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Abstract

Radiation of sound from a simplified model of a buried nozzli Wwypass flow is studied. More
precisely, a semi-infinite duct (the inner nozzle) is skddhside a larger semi-infinite duct. The
exit plane of the larger duct either coincides with the elane of the smaller duct, or extends
beyond it. Differences in the piece-wise subsonic mean flelwoity, density and temperature
are taken into account. The inner nozzle issues the core fisida the bypass jet flow. The
bypass nozzle issues the bypass jet flow inside the ambidtawoTwo vortex sheets, attached
to the duct exits, separate the different flows from eachrofiteese vortex sheets are unstable
due to this mean velocity discontinuity. The applicatiorite Kutta condition at the respective
trailing edges guarantees shedding of vorticity which tescthese instabilities. The system is
set up to respond to an incident annular duct mode, but thgsasavould be very similar for
an inner duct mode.

To obtain an analytical solution a Wiener-Hopf approactnwdemen’s method of “weak
factorisation” is applied. Formulation of the boundaryuelproblem following the classical
approach leads to a couple of simultaneous Wiener-Hopftemsa These equations produce
a matrix equation system, which is formally decoupled byittieduction of an infinite sum
of poles with coefficients to be determined. The uncoupledasequations are solved inde-
pendently by a standard application of analytical contilmma The unknown coefficients in the
final solution are determined by solving an infinite lineageddraic system numerically. The
contribution of the instability waves are separated fromrékst of the solution.

The asymptotic far field is found by a standard applicatiothefsteepest descent method.
Finally a series of practical examples are given.

1. INTRODUCTION

Accurate predictions of exhaust noise are required to ghieldevelopment of innovative noise
reduction solutions. Much effort has already been spenhernntake noise radiation problem,
but there is still a lack of research on the more complicatdthest noise radiation problem,
where sound propagates through the shear layers of high pégets. In the European project
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TURNEX (co-ordinator Brian Tester) this challenge is befaged by developing enhanced
numerical prediction techniques. A very important aspedhe verification of the numerical
solutions by detailed comparison with exact analytic sohd of idealized and geometrically
simplified but not trivial cases. The model per se is to bedediéid too, but by other means.

The exploration of relevant problems that allow exact sohg was initiated by Muntl]],
who developed a Wiener-Hopf solutio] [for the configuration of a jet from a hollow duct
with co-flow. Based on this idea, a series of related configuma were developed by Gabard &
Astley [3] of annular hard walled duct and Demir & Rienstd pf annular duct with full and
partial lining of the centerbody.

These solutions have in common that the centerbody is doufiiyte. This is obviously
a simplification which may be acceptable for a finite but reédy long, protruding afterbody,
but not for a centerbody exit that is co-planar with or evendalinside the outer duct, as can
be found in certain turbofan enginesj.[

This is the case that will be presented here. Mathematjdagdhgolution is more subtle
than the classical Wiener-Hopf solutions of the doubly itdigeometry. The present solution
is based on a so-called weak factorisation, originally duklémen §]. Just like the classical
Munt solution 1] and its variants3, 7] it includes the effects of vortex shedding and Helmholtz
instabilities of the inner and outer jet, while the mean flemow triple piecewise constant in
velocity, sound speed and density along the inner jet, tipasyjet and the outer flow.

The first who considered this same buried nozzle problem Wagrer, Crighton & Cargill
[5]. However, they assumed low Mach and Strouhal numbers aodgadistance between exit
planes. Here we will consider the full problem without fugtlapproximations.

2. ANALYSIS
2.1. Formulation of the Problem

Consider the geometry which consists of a semi-infinite odtet and a semi-infinite inner
duct. Duct walls are assumed to be infinitely thin and theyupgcahe regions like depicted
in the figuresl(a), 1(b). All quantities are made dimensionless by using outer dadius and
ambient flow properties as referenceras ~ Ry, U ~ ¢o, p ~ po, t ~ Ry/cy. The velocity

Y/ _>]\/[0

P —» M
Ih% '/*\*/%/*\ ................................ =M
A —» Ih M ——M,
(a) Buried nozzle (i.e/ < 0) (b) Coplanar nozzle (i.¢.= 0)

Figure 1.

potential p will be used to obtain the acoustic pressprevelocity v and densityp via the
following equations4]

p=—(¢+Mogp.), Vv=V¢, p=p, L<r 1)
p:_Dl(¢t+Ml¢z)a V:V¢a p:p012a h<r<l (2)
p:_D2(¢t+MQ¢Z)7 V:v¢7 p:pcga 0<T<h (3)
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WhereMQ = Uo/CQ, M, = Uj/Co, My = UC/C(), Cl = CO/Cj, Cg = CO/CC, D, = pj/po,
Dy = p./p;. Allmean flows are subsonic. Note thefy and\/, are not the local Mach numbers.

From the symmetry of the geometry and the incident wave, iffracted field will remain
with the same azimuthal and time dependencies as the iricidere. The total field is written
in different regions as:

P(r,2,0,t) =T (r, 2) expliwt — imd) 4)
Wy (r, 2), 1 <r<oo,
Vi(r, z) = Po(r, z) +i(r,2), h<r<l (5)
Ps(r, 2), 0<r<h,
U(r,2) = Uy (1) XB(— 1wy, 2) (6)
U (1) =Y (nnh) I (@) — J! () Yon (@) (7)

wherew > 0 is the angular frequency and < Z is the circumferential ordet)’ denotes the
incident field, which is here assumed to come from the bypass but the analysis would have
been similar for the core duct. Radial wave numhbeys, defined by the eigenvalue equation
Y (mnh) ! () — J! (mnh) Y (o) = 0, yield the axial wave numbetsy, , where

s _ EVCO - (- M{CPap, /w? — My CY
Homn 1= M2C?

(8)

andu® = Fi /- fornegative arguments of the square root. The sfgnsand(—) show right
and left running modes, respectively. For the special chagptane wave we havéq(r) = 1
andud, = C1/(M,C; £ 1). Time dependence“* and azimuthal dependeney ™’ are sup-
pressed throughout this paper.

2.2. Derivation of the Wiener-Hopf System

The previously introduced velocity potentials(r, z), ¥ (r, z) andys(r, z) satisfy the Helmholtz
equations

[%%(T%) + 8722 - T_Q - (Iw + Moéi)2]¢l(7’a Z) = Oa (9)
B8 () + 5 — w5 = O iw + My &) Jea(r, 2) = 0, (10)
F5(r) + 55 — 5 — Ca(iw + My &) Jha(r, 2) = 0 (12)
These can be solved in the usual way by Fourier transformé&tio, leading formally to
P (r, 2) = %fLA(u)HmQ)()\Owr) e u dy | (12)
Uo(r, 2) = 2= [, [B(u)Jp(Mwr) + C(w) Y, (Mwr)] €7 du (13)
Ys(r, 2) = 5= [, D(u) Jm (Agwr) e wus dy (14)

where L is a suitable integration contour along the real axis in demp-domain (see4]).
The complex square roofs, \; and )\, are defined agq(u) = \/(1 —uMy)? —u?, M (u) =
VO3 — ub)? — w2, Ma(u) = /C3(1 — uMy)? — u2, where Im{)\) < 0. The potentials sat-
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isfy the usual condition of continuity of particle displasent along- = 1 andr = h. When
r=1+¢(z)expliwt — imb) andr = h + n(z) expliwt — imd) denotes the complex radial
displacement of vortex sheetssqat= 1 andr = h, the full Kutta condition applied at either
trailing edge implies, respectively(z) = O(z2%/2)), andn(z) = O(z*?). Application of the
boundary conditions on = h yields expressions fo%%(h, z) and%wg(h, z), which gives

D(u) Ao J! (Nowh) = i(1 — uMy) € & (u), (15)
B(u)AJ,(Mwh) + C(w)\ Y, (\wh) = i(1 — uby) €< & (u), (16)
whered (u fé z) e«ulz==0 dz. Continuity of pressure at = h gives us

—iw(1 —uMy)J(Mwh)B(u) — iw(l — ubly)Y,, (Mwh)C (u) = €<% &7 (u)

gl piin)! Nowh
— (1= 5, M) W ()~ + WDy (1 — uM2)2w

gl of 17
U — k., Ao J! (Aawh) r(u) @0

and the matrix equation

)\11]7/71()\1(4}]1) )\1 ()\1Wh) B(U) _ (18)
—iw(l —uMy)Jm(Mwh) —iw(l —ubdy)Y,,(Awh) C(u)
i(1—uM;) €« df(u)
: g (u—pimnn)t Im(Aowh) .
elwul — _ _ _ ewu€ +
B (0) = (1= f Mo (1) D1 = T gt )

whered; (u) = [*_[Dy(iw + Moy (h, 2) — (iw + My & )a(h, )] €449 dz. The coeffi-
cientsB(u) andC(u) may now be expressed explicitly # (1) and®; (u).
The boundary condition along= 1 results into

Al HY' (Now) = (1 — ubo)®3 (u), (19)
B(u)M\J),(Mw) + Cu)\Y,,(Mw) = i(1 — uby) 3 (u), (20)
whered; (u) = [~ £(z) € dz. After eliminatingA, B, andC, using continuity of pressure at

r=1,and mtroducmgb2 (u) = [° [(iw+ Mo )i (1, 2) — Dy (iw+ My 2 )a(1, 2)] €94 dz,

we obtain a couple of Wiener-Hopf equations, which are todbees!:

—iwﬂ$nl
O (u) = 205 | 7 (w) = (1 = gty M) Uy () &2

OJN(’U,) U—Mmn
2 ge~ |wulq>+
= (-l P (21)
u WU .w(ufuin'n)
w0 (u) K (u) — Z P00 |t @ () — (1= g, My )W () S0

= @5 (u) = Dy W, (1)1t (22)
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with kernels defined by

o Y (Mwh)J (Mw) — T (Mwh)Y! (Aw)
Nu) = Aol =) S ) = T v Y (o)
— MDy(1 - uM2)Q% (23)
K(u) = D:(1— uM1)2X2(u)/X1(u) —(1- uMO)2H,(3)()\Ow)/)\OH(2 (Aow) (24)
x1(u) = (1 = ubdy)?A; [V (Mwh) T, (Mw) — T (Awh)Y, (Aw)]
Dy — a2 OR) ) — T Oawh)Y (Aw)] (25)
Ao ! (Nawh) m m m
x2(u) = (1 — uM1)2 [Yon (Alwh) m(Aw) — Jn(Mwh) Y, (Aw)]
L(>‘2 ) / /
— Dy(1 — uM,)? W Y (Awh) I (Mw) — J (Mwh) Y (Aw)]  (26)

2.3. Solution

Due to the space limitations for the present conferencerpggempossible for us to give the
solution procedure in detail here. In short, it is based enugual Wiener-Hopf splitting of the
kernelsN(u) = Ny(u)/N_(u) and K(u) = K (u)/K_(u) in functions that are analytic in
lower, resp. upper complexspace. The equations may then be rewritten in a lhs/rh$tana
in the lower/upper halfspace, except for isolated poleges€&hpoles may then be removed at
the expense of a linear system to be solv&dg]. For further details on the Kutta condition,
vortex sheet instabilities, and numerical calculationhaf $plit function we refer to4] and the
forthcoming paper. The resulting solution 0y takes the form

U — U

( _
e, wK+ ZﬁJr _ul[u— o Fl}
Dy (1 - MooMl) + 2 (1- /i(J)rojwl)2
— O K_ — 1 (27)
ORI L) E A R
where 3+

i denotesy;’s p-th lower half plane zeroj,, = 1 andé,,, = 0 otherwise;u; is
related to the instability pole of the outer vortex shdgt;= 1,= 0 corresponds to full, no
Kutta condition at the outer trailing edge. At the innerlirg edge a Kutta condition is always
assumed. The instability pole of the inner vortex sheetakiohed in the kerneN.

The far fieldR — oo may be expressed by a usual steepest descent approximstion a

1~ Dy(0) exp(iwR[Mycosf — (1 — Mg sir? 0)/2)/(1 — M3) +i=27) /R, (28)

wherer = Rsind(1 — M?)'/? = Rsind, = = Rcos#(1 — M?) = Rcosf, and directivities for
potential and pressure
w(l —u'My)?®5 (u)

D 9_ - — 2 ) (29)
P(0) ﬂSih@Hg),()\éw)

_ (1 — W/ My)®F (W)
Dw(e) = . (2)/ 2/ Y
TSiNgHy,” (ANyw)

with o/ = (cosf (1 — M2 sir? )12 — M) /(1 — MZ), Ny = sinf /(1 — Mg sir? §)'/2,
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3. NUMERICAL EXAMPLES

A series of examples are numerically evaluated to see tketadf the buried versus co-planar
nozzle, with mean flow and Kutta condition. These examplesiat meant to be more than an
illustration of the found solutions, as it is not possibledht® make an exhaustive investigation
of all possible combinations of problem parameters nor atldhe physical consequences. The
problem parameters that were used are:

Table 1. Problem parameters for far field examples.

parameter definition value

w 21 f Ry /co 27 - 876 -1.2/330 | 20.0

m 1 and10

M Us/co 99/330 0.30

M, U;/co 210/330 0.64

M, U./co 265/330 0.80

Ch co/c; 330/350 0.94

Cy co/ce 330/530 0.62

D, pi/po 1.158/1.3026 0.89

D, e/ P 0.505/1.158 0.44
Ry/Ry 0.8/1.2 0.67

14 inner duct exit plang 0 and—1.2/R, 0and—1

(a) 1stradial mode (b) 2nd radial mode

Figure 2. Comparing co-planar and buried exits with= 1, full Kutta condition

(a) 1stradial mode (b) 2nd radial mode

Figure 3. Comparing co-planar and buried exits with= 10, full Kutta condition
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Kutta
= = no Kutta

Kutta
== no Kutta

180° 0° 180°

(a) 1stradial mode (b) 2nd radial mode

Figure 4. Co-planar exit witln = 1, comparing with and without outer edge Kutta condition

Kutta
= = no Kutta

Kutta
== no Kutta

180° 0° 180°

(a) 1stradial mode (b) 2nd radial mode

Figure 5. Buried exit withn = 1, comparing with and without outer edge Kutta condition

Kutta
= = no Kutta

Kutta
== no Kutta

180° 0° 180°

(a) 1stradial mode (b) 2nd radial mode

Figure 6. Co-planar exit withn = 10, comparing with and without outer edge Kutta condition

Kutta
= = no Kutta

Kutta
== no Kutta

180° 0° 180°

(a) 1stradial mode (b) 2nd radial mode

Figure 7. Buried exit withm = 10, comparing with and without outer edge Kutta condition
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The 1st and 2nd radial mode far fields are plotted dimendipl50.0 m away from the
exhaust plane. Amplitudes are such that the cross-wisegee@rintensity at = ¢ is 1 W/nt.

In the figure,3 the difference is studied of a buried against co-planarleo&or highm
the practically vanishing inner part of the modal radialfpeanakes the inner exit unimportant.
Otherwise we see strong interference between the coplamar and outer exit (figurgb).

In the figures4,5, 6, 7 the effect is studied of the outer edge Kutta condition. Inades the
effect is relatively small for downstream angles. This is tluthe prevailing Strouhal numbers
being high, which curtails the regions of significant vatyierailing edge interaction.

4. CONCLUSIONS

Analytically exact solutions are constructed and numdyidenplemented for the relatively
complicated model problem of sound radiation from an aft@agine exit with piecewise uni-
form mean flow of buried or co-planar hot core jet, colder danhy-pass jet and cold mean
co-flow. The solution includes the effects of Kutta conditand unstable vortex sheets. The so-
lution method is based on a Wiener-Hopf approach, suppleedéry weak factorisation. This
is only possible for the buried jet configuration. For a puding inner duct geometry other
courses should be pursued.
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