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Abstract

Let G be a connected graph of order n. The algebraic connectivity of G is the second
smallest eigenvalue of the Laplacian matrix of G. A dominating set in G is a vertex
subset S such that each vertex of G that is not in S is adjacent to a vertex in S.
The least cardinality of a dominating set is the domination number. In this paper,
we prove a sharp upper bound on the algebraic connectivity of a connected graph in
terms of the domination number and characterize the associated extremal graphs.
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1 Introduction

Let G = (V, E) be a simple connected graph of order (number of vertices) n.
The degree of a vertex vi is denoted dG(vi) or di when no confusion is possible.
The minimum degree is denoted δ. The Laplacian matrix of G is defined by
L = L(G) = D−A, where D is the diagonal matrix which entries are the de-
grees of the vertices of G, i.e., D = diag(d1, d2, · · · dn), and A is the adjacency
matrix of G defined by aij = 1 if vivj ∈ E, otherwise aij = 0. The Laplacian
spectrum of G is the spectrum of L(G) and is denoted Λ = (λ1, λ2, · · ·λn) such
that λ1 ≤ λ2 ≤ · · · ≤ λn. It is well known that λ1 = 0 and its multiplicity is
equal to the number of connected components of G (see for example [9,10]).
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The second smallest Laplacian eigenvalue of G, a = a(G) = λ2, is called al-
gebraic connectivity of G. Note that a ≥ 0 with equality if and only if G is
not connected [10]. A dominating set in G is a vertex subset S such that each
vertex of G that is not in S is adjacent to a vertex in S. The least cardinality
of a dominating set is the domination number and is denoted by β = β(G).

Let H be a graph on k vertices v1, v2, · · · vk. The even corona graph of H, de-
noted EC(H), is the graph obtained from H by adding k vertices v′1, v

′
2, · · · v′k

and the edges viv
′
i for i = 1, · · · k. Note that the number of vertices in EC(H)

is even and equals 2k. The odd corona graph of H, denoted OC(H), is the
graph obtained from H by adding k − 1 vertices v′1, v

′
2, · · · v′k−1 and the edges

viv
′
i for i = 1, · · · k − 1. Note that the number of vertices in OC(H) is odd

and equals 2k − 1. The pseudo corona graph of H, denoted PC(H), is the
graph obtained from the odd corona graph of H by adding the edge vkv

′
k−1.

Note that the number of vertices in PC(H) is odd and equals 2k − 1. Let
PC(H)− e∗ be the graph obtained from PC(H) by deleting the edge vk−1vk,
assuming it exists, i.e., the edge of PC(H) whose vertices are adjacent to the
same vertex v′k−1 that does not belong to the original graph H.

Fig. 1. The graphs of family A
Table 1
Values of a, β and n for the graphs in A.

G A1 A2 A3 A4 A5 A6 A7

a(G) 0.753020 0.753020 1 1 2 0.585786 0.829914

β(G) 3 3 3 3 2 3 3

n 7 7 7 7 4 7 7

Fig. 2. The graphs of family B
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Fig. 3. The graphs of family F

Table 2
Values of a, β and n for the graphs in F .

G F1 F2 F3 F4 F5 F6 F7 F8 F9

a(G) 1.438447 2 2.267949 2 2 3 3 3 4.763932

β(G) 3 3 3 3 3 3 3 3 3

n 8 8 8 8 8 9 9 9 11

In [12] the following classes of graphs were defined.
• G1 = {C4} ∪ {G : G ∼= EC(H) where H is connected}, where C4 denotes
the cycle on 4 vertices. Note that the order of each graph in G1 is even and if
G ∈ G1−{C4}, then G is a spanning graph of EC(Kn/2), where n is the order
of G.
• G2 = A ∪ B − {C4}, where A and B are the sets of graphs shown in Fig. 1
and Fig. 2 respectively.
• For any graph H, Let S(H) be the set of connected graphs, each of which
can be obtained from EC(H) by adding a vertex v and edges joining v to
one or more vertices from H. Then define G3 = ∪HS(H). Note that the order
of each graph in G3 is odd and if G ∈ G3, then G is a spanning graph of
OC(K(n+1)/2), where n is the order of G.
• G4 = {θ(G) : G ∈ G3}, where θ(G) is the graph obtained from C4 and G by
adding a single edge between a vertex from C4 and a vertex from G.
• Consider the path P3 = uvw and any graph H. Let P(H) be the set of
connected graphs obtained from EC(H) by joining each of u and w to one or
more vertices of H. Then define G5 = ∪HP(H). Note that the order of each
graph in G5 is odd and if G ∈ G5, then G is a spanning graph of PC(Kn+1

2
)−e∗,

where n is the order of G.
• Let H be a graph and X ∈ B. Let R(H, X) be the set of connected graphs
which may be formed from EC(H) by joining each vertex of U ⊂ V (X) to
one or more vertices of H such that no set with fewer than β(X) vertices of
X dominates V (X)− U . Then define G6 = ∪H,XR(H,X).
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Finding bounds on the algebraic connectivity has been widely studied (see [1]
for references) since it was introduced by M. Fiedler [10]. In this paper, we are
interested in upper bounds on algebraic connectivity in terms of domination
number. Such a bound is given in the following theorem.

Theorem 1 [13] : If G is a connected graph on n ≥ 2 vertices with algebraic
connectivity a and domination number β, then

a ≤ n− β +
n− β2

n− β
.

For β ≤ √
n this bound was improved in the next theorem.

Theorem 2 [14] : If G is a connected graph on n ≥ 2 vertices with algebraic
connectivity a and domination number β, then

a ≤




n if β = 1,

n− β if β ≥ 2.

If β = 1 equality holds if and only if G ≡ Kn. If β = 2 equality holds if and
only if G is the complement of a perfect matching. If β ≥ 3, the inequality is
always strict.

In this paper, the bounds given in theorems 1 and 2 are improved in the case
β ≥ 3.

Since a ≤ δ for any graph G 6≡ Kn, a natural question arises. How tight are the
upper bounds, in terms of domination number, on the minimum degree when
considered as bounds on the algebraic connectivity? One of these bounds, due
to C. Payan [15], is

δ ≤ n− 2β + 1.

In order to know how tight this bound is if δ is replaced by a, we used Au-
toGraphiX (a conjecture making system in graph theory [2–6]) to look for
extremal graphs for (the graphs that maximize) a + 2β under the constraint
β ≥ 3 (the case β ≤ 2 is entirely solved by Theorem 2). The ”presumably”
extremal graphs provided by AutoGraphiX have a regular structure and are
well defined by their order. For n even, the extremal graphs are EC(Kn

2
)

(see Fig. 4 for an example with n = 10). If n is odd, there are three families:
OC(Kn+1

2
), PC(Kn+1

2
) and PC(Kn+1

2
)−e∗ (see Fig. 4 for examples with n = 9

and 10).
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Fig. 4. Extremal graphs for a + 2β with n = 9 (3, left) and n = 10 (right).

2 Preliminary results

In this section, we recall some known results that discuss bounds on the min-
imum degree of a graph G, in terms of domination number β. Some results
about extremal graphs for given domination number are also given. All these
results will be used in the next section.

The following two theorems characterize the graphs of order n for which the
domination number β = bn/2c.

Theorem 3 [11,16] : For a graph G with even order n and no isolated
vertices, the domination number β = n/2 if and only if the components of G
are C4 or the corona graph EC(H) for any connected graph H.

This theorem can be generalized as follows.

Theorem 4 [12] : A connected graph G satisfies β = bn/2c if and only if
G ∈ G = ∪6

i=1Gi.

The following theorems provide an upper bound on the domination number β
in terms of the number of vertices n and the minimum degree δ.

Theorem 5 [15,18] : If G is a connected graph on n vertices with minimum
degree δ and domination number β, then

β ≤ n + 1− δ

2
,

with exception of the case that G is the complement of a one–regular graph.

The bound in the above theorem is improved, with few exceptions, in the case
of δ ≥ 2 as follows.

Theorem 6 [18] : If G is a connected graph on n vertices with minimum
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degree δ ≥ 2, maximum degree ∆ and domination number β, then

β ≤ n− δ

2
,

with exception of the cases that G is either a member of the families A (Fig. 1),
B (Fig. 2) or F (Fig. 3), or G is the complete graph or a graph G with
n− 3 ≤ δ ≤ ∆ = n− 2.

3 New results

In this section, new results are proved. The main theorems provide upper
bound on the algebraic connectivity a in terms of the number of vertices n
and the domination number β. Families of extremal graphs are given according
to the parity of the number of vertices n.

First, we prove some results related to the spectra of some graphs defined in
Section 1.

Theorem 7 : Let G = (V,E) be a graph on k vertices with Laplacian spec-
trum λi, i = 1, · · · k.
(i) The Laplacian spectrum of EC(G) is

µi =
λi ±

√
λ2

i + 4

2
+ 1 i = 1, · · · k. (1)

(ii) If λ is a Laplacian eigenvalue of G such that the associated eigenvectors
X = (x1, x2, · · · xk)

T satisfy xk = 0, then

µ =
λ±√λ2 + 4

2
+ 1 (2)

are Laplacian eigenvalues of OC(G).

(iii) If λ is a Laplacian eigenvalue of G such that the associated eigenvectors
X = (x1, x2, · · · xk)

T satisfy xk−1 = xk = 0, then

µ =
λ±√λ2 + 4

2
+ 1 (3)

are Laplacian eigenvalues of PC(G).
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Proof :
(i) For all i = 1, · · · k, let di = d(vi) denote the degree of the vertex vi in G.
So dEC(G)(vi) = di + 1 and dEC(G)(v

′
i) = 1 for all i = 1 · · · k. Let µ 6= 1 be an

eigenvalue of EC(G) and LEC(G) the Laplacian matrix of EC(G). So, if X =
(x1, · · · xk, x

′
1, · · · x′k)T is a µ–eigenvector of EC(G), we have LEC(G)X = µX

or, equivalently

(di + 1)xi −∑
vivj∈E xj − x′i = µxi

−xi + x′i = µx′i
i = 1, · · · k. (4)

From the second equation of (4), x′i = xi/(1−µ). Then by substitution in the
first equation of (4), we have for every i = 1, · · · k

(di + 1)xi −
∑

vivj∈E

xj − xi

1− µ
= µxi

dixi −
∑

vivj∈E

xj =

(
µ− 1− 1

µ− 1

)
xi (5)

Note that equations (5) are the eigenvalue equations for the Laplacian of G.
So

λ =

(
µ− 1− 1

µ− 1

)
(6)

is an eigenvalue of G.
By solving equation (6), where µ is the unknown and λ is a parameter, the
eigenvalues of EC(G) are of the form

µi =
λi ±

√
λ2

i + 4

2
+ 1 i = 1, · · · k.

Note that, since 0 is a Laplacian eigenvalue of G, 0 and 2 are Laplacian eigen-
values of EC(G).

(ii) Note that dOC(G)(vi) = d(vi) + 1 and dOC(G)(v
′
i) = 1 for i = 1, · · · k − 1

and dOC(G)(vk) = d(vk). Let µ 6= 1 be a Laplacian eigenvalue of OC(G) and
X = (x1, · · ·xk, x

′
1, · · · x′k−1)

T a µ–eigenvector. Then

(di + 1)xi −∑
vivj∈E xj − x′i = µxi

−xi + x′i = µx′i
i = 1, · · · k − 1.

dkxk −∑
vkvj∈E xj = µxk.

(7)
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Proceeding as in (i), we get

dixi −∑
vivj∈E xj =

(
µ− 1− 1

µ−1

)
xi i = 1, · · · k − 1,

dkxk −∑
vkvj∈E xj = µxk.

(8)

Note that the equations in (8) are the eigenvalue equations for the Laplacian
of G if and only if µ = 0 or xk = 0. It is obvious that µ = 0 is a Laplacian
eigenvalue of OC(G), so consider the case xk = 0, in which the equations in
(8) become

dixi −∑
vivj∈E xj =

(
µ− 1− 1

µ−1

)
xi i = 1, · · · k − 1,

∑
vkvj∈E xj = 0.

(9)

The equations in (9) characterize the eigenvalues λ of G whose eigenvectors

k–th entry is 0. Then by solving µ−1− 1
µ−1

= λ, we get that µ = λ±√λ2+4
2

+1

are Laplacian eigenvalues of OC(G). The multiplicity of each is equal to the di-
mension of the subspace, of the eigenspace associated to λ, whose eigenvectors
k–th entry is 0.

(iii) Note that dPC(G)(vi) = d(vi) + 1 for i = 1, · · · k, dPC(G)(v
′
i) = 1 for

i = 1, · · · k− 2 and dPC(G)(vk−1) = 2. Let µ 6∈ {1, 2} be a Laplacian eigenvalue
of PC(G) and X = (x1, · · · xk, x

′
1, · · ·x′k−1)

T a µ–eigenvector. Then

(di + 1)xi −
∑

vivj∈E

xj − x′i = µxi i = 1, · · · k − 2,

(dk−1 + 1)xk−1 −
∑

vk−1vj∈E

xj − x′k−1 = µxk−1

(dk + 1)xk −
∑

vkvj∈E

xj − x′k−1 = µxk

−xi + x′i = µx′i i = 1, · · · k − 2,

−xk−1 − xk + 2x′k−1 = µx′k−1.

From the last equation, we have

x′k−1 = − 1

µ− 2
xk−1 − 1

µ− 2
xk

and then, proceeding as in (i) and (ii), we get

dixi −
∑

vivj∈E

xj =

(
µ− 1− 1

µ− 1

)
xi i = 1, · · · k − 2,
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dk−1xk−1 −
∑

vk−1vj∈E

xj =

(
µ− 1− 1

µ− 2

)
xk−1 − 1

µ− 2
xk,

dkxk −
∑

vkvj∈E

xj =

(
µ− 1− 1

µ− 2

)
xk − 1

µ− 2
xk−1.

If xk−1 = xk = 0, these equations are the eigenvalue equations for the Lapla-
cian of G. In this case, the equations are

dixi −
∑

vivj∈E

xj =

(
µ− 1− 1

µ− 1

)
xi i = 1, · · · k − 2,

∑

vk−1vj∈E

xj = 0.

∑

vkvj∈E

xj = 0.

These equations characterize the eigenvalues λ of G whose eigenvectors (k−1)–
th and k–th entries are 0. Then by solving µ − 1 − 1

µ−1
= λ, we get µ =

λ±√λ2+4
2

+ 1 are Laplacian eigenvalues of PC(G). The multiplicity of each is
equal to the dimension of the subspace, of the eigenspace associated to λ,
whose eigenvectors (k − 1)–th and k–th entries are 0. 2

Corollary 8 : Let k ≥ 4 be an integer.
(i) The Laplacian spectrum of EC(Kk) is




0 k+2−√k2+4
2

2 k+2+
√

k2+4
2

1 k − 1 1 k − 1


 .

(ii) The Laplacian spectrum of OC(Kk+1) is




0
k+3−

√
(k+1)2+4

2

k+3−
√

(k−1)2+4

2

k+3+
√

(k−1)2+4

2

k+3+
√

(k+1)2+4

2

1 k − 1 1 1 k − 1


 .

(iii)
k+3−

√
(k+1)2+4

2
,

k+3+
√

(k+1)2+4

2
and k + 2 are eigenvalues of PC(Kk+1)

with multiplicities k − 2, k − 2 and 1 respectively.

(iv)
k+3−

√
(k+1)2+4

2
,

k+3+
√

(k+1)2+4

2
and k are eigenvalues of PC(Kk+1) − e∗

with multiplicities k − 2, k − 2 and 1 respectively.

Proof :
(i) The result follows from Theorem 7-(i) by replacing G by Kk, the spectrum
of which is λ1 = 0 and λ2 = · · · = λk = k.
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(ii) Here we use Theorem 7-(ii) by replacing G by Kk+1 whose Laplacian
spectrum is λ1 = 0 and λ2 = · · · = λk+1 = k + 1. First, we have to show
that there are Laplacian eigenvectors associated to λ = k + 1 such that the
(k +1)-th entry of each is 0. Under these conditions the Laplacian eigenvalues
equations are

kxi −
∑

vivj∈E

xj = (k + 1)xi i = 1, · · · k,

∑

vk+1vj∈E

xj = 0.

which are equivalent to the single equation

k∑

j=1

xj = 0.

This equation has exactly k − 1 independent solutions, i.e., there are exactly
k − 1 Laplacian eigenvectors associated to λ = k + 1 such that the (k + 1)-th

entry of each is 0. Then by Theorem 7-(ii),
k+3−

√
(k+1)2+4

2
and

k+3+
√

(k+1)2+4

2

are eigenvalues of OC(Kk+1) and the multiplicity of each is k − 1.
Obviously, 0 is a Laplacian eigenvalue of OC(Kk+1). To compute the remaining
two eigenvalues, we use

2k+1∑

i=1

µi = Tr(LOC(Kk+1)) = k2 + 3k,

2k+1∑

i=1

µ2
i = Tr(L2

OC(Kk+1)
) = k3 + 3k2 + 5k.

Some easy computations give that the two eigenvalues are
k+3−

√
(k−1)2+4

2
and

k+3+
√

(k−1)2+4

2
.

(iii) We proceed exactly as in (ii) above. The only difference is that (since
xk = xk+1 = 0) the eigenvalue equations are equivalent to

k−1∑

j=1

xj = 0

for which there are exactly k−2 independent eigenvectors whose k-th and (k+

1)-th entries are 0. Then by Theorem 7-(iii),
k+3−

√
(k+1)2+4

2
and

k+3+
√

(k+1)2+4

2

are eigenvalues of PC(Kk+1) and the multiplicity of each is k − 2.
It is easy to see that the k-th and (k+1)-th lines (columns) of L(PC(Kk+1))−
(k + 2)I are identical. So k + 2 is a Laplacian eigenvalue of PC(Kk+1). Let
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b, c and d be the remaining non-zero eigenvalues (with possible repetitions)
of PC(Kk+1). To show that the multiplicity of k + 2 is 1, it suffices to prove
that k + 2 6∈ {b, c, d}. Indeed, suppose the contrary and let (without loss of
generality) d = k + 2. Then using the relations

Tr(Lp
PC(Kk+1)

) =
2k+1∑

i=1

λp
i for p = 1, 2, 3,

we get the following equations

b + c = 4

b2 + c2 = 12

b3 + c3 = 6k + 34

which are unsolvable if k > 1.

(iv) This case is proved exactly like (iii). 2

Proposition 9 : If λ 6∈ {k, k + 2}, then λ is a Laplacian eigenvalue of
PC(Kk+1) if and only if λ is a Laplacian eigenvalue of PC(Kk+1) − e∗. In
addition, the graphs OC(Kk+1), PC(Kk+1) and PC(Kk+1)−e∗ have the same

algebraic connectivity a =
k+3−

√
(k+1)2+4

2
.

Proof : The eigenvalue equations of PC(Kk+1) and PC(Kk+1) − e∗ differ
only in the equations corresponding to the vertices vk and vk+1. These two
equations for a PC(Kk+1) Laplacian eigenvalue λ 6= k + 2 are

(k + 1)xk −
k+1∑

j=1,j 6=k

xj − x′k = λxk (10)

(k + 1)xk+1 −
k∑

j=1

xj − x′k = λxk+1 (11)

Taking the difference between (10) and (11), we have

(k + 2)(xk − xk+1) = λ(xk − xk+1). (12)

Since λ 6= k+2 and a Laplacian eigenvalue of PC(Kk+1), necessarily xk = xk+1

and therefore (10) and (11) become

kxk −
k−1∑

j=1

xj − x′k = λxk
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kxk+1 −
k−1∑

j=1

xj − x′k = λxk+1

which are exactly the eigenvalue equations of PC(Kk+1)−e∗ corresponding to
the vertices vk and vk+1. Then, and since the remaining eigenvalue equations
are the same, λ is a Laplacian eigenvalue of PC(Kk+1)− e∗.
Similarly, we can prove that if λ 6= k is a Laplacian eigenvalue of PC(Kk+1)−e∗

so it is for PC(Kk+1).
Obviously a(PC(Kk+1)) = a(PC(Kk+1) − e∗) holds. On the other hand, it

follows from Corollary 8–(ii) that a(OC(Kk+1)) =
k+3−

√
(k+1)2+4

2
. Thus to be

done, it suffices to prove that a(PC(Kk+1)) = a(OC(Kk+1)). Let 0 = λ1 ≤
λ2 ≤ · · · ≤ λ2k+1 and 0 = λ′1 ≤ λ′2 ≤ · · · ≤ λ′2k+1 be the spectra of OC(Kk+1)
and PC(Kk+1) respectively.
Using the Courant–Weyl inequalities (see, e.g., [9, Theorem 2.1]) and the fact
that PC(Kk+1) = OC(Kk+1) + vk+1v

′
k, it follows that

0 = λ1 = λ′1 ≤ λ2 ≤ λ′2 ≤ · · · ≤ λ2k+1 ≤ λ′2k+1.

On the other hand, according to Corollary 8–(ii), we have λ2 = λ3 =
k+3−

√
(k+1)2+4

2
.

It follows that a(PC(Kk+1)) =
k+3−

√
(k+1)2+4

2
. 2

Lemma 10 : If G is a connected graph on n vertices with algebraic connec-

tivity a, then a(EC(G)) ≤ n+2−√n2+4
2

with equality if and only if G ≡ Kn.

Proof : If G ≡ Kn the equality follows from Corollary 8–(i). Now, let G 6≡ Kn,

then a(G) ≤ n − 2. By Theorem 7–(i),
a(G)+2−

√
(a(G))2+4

2
is an eigenvalue of

EC(G). On the other hand, the function f(t) = t−√t2 + 4 is increasing. Thus

a < n+2−√n2+4
2

. 2.

Theorem 11 : Let G be a connected graph with even order n = 2k ≥ 6,
algebraic connectivity a and domination number β ≥ 3. Then

a ≤ 2k − 2β +
k + 2−√k2 + 4

2

with equality if and only if G is EC(Kk).

Proof :
• If the minimum degree δ ≥ 2 and G 6∈ {F1, F2, · · ·F5}, then by Theorem 6
and the fact that a ≤ δ (G 6≡ Kn), we have

a + 2β ≤ δ + 2β ≤ n = 2k < 2k +
k + 2−√k2 + 4

2
.

Thus the bound is not reached in this case.
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• If G ∈ {F1, F2, · · ·F5}, the bound is true from Table 2.
• If the minimum degree δ = 1, then by Theorem 5,

a + 2β ≤ δ + 2β ≤ n + 1.

If δ + 2β ≤ n, then a + 2β < k+2−√k2+4
2

. If δ + 2β = n + 1, then there exists
a graph H such that G ≡ EC(H). Thus by Lemma 10 a ≤ a(EP (Kk)) with
equality if and only if H ≡ Kk. Therefore the result follows. 2

Lemma 12 : Let G ∈ ∪6
i=3Gi with order n = 2k + 1.

(i) If G ∈ G3, then a(G) ≤ a(OC(Kk+1)) =
k+3−

√
(k+1)2+4

2
.

(ii) If G ∈ G4, then a(G) ≤ a(EC(Kk−1)) =
k+1−

√
(k−1)2+4

2
.

(iii) If G ∈ G5, then a(G) ≤ a(PC(Kk+1 − e∗)) =
k+3−

√
(k+1)2+4

2
.

(iv) If G ∈ G6, then a(G) ≤ k+3−
√

(k+1)2+4

2
.

Proof :
(i) It is easy to see that if G ∈ G3 with 2k + 1 vertices, then G is a spanning
subgraph of OC(Kk+1). Thus the inequality follows.

(ii) Let H be the graph in G4 corresponding to OC(Kk−1) in G3. Then H is
the union of the graph H1 composed of C4 and 2k − 3 isolated vertices, and
the graph H2 composed of EC(Kk−1) and 3 isolated vertices. The Laplacian
spectrum of H1 is λ1(H1) = · · ·λ2k−2(H1) = 0, λ2k−1(H1) = λ2k(H1) = 2
and λ2k+1(H1) = 4; and the Lapalcian spectrum of H2 (using Corollary 8) is

λ1(H2) = · · · = λ4(H2) = 0 and λ5(H2) = · · · = λk+2(H2) =
k+1−

√
(k−1)2+4

2
,

λk+3 = 2 and λk+4(H2) = · · · = λ2k+1(H2) =
k+1+

√
(k−1)2+4

2
. Now, using the

Courant–Weyl inequalities (see, e.g., [9, Theorem 2.1]) we have

λ2(H) ≤ λ2k−2(H1) + λ5(H2) =
k + 1−

√
(k − 1)2 + 4

2
.

(iii) The inequality follows from the fact that any graph in G5 with 2k + 1
vertices, is a spanning subgraph of PC(Kk+1 − e∗).

(iv) First consider a graph G of G6 obtained using B1 (see Fig. 2). There are
two cases.
If |U | = 1, let {v1, v2, v3} be the vertex–set of B1 and assume (without a loss
of generality) that U = {v1}. Then G is a spanning graph of H, where H ∈ G6

obtained from EC(Kk−1) by adding all possible edges between {v1} and the
vertices of the Kk−1. Thereafter, we proceed as in (ii) above by considering
H1 as the path P3 together with 2k − 2 isolated vertices, and H2 as EC(Kk)
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together with an isolated vertex (v2 or v3). It is easy to see that λ1(H1) =
· · ·λ2k−1(H1) = 0, λ2k(H1) = 1 and λ2k+1(H1) = 3; and λ1(H2) = λ2(H2) = 0

and λ3(H2) = · · · = λk+1(H2) = k+2−√k2+4
2

, λk+2 = 2 and λk+3(H2) = · · · =

λ2k+1(H2) = k+2+
√

k2+4
2

. Now, using the Courant–Weyl inequalities, we have

λ2(H) ≤ λ2k−1(H1) + λ3(H2) =
k + 2−√k2 + 4

2
<

k + 3−
√

(k + 1)2 + 4

2
.

If |U | = 2, then G is a spanning graph of PC(Kk+1) and therefore

λ2(G) ≤ λ2(PC(Kk+1)) =
k + 3−

√
(k + 1)2 + 4

2
.

Now, assume that G is obtained using one of the graphs B2, B3, B4 or B5. Let
{v1, · · · v5} denote the set of vertices of Bi, i = 2, · · · 5. At this level we will
consider different cases according the cardinality of U . First note that any two
vertices of Bi, = 2, · · · 5, have a common neighbor. Therefore |U | ≤ 2.
If |U | = 1, assume, without a loss of generality, that v1 is connected to ver-
tices from G. Let v2 be a neighbor of v1 in Bi. Then G is the union of H1

composed of Bi − v1v2 together with 2k − 4 isolated vertices, and H2 com-
posed of EC(Kk−1) together with 3 isolated vertices v3, v4 and v5. Using the
Courant–Weyl inequalities applied to the Laplacian spectra of H1 and H2, we
have

a(G) ≤ a(H) ≤ λ2k−4(H1)+λ5(H2) =
k + 1−

√
(k − 1)2 + 4
2

<
k + 3−

√
(k + 1)2 + 4
2

.

If |U | = 2, say U = {v1, v2} with v1v3, v2v4 ∈ E(B1) (we relabel the vertices
of Bi if needed). Then we proceed as above by choosing H1 composed of
Bi − {v1v3, v2v4} and 2k − 4 isolated vertices, and H2 composed of EC(Kk)
together with an isolated vertex {v5}. Thus

a(G) ≤ a(H) ≤ λ2k−4(H1) + λ5(H2) =
k + 2−√k2 + 4

2
<

k + 3−
√

(k + 1)2 + 4
2

.

This completes the proof of the lemma. 2

Theorem 13 : Let G be a connected graph with odd order n = 2k+1 ≥ 9, algebraic
connectivity a, minimum degree δ and domination number β ≥ 3. If δ ∈ {1, 3, 5} or
δ is even and G 6∈ {F6, F7, F8}, then

a ≤ 2k − 2β +
k + 3−

√
(k + 1)2 + 4
2

.

The bound is the best possible as shown by OC(Kk+1), PC(Kk+1) and PC(Kk+1)−
e∗.

Proof :
If δ is even and G 6∈ {F6, F7, F8, F9}, then using Theorem 6, 2β ≤ (n− 1− δ). Thus

a + 2β ≤ δ + 2β ≤ n− 1 < 2k +
k + 3−

√
(k + 1)2 + 4
2

.
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If G ≡ F9, the bound is true from Table 2.
If δ = 1, the result follows from Theorem 4, Corollary 8 and Lemma 12.
If δ = 3, it is known that β ≤ 3n/8 (see [17] and [12, p. 48]). Thus

a + 2β ≤ 3 +
3n

4
< n− 1 for all n ≥ 17.

For n ≤ 15, we use the maximum possible value for β, denoted by β∗, in a graph
on n vertices with minimum degree δ = 3, provided in [8]. Table 3 is obtained. So
in fact, we habe to check only for n = 9 and n = 11.
Using McKay’s program nauty (available at “http://cs.anu.edu.au/∼bdm/nauty/”),

Table 3
Values of δ + 2β∗ for n = 9, 11, · · · 15 and δ = 3.

n 9 11 13 15

δ + 2β∗ 9 11 11 13

we generated all graphs on n = 9 vertices with δ = 3 and maximum degree at most
∆ = 6 (if ∆ = 7, necessarily β = 2, and therefore the inequality is strict). There
are exactly 41113 such graphs, among which there are exactly 484 with β = 3. Over
all these 484 graphs, the algebraic connectivity is at most a = 2.4604154 which is
reached for only two graphs (presented in Fig 5), while the corresponding value of
the bound is approximately 2.8074176.

Fig. 5. The two graphs that maximize a for n = 9, δ = 3 and β = 3.

For n = 11, we have to chek for graphs with δ = 3 and β = 4. Using nauty,
we generated all graphs with minimum degree δ = 3, maximum degree ∆ ≤ 7
(since ∆ ≥ 8 implies β ≤ 3) and size 17 ≤ m ≤ 31 (due to the inequality β ≤
n + 1 − √2m + 1 [12, p. 55]). There are exactly 205 662 831 such graphs, among
which only 8 have domination number β = 4 and they are given in Fig. 6. We
did not explore all the 205 662 831 graphs. We first computed the domination for
the graphs on up to 21 edges. Since any graph G on m = 22 edges with minimum
degree 3 contains at least an edge uv such that d(u) ≥ 4 and d(v) ≥ 4, so can
be obtained from a graph G′ on m − 1 = 21 edges with minimum degree 3, by
adding an edge. Since adding an edges does not increase the domination number,
β(G) ≤ β(G′). Among all the 1 225 809 graphs on 11 vertices and 21 edges with
δ = 3 and ∆ ≤ 7, there was no graph with β = 4. Thus, it is so for m = 22 and
recursively for m = 23, · · · 31.
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Table 4
Values of a(Gi) for i = 1, 2, · · · 8.

i 1 2 3 4 5 6 7 8

a(Gi) 0.7382 1.1864 1.3446 1.5013 1.3075 1.3937 0.7382 1.6672

Fig. 6. All the graphs on n = 11 vertices with δ = 3 and β = 4

The algebraic connectivities of the 8 graphs (given in Fig. 6) on n = 11 vertices
with minimum degree δ = 3 and domination β = 4 are given in Table 4. Thus, the
bound is not reached for any of these graphs.

If δ = 5, it is proved in [19] that β ≤ 5n/14. Thus

a + 2β ≤ 5 +
5n

7
≤ n− 1 for all n ≥ 21.

Therefore, the bound is true, with strict inequality, for all n ≥ 21. For n ∈ {7, 9, · · · 19},
we use the values of β∗ from [8] for n = 9, · · · 15, and an upper bound on β∗ for
n ∈ {17, 19} computed using the following formula from [7], β∗ ≤ min{p, gp = 0},
where gp is defined by

g0 = n and gp+1 =
⌊
gp

(
1− δ + 1

n− p

)⌋
(13)

The corresponding values are given in Table 5. Since for n = 9, β∗ = 2 and the

Table 5
Values of δ + 2β∗ for n = 11, 13, · · · 19 and δ = 5.

n 11 13 15 17 19

δ + 2β∗ 11 11 13 15 17

desired inequality is strict for n ∈ {13, 15, 17, 19}, we have to check only for graphs
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Fig. 7. The four graphs with n = 11, δ = 5 and β = 3 that maximize a

on n = 11 vertices with δ = 5 and β = 3. Note in addition to these conditions, if
∆ ≥ 8 then β ≤ 2. So using nauty, we enumerated all graphs on n = 11 vertices with
δ = 5 and ∆ ≤ 7. There are exactly 3 982 767 graphs satisfying these conditions, 2
098 of which have β = 3. Among these 2 098 graphs, the algerbaic connectivity is
maximum for the four presented in Fig. 7 for which a = 0.26795, while the value of
the bound corresponding to n = 11 is 0.83772.
This completes the proof. 2

Note that the condition β ≥ 3 in Theorem 13 is necessary. Indeed, when exploring
graphs on n = 9 vertices with minimum degree δ = 5, we found exactly 16 graphs
(Fig. 8) with β = 2 and a = δ = 5. Thus graphs for which the bound in Theorem 13
is not true.

Fig. 8. The 16 graphs on n = 9 vertices with a = δ = 5 and β = 2.
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We are convinced that Theorem 13 is true for all values of the minimum degree,
however we do not yet have the proof, so we close with the following conjecture.

Conjecture 14 :
Let G be a connected graph with odd order n = 2k + 1 ≥ 9, algebraic connectivity a,
minimum degree δ and domination number β ≥ 3. If G 6∈ {A3, A4, F6, F7, F8}, then

a ≤ 2k − 2β +
k + 3−

√
(k + 1)2 + 4
2

with equality if and only if G is OC(Kk+1), PC(Kk+1) or PC(Kk+1)− e∗.
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