (3)〉 be a triadic L{1}-Galois connec-
tion between X1, X2, and X3 and 〈〈1〉, 〈2〉, 〈3〉〉 be a triadic
Galois connection. between X1 × L, X2 × L, and X3 × L.

Then the following holds:
(a) 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉 is a triadic Galois connection com-

mutative with respect to bdec.
(b) 〈(1)〈1〉 , (2)〈2〉 , (3)〈3〉〉 is a triadic L{1}-Galois connection.
(c) The map 〈(1), (2), (3)〉 7→ 〈〈1〉, 〈2〉, 〈3〉〉 is an one-to-one

map between the set of all triadic L{1}-Galois connec-
tions between X1, X2, and X3 and the set of all triadic
Galois connections between X1 × L, X2 × L, X3 × L
that are commutative with respect to bdec.



B. Cut-like representation

The second representation is inspired by the notion of an
a-cut of a fuzzy set. Recall that for a fuzzy set A ∈ LU and
a degree a ∈ L, the a-cut aA of A is the ordinary subset of
U defined by

aA = {u ∈ U | a ≤ A(u)}.

It is well known that each fuzzy set is uniquely represented
by the system of its a-cuts. Depending on the properties of
the scale of truth degrees, one may introduce an appropriate
notion of a nested system of subsets of U in such a way that
nested systems become just the system of a-cuts of fuzzy sets,
see e.g. [3].

One may easily verify that straightforward conditions such
as (aA1,

aA2)
(3) = a((A1, A2)

(3)) do not hold for tradic fuzzy
Galois connections. Nevertheless, a cut-like representation of
triadic fuzzy Galois connections is possible, as shown in
the rest of this section. The representation is based on the
following notion.

Definition 4. Let {i, j, k} = {1, 2, 3}. A system
{〈(1a), (2a), (3a)〉 | a ∈ L} of (ordinary) triadic Galois
connections is called L-nested iff

1) for each a, b ∈ L such that a ≤ b, and Ai ∈ LXi ,
Aj ∈ LXj it holds (Ai, Aj)

(ka) ⊇ (Ai, Aj)
(kb)

2) for all xi ∈ Xi, xj ∈ Xj , xk ∈ Xk the set {a ∈ L | xi ∈
({xj}, {xk})(ia)} has a greatest element.

We need the following lemmas.

Lemma 4. For {i, j, k} = {1, 2, 3}, let I ∈ LX1×X2×X3 be
an L-relation, 〈(1), (2), (3)〉 be the triadic L-Galois connection
induced by I and for a ∈ L let 〈(1a), (2a), (3a)〉 be the triadic
Galois connections induced by the cuts aI . Then
(a) for every Ai ∈ 2Xi , Aj ∈ 2Xj , and a ∈ L we have

a(Ai, Aj)
(k) = (Ai, Aj)

(ka),

(b) for all fuzzy sets Ai ∈ LXi , Aj ∈ LXj , and b, c ∈ L we
have

a(Ai, Aj)
(k) =

⋂
b,c∈L

(bAi,
cAj)

(ka⊗b⊗c).

Lemma 5. Let 〈(1)1 , (2)1 , (3)1〉 and 〈(1)2 , (2)2 , (3)2〉 be triadic
L-Galois connections, let I1 and I2 be the corresponding
L-relations between X1, X2, and X3. Then for {i, j, k} =
{1, 2, 3} it holds that I1 ⊆ I2 iff for each Ai ∈ LXi , Aj ∈ LXj

it holds (Ai, Aj)
(k)1 ⊆ (Ai, Aj)

(k)2 .

Using the above lemmas, one may proove the following
theorem which provides the cut-like representation of triadic
fuzzy Galois connections.

Theorem 4. For a triadic L-Galois connection 〈(1), (2), (3)〉
between X1, X2, and X3 denote

C〈(1),(2),(3)〉 = {〈(1a), (2a), (3a)〉 | a ∈ L}.

For an L-nested system {〈(1a), (2a), (3a)〉 | a ∈ L } of
triadic Galois connections between X1, X2, and X3 denote by

〈(1)C , (2)C , (3)C 〉 the mappings defined for {i, j, k} = {1, 2, 3},
and Ai ∈ LXi , Aj ∈ LXj by

(Ai, Aj)
(k)C (xk) =

∨
{a | xk ∈

⋂
b,c∈L

(bAi,
cAj)

(ka⊗b⊗c)}.

Then
(a) C〈(1),(2),(3)〉 is an L-nested system of triadic Galois con-

nections,
(b) 〈(1)C , (2)C , (3)C 〉 is a triadic L-Galois connection,
(c) 〈(1), (2), (3)〉 = 〈

(1)C
〈(1),(2),(3)〉 ,

(2)C
〈(1),(2),(3)〉 ,

(3)C
〈(1),(2),(3)〉 〉,

and
C = C〈(1)C ,(2)C ,(3)C 〉, i.e. the mappings between the sets of
all triadic L-Galois connections and all nested systems
of triadic Galois connections are mutually inverse
bijections.

C. Application of the Cartesian representation

In this section we present, as an application of the previous
results, a theorem saying that every fuzzy concept trilattice is
isomorphic to some ordinary concept trilattice via a natural
isomorphism. A particular consequence of this result is the
claim that a fuzzy concept trilattice is indeed a trilattice (see
below for the notion of a trilattice).

Let us recall the following notions [23]. Let V be a
non-empty set, and for i ∈ {1, 2, 3} let .i be quasiorder
relations on V . 〈V,.1,.2,.3〉 is called a triordered set
if and only if the following two conditions hold for every
{i, j, k} = {1, 2, 3}:

1) v .i w and v .j w implies w .k v for every v, w ∈ V ;
2) ∼i ∩ ∼j ∩ ∼k is an identity relation on V .

For triordered sets 〈V,.V
1 ,.

V
2 ,.

V
3 〉 and 〈W,.W

1 ,.W
2 ,.W

3 〉,
a mapping h : V → W is called an isomorphism if it is
bijective and satisfies v1 .V

i v2 iff h(v)1 .W
i h(v2) for every

v1, v2 ∈ V and every i ∈ {1, 2, 3}.
Let Vi, Vk ⊆ V . An element v ∈ V is called an ik-bound

of 〈Vi, Vk〉 if vi .i v and vk .k v for every vi ∈ Vi and
vk ∈ Vk. An ik-bound v is called an ik-limit of 〈Vi, Vk〉 if
u .j v for every ik-bound u of 〈Vi, Vk〉. In every triordered
set (V,.1,.2,.3) there is at most one ik-limit v of 〈Vi, Vk〉
satisfying v .k u for every ik-limit u of 〈Vi, Vk〉. If such
v exists, we call v an ik-join of 〈Vi, Vk〉 and denote it by
∇ik(Vi, Vk). A triordered set (V,.1,.2,.3) in which the ik-
join exists for all i 6= k (i, k ∈ {1, 2, 3}) and all pairs 〈Vi, Vk〉
of subsets of V is called a complete trilattice.

It is easy to see that the set of all triadic concepts of a triadic
LK-Galois connection forms a triordered set w.r.t. inclusions
⊆ of fuzzy sets as the quasiorders. We utilize the facts that
the set of all triadic concepts of an ordinary triadic Galois
connection 〈(1), (2), (3)〉 forms a trilattice, denoted here by
T (X1, X2, X3, 〈(1), (2), (3)〉).

Lemma 6. For a triadic LK-Galois connection 〈(1), (2), (3)〉
the triordered sets T (X1, X2, X3, 〈(1), (2), (3)〉) and T (X1 ×
L,X2×L,X3×L, 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉) are isomorphic. More-
over, T (X1 × L,X2 × L,X3 × L, 〈〈1〉(1) , 〈2〉(2) , 〈3〉(3)〉) =



T (X1 × L,X2 × L,X3 × L, I×), where

〈(x1, a), (x2, b), (x3, c)〉 ∈ I× iff c ≤ ({a/x1}, {b/x2})(3).

The following theorem, which can be proven by the previous
lemma, shows an important fact that every fuzzy concept
trilattice is isomorphic to a certain concept trilattice.

Theorem 5. Any L-concept trilattice T (X1, X2, X3, I) is
isomorphic as a triordered set to the (ordinary) concept
trilattice T (X1 × L,X2 × L,X3 × L, I×), where

〈(x1, a), (x2, b), (x3, c)〉 ∈ I× iff a⊗ b⊗ c ≤ I(x1, x2, x3).

As a consequence, it follows that every fuzzy concept
trilattice is indeed a trilattice in the sense defined above.
Moreover, one may use the above results to obtain a short
proof of the basic theorem of fuzzy concept trilattices [6] by
reduction to the basic theorem of ordinary concept trilattices
[23]. This result is left for the extended version of this paper.

V. CONCLUSIONS AND FURTHER ISSUES

We provided an axiomatic characterization of triadic fuzzy
Galois connections and two ways to represent them by or-
dinary tradic connections. These connections appear in data
analysis of three-way relational data. Most importantly, the
fixpoints of these mappings are maximal cuboids contained
in the data (maximal Cartesian subrelations of the relation
representing the data).

The results establish important connections between the
ordinary and the fuzzy case that enable us to easily carry over
results (theorems, algorithms) for triadic fuzzy data from those
for ordinary triadic data. As an example, we presented a theo-
rem showing that every fuzzy concept trilattice is isomorphic,
via a natural isomorphism, to some ordinary concept trilattice.

The following topics are left for future research:
– Identify, formally if possible, the types of results that may

be automatically carried over from the ordinary case to
fuzzy case.

– Develop other possible types of reduction. Extend the
applicability of the presented representation to a wider
class of relational methods (see [3] for a general cut-like
semantics for predicate fuzzy logic).

– Study the computational efficiency of the representation
results with the aim of obtaining algorithms for fuzzy
relations from those for ordinary relations.
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O. Lüders (Eds.): General algebra and applications in discrete
mathematics, Shaker Verlag, Aachen, 1997, pp. 23–33.

[9] Cichocki A., Zdunek R., Phan A. H., Amari S.-I.: Nonnegative
Matrix and Tensor Factorizations: Applications to Exploratory
Multi-way Data Analysis and Blind Source Separation. J. Wiley,
2009.

[10] Di Nola A., E. Sanchez, W. Pedrycz, S. Sessa: Fuzzy Relation
Equations and Their Applications to Knowledge Engineering.
Kluwer, 1989.

[11] Ganter B., Wille R.: Formal Concept Analysis. Mathematical
Foundations. Springer, Berlin, 1999.

[12] Goguen J. A.: The logic of inexact concepts. Synthese 18 (1968–
9), 325–373.
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