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Abstract

Radiation of sound from a simplified model of a buried nozzle with bypass flow is studied. More
precisely, a semi-infinite duct (the inner nozzle) is situated inside a larger semi-infinite duct. The
exit plane of the larger duct either coincides with the exit plane of the smaller duct, or extends
beyond it. Differences in the piece-wise subsonic mean flow velocity, density and temperature
are taken into account. The inner nozzle issues the core flow inside the bypass jet flow. The
bypass nozzle issues the bypass jet flow inside the ambient co-flow. Two vortex sheets, attached
to the duct exits, separate the different flows from each other. These vortex sheets are unstable
due to this mean velocity discontinuity. The application ofthe Kutta condition at the respective
trailing edges guarantees shedding of vorticity which excites these instabilities. The system is
set up to respond to an incident annular duct mode, but the analysis would be very similar for
an inner duct mode.

To obtain an analytical solution a Wiener-Hopf approach with Idemen’s method of “weak
factorisation” is applied. Formulation of the boundary value problem following the classical
approach leads to a couple of simultaneous Wiener-Hopf equations. These equations produce
a matrix equation system, which is formally decoupled by theintroduction of an infinite sum
of poles with coefficients to be determined. The uncoupled scalar equations are solved inde-
pendently by a standard application of analytical continuation. The unknown coefficients in the
final solution are determined by solving an infinite linear algebraic system numerically. The
contribution of the instability waves are separated from the rest of the solution.

The asymptotic far field is found by a standard application ofthe steepest descent method.
Finally a series of practical examples are given.

1. INTRODUCTION

Accurate predictions of exhaust noise are required to guidethe development of innovative noise
reduction solutions. Much effort has already been spent on the intake noise radiation problem,
but there is still a lack of research on the more complicated exhaust noise radiation problem,
where sound propagates through the shear layers of high speed hot jets. In the European project
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TURNEX (co-ordinator Brian Tester) this challenge is beingfaced by developing enhanced
numerical prediction techniques. A very important aspect is the verification of the numerical
solutions by detailed comparison with exact analytic solutions of idealized and geometrically
simplified but not trivial cases. The model per se is to be validated too, but by other means.

The exploration of relevant problems that allow exact solutions was initiated by Munt [1],
who developed a Wiener-Hopf solution [2] for the configuration of a jet from a hollow duct
with co-flow. Based on this idea, a series of related configurations were developed by Gabard &
Astley [3] of annular hard walled duct and Demir & Rienstra [4] of annular duct with full and
partial lining of the centerbody.

These solutions have in common that the centerbody is doublyinfinite. This is obviously
a simplification which may be acceptable for a finite but relatively long, protruding afterbody,
but not for a centerbody exit that is co-planar with or even buried inside the outer duct, as can
be found in certain turbofan engines [5].

This is the case that will be presented here. Mathematically, its solution is more subtle
than the classical Wiener-Hopf solutions of the doubly infinite geometry. The present solution
is based on a so-called weak factorisation, originally due to Idemen [6]. Just like the classical
Munt solution [1] and its variants [3, 7] it includes the effects of vortex shedding and Helmholtz
instabilities of the inner and outer jet, while the mean flow is now triple piecewise constant in
velocity, sound speed and density along the inner jet, the bypass jet and the outer flow.

The first who considered this same buried nozzle problem wereTaylor, Crighton & Cargill
[5]. However, they assumed low Mach and Strouhal numbers and a long distance between exit
planes. Here we will consider the full problem without further approximations.

2. ANALYSIS
2.1. Formulation of the Problem

Consider the geometry which consists of a semi-infinite outer duct and a semi-infinite inner
duct. Duct walls are assumed to be infinitely thin and they occupy the regions like depicted
in the figures1(a), 1(b). All quantities are made dimensionless by using outer duct radius and
ambient flow properties as reference asr, z ∼ R2, U ∼ c0, ρ ∼ ρ0, t ∼ R2/c0. The velocity

h

` M0

M1

M2

(a) Buried nozzle (i.e.̀ < 0)

h

M0

M1

M2

(b) Coplanar nozzle (i.e.̀= 0)

Figure 1.

potentialφ will be used to obtain the acoustic pressurep, velocity v and densityρ via the
following equations [4]

p = −(φt +M0φz), v = ∇φ, ρ = p, 1 < r (1)

p = −D1(φt +M1φz), v = ∇φ, ρ = pC2
1 , h < r < 1 (2)

p = −D2(φt +M2φz), v = ∇φ, ρ = pC2
2 , 0 6 r < h (3)
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whereM0 = U0/c0, M1 = Uj/c0, M2 = Uc/c0, C1 = c0/cj, C2 = c0/cc, D1 = ρj/ρ0,
D2 = ρc/ρj . All mean flows are subsonic. Note thatM1 andM2 are not the local Mach numbers.

From the symmetry of the geometry and the incident wave, the diffracted field will remain
with the same azimuthal and time dependencies as the incident wave. The total field is written
in different regions as:

φ(r, z, θ, t) = ψT (r, z) exp(iωt− imθ) (4)

ψT (r, z) =















ψ1(r, z), 1 < r <∞,

ψ2(r, z) + ψi(r, z), h < r < 1

ψ3(r, z), 0 6 r < h,

(5)

ψi(r, z) = Ψmn(r) exp(−iωµ+
mnz) (6)

Ψmn(r) = Y ′

m(αmnh)Jm(αmnr) − J ′

m(αmnh)Ym(αmnr) (7)

whereω > 0 is the angular frequency andm ∈ Z is the circumferential order.ψi denotes the
incident field, which is here assumed to come from the bypass duct, but the analysis would have
been similar for the core duct. Radial wave numbersαmn, defined by the eigenvalue equation
Y ′

m(αmnh)J
′

m(αmn) − J ′

m(αmnh)Y
′

m(αmn) = 0, yield the axial wave numbersωµ±

mn, where

µ±

mn =
±

√

C2
1 − (1 −M2

1C
2
1)α

2
mn/ω

2 −M1C
2
1

1 −M2
1C

2
1

(8)

andµ±

mn = ∓i√. . . for negative arguments of the square root. The signs(+) and(−) show right
and left running modes, respectively. For the special case of a plane wave we haveΨ00(r) = 1

andµ±

00 = C1/(M1C1 ± 1). Time dependenceeiωt and azimuthal dependencye−imθ are sup-
pressed throughout this paper.

2.2. Derivation of the Wiener-Hopf System

The previously introduced velocity potentialsψ1(r, z),ψ2(r, z) andψ3(r, z) satisfy the Helmholtz
equations

[1
r
∂
∂r

(r ∂
∂r

) + ∂2

∂z2
− m2

r2
− (iω +M0

∂
∂z

)2]ψ1(r, z) = 0, (9)

[1
r
∂
∂r

(r ∂
∂r

) + ∂2

∂z2
− m2

r2
− C2

1 (iω +M1
∂
∂z

)2]ψ2(r, z) = 0, (10)

[1
r
∂
∂r

(r ∂
∂r

) + ∂2

∂z2
− m2

r2
− C2

2 (iω +M2
∂
∂z

)2]ψ3(r, z) = 0. (11)

These can be solved in the usual way by Fourier transformation toz, leading formally to

ψ1(r, z) = ω
2π

∫

L
A(u)H(2)

m (λ0ωr) e−iωuz du (12)

ψ2(r, z) = ω
2π

∫

L
[B(u)Jm(λ1ωr) + C(u)Ym(λ1ωr)] e−iωuz du (13)

ψ3(r, z) = ω
2π

∫

L
D(u)Jm(λ2ωr) e−iωuz du (14)

whereL is a suitable integration contour along the real axis in complex u-domain (see [4]).
The complex square rootsλ0, λ1 andλ2 are defined asλ0(u) =

√

(1 − uM0)2 − u2, λ1(u) =
√

C2
1 (1 − uM1)2 − u2, λ2(u) =

√

C2
2(1 − uM2)2 − u2, where Im(λ) 6 0. The potentials sat-
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isfy the usual condition of continuity of particle displacement alongr = 1 andr = h. When
r = 1 + ξ(z) exp(iωt − imθ) andr = h + η(z) exp(iωt − imθ) denotes the complex radial
displacement of vortex sheets atr = 1 andr = h, the full Kutta condition applied at either
trailing edge implies, respectively,ξ(z) = O(z3/2)), andη(z) = O(z3/2). Application of the
boundary conditions onr = h yields expressions for∂

∂r
ψ2(h, z) and ∂

∂r
ψ3(h, z), which gives

D(u)λ2J
′

m(λ2ωh) = i(1 − uM2) eiωu` Φ+
1 (u), (15)

B(u)λ1J
′

m(λ1ωh) + C(u)λ1Y
′

m(λ1ωh) = i(1 − uM1) eiωu` Φ+
1 (u), (16)

whereΦ+
1 (u) =

∫

∞

`
η(z) eiωu(z−`) dz. Continuity of pressure atr = h gives us

− iω(1 − uM1)Jm(λ1ωh)B(u) − iω(1 − uM1)Ym(λ1ωh)C(u) = eiωu` Φ−

1 (u)

− (1 − µ+
mnM1)Ψmn(h)

eiω(u−µ+
mn)`

u− µ+
mn

+ ωD2(1 − uM2)
2 Jm(λ2ωh)

λ2J ′
m(λ2ωh)

eiωu` Φ+
1 (u) (17)

and the matrix equation

[

λ1J
′

m(λ1ωh) λ1Y
′

m(λ1ωh)

−iω(1 − uM1)Jm(λ1ωh) −iω(1 − uM1)Ym(λ1ωh)

] [

B(u)

C(u)

]

= (18)







i(1 − uM1) eiωu` Φ+
1 (u)

eiωu` Φ−

1 (u) − (1 − µ+
mnM1)Ψmn(h)

eiω(u−µ+
mn)`

u− µ+
mn

+ ωD2(1 − uM2)
2 Jm(λ2ωh)

λ2J ′
m(λ2ωh)

eiωu` Φ+
1 (u)






.

whereΦ−

1 (u) =
∫ `

−∞
[D2(iω +M2

∂
∂z

)ψ3(h, z)− (iω+M1
∂
∂z

)ψ2(h, z)] eiωu(z−`) dz. The coeffi-
cientsB(u) andC(u) may now be expressed explicitly inΦ+

1 (u) andΦ−

1 (u).
The boundary condition alongr = 1 results into

A(u)λ0H
(2)′
m (λ0ω) = i(1 − uM0)Φ

+
2 (u), (19)

B(u)λ1J
′

m(λ1ω) + C(u)λ1Y
′

m(λ1ω) = i(1 − uM1)Φ
+
2 (u), (20)

whereΦ+
2 (u) =

∫

∞

0
ξ(z) eiωuz dz. After eliminatingA,B, andC, using continuity of pressure at

r = 1, and introducingΦ−

2 (u) =
∫ 0

−∞
[(iω+M0

∂
∂z

)ψ1(1, z)−D1(iω+M1
∂
∂z

)ψ2(1, z)] eiωuz dz,
we obtain a couple of Wiener-Hopf equations, which are to be solved:

Φ+
1 (u) − λ1λ2

ωN(u)

[

Φ−

1 (u) − (1 − µ+
mnM1)Ψmn(h)

e−iωµ
+
mn`

u−µ+
mn

]

= − 2

πωh
(1 − uM1)

2 e−iωu` Φ+
2 (u)

χ1(u)
, (21)

ωΦ+
2 (u)K(u) − 2

πω

D1(1−uM1)2

χ1(u)

[

eiωu` Φ−

1 (u) − (1 − µ+
mnM1)Ψmn(h)

eiω(u−µ
+
mn)`

u−µ+
mn

]

= Φ−

2 (u) −D1Ψmn(1)1−µ+
mnM1

u−µ+
mn

(22)
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with kernels defined by

N(u) = λ2(1 − uM1)
2Ym(λ1ωh)J

′

m(λ1ω) − Jm(λ1ωh)Y
′

m(λ1ω)

Y ′
m(λ1ωh)J ′

m(λ1ω) − J ′
m(λ1ωh)Y ′

m(λ1ω)

− λ1D2(1 − uM2)
2Jm(λ2ωh)

J ′
m(λ2ωh)

(23)

K(u) = D1(1 − uM1)
2χ2(u)/χ1(u) − (1 − uM0)

2H(2)
m (λ0ω)/λ0H

(2)′
m (λ0ω) (24)

χ1(u) = (1 − uM1)
2λ1 [Ym(λ1ωh)J

′

m(λ1ω) − Jm(λ1ωh)Y
′

m(λ1ω)]

−D2(1 − uM2)
2λ

2
1Jm(λ2ωh)

λ2J ′
m(λ2ωh)

[Y ′

m(λ1ωh)J
′

m(λ1ω) − J ′

m(λ1ωh)Y
′

m(λ1ω)] (25)

χ2(u) = (1 − uM1)
2 [Ym(λ1ωh)Jm(λ1ω) − Jm(λ1ωh)Ym(λ1ω)]

−D2(1 − uM2)
2λ1Jm(λ2ωh)

λ2J ′
m(λ2ωh)

[Y ′

m(λ1ωh)Jm(λ1ω) − J ′

m(λ1ωh)Ym(λ1ω)] (26)

2.3. Solution

Due to the space limitations for the present conference paper it is impossible for us to give the
solution procedure in detail here. In short, it is based on the usual Wiener-Hopf splitting of the
kernelsN(u) = N+(u)/N−(u) andK(u) = K+(u)/K−(u) in functions that are analytic in
lower, resp. upper complexu-space. The equations may then be rewritten in a lhs/rhs, analytic
in the lower/upper halfspace, except for isolated poles. These poles may then be removed at
the expense of a linear system to be solved [6, 8]. For further details on the Kutta condition,
vortex sheet instabilities, and numerical calculation of the split function we refer to [4] and the
forthcoming paper. The resulting solution forΦ2 takes the form

Φ+
2 (u) =

1

ωK+(u)

∞
∑

p=1

bmp

β+
mp − u1

[ u− u1

u− β+
mp

− Γ1

]

− δmn
D1(1 − µ+

00M1)

ω(u− µ+
00)K+(u)

K−(µ+
00)

{ 2

πω

(1 − µ+
00M1)

2

χ1(µ
+
00)

+ 1
}

(27)

whereβ+
mp denotesχ1’s p-th lower half plane zero;δ00 = 1 and δmn = 0 otherwise;u1 is

related to the instability pole of the outer vortex sheet;Γ1 = 1,= 0 corresponds to full, no
Kutta condition at the outer trailing edge. At the inner trailing edge a Kutta condition is always
assumed. The instability pole of the inner vortex sheet is included in the kernelN .

The far fieldR → ∞ may be expressed by a usual steepest descent approximation as

ψ1 ' Dψ(θ) exp
(

iωR[M0 cosθ − (1 −M2
0 sin2 θ)1/2]/(1 −M2

0 ) + i m+1
2
π
)

/R, (28)

wherer = R sinθ(1−M2
0 )1/2 = R sinθ , z = R cosθ(1−M2

0 ) = R cosθ , and directivities for
potential and pressure

Dψ(θ) =
i(1 − u′M0)Φ

+
2 (u′)

π sinθH(2)′
m (λ′0ω)

, DP (θ) =
ω(1 − u′M0)

2Φ+
2 (u′)

π sinθH (2)′
m (λ′0ω)

, (29)

with u′ = (cosθ(1 −M2
0 sin2 θ)−1/2 −M0)/(1 −M2

0 ), λ′0 = sinθ/(1 −M2
0 sin2 θ)1/2.
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3. NUMERICAL EXAMPLES

A series of examples are numerically evaluated to see the effect of the buried versus co-planar
nozzle, with mean flow and Kutta condition. These examples are not meant to be more than an
illustration of the found solutions, as it is not possible here to make an exhaustive investigation
of all possible combinations of problem parameters nor scanall the physical consequences. The
problem parameters that were used are:

Table 1. Problem parameters for far field examples.

parameter definition value

ω 2πfR2/c0 2π · 876 · 1.2/330 20.0

m 1 and10

M0 U0/c0 99/330 0.30

M1 Uj/c0 210/330 0.64

M2 Uc/c0 265/330 0.80

C1 c0/cj 330/350 0.94

C2 c0/cc 330/530 0.62

D1 ρj/ρ0 1.158/1.3026 0.89

D2 ρc/ρj 0.505/1.158 0.44

h R1/R2 0.8/1.2 0.67

` inner duct exit plane 0 and−1.2/R2 0 and−1
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Figure 2. Comparing co-planar and buried exits withm = 1, full Kutta condition
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Figure 3. Comparing co-planar and buried exits withm = 10, full Kutta condition
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Figure 4. Co-planar exit withm = 1, comparing with and without outer edge Kutta condition
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Figure 5. Buried exit withm = 1, comparing with and without outer edge Kutta condition
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Figure 6. Co-planar exit withm = 10, comparing with and without outer edge Kutta condition
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Figure 7. Buried exit withm = 10, comparing with and without outer edge Kutta condition
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The 1st and 2nd radial mode far fields are plotted dimensionally, at 50.0 m away from the
exhaust plane. Amplitudes are such that the cross-wise averaged intensity atz = ` is 1 W/m2.

In the figures2,3 the difference is studied of a buried against co-planar nozzle. For highm
the practically vanishing inner part of the modal radial profile makes the inner exit unimportant.
Otherwise we see strong interference between the coplanar inner and outer exit (figure2b).

In the figures4,5, 6, 7 the effect is studied of the outer edge Kutta condition. In all cases the
effect is relatively small for downstream angles. This is due to the prevailing Strouhal numbers
being high, which curtails the regions of significant vorticity-trailing edge interaction.

4. CONCLUSIONS

Analytically exact solutions are constructed and numerically implemented for the relatively
complicated model problem of sound radiation from an aircraft engine exit with piecewise uni-
form mean flow of buried or co-planar hot core jet, colder annular by-pass jet and cold mean
co-flow. The solution includes the effects of Kutta condition and unstable vortex sheets. The so-
lution method is based on a Wiener-Hopf approach, supplemented by weak factorisation. This
is only possible for the buried jet configuration. For a protruding inner duct geometry other
courses should be pursued.
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