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Abstract

This paper examines the benefit of sequentiality in the social networks. We adopt the el-
egant theoretical framework proposed by Ballester et al. (2006) wherein a fixed set of players
non-cooperatively determine their contributions. This setting features payoff externalities and
strategic complementarity amongst players. We first analyze the two-stage game in which play-
ers in the leader group make contributions prior to the follower group. Compared with the
simultaneous-move benchmark, the equilibrium contribution by any individual player in any
two-stage sequential-move game is unambiguously higher. We establish the isomorphism be-
tween the socially optimal selection of the leader and follower groups and the classical weighted
maximum-cut problem. We give an exact index to characterize the key leader problem, and show
that the key leader can be substantially different from the key player who impacts the networks
most in the simultaneous-move game. We also provide some design principles for unweighted
complete graphs and bipartite graphs.

We then examine the structure of optimal mechanism and allow for arbitrary sequence of
players’ moves. We show that starting from any fixed sequence, the aggregate contribution
always goes up while making simultaneous-moving players move sequentially. This suggests a
robust rule of thumbs – any local modification towards the sequential-move game is beneficial.
Pushing this idea to the extreme, the optimal sequence turns out to be a chain structure,
i.e., players should move one by one. Our results continue to hold when either players exhibit
strategic substitutes instead or the network designer’s goal is to maximize the players’ aggregate
payoff rather than the aggregate contribution.
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1 Introduction

Many modern organizations are highly sophisticated. Within an organization, members (individ-
ual workers, departments, or divisions) are assigned distinct roles, endowed with heterogeneous
abilities, and have the discretion of their own decision making. Since the ultimate organizational
profitability and sustainability depend on their collective efforts, there is interdependence amongst
these members’ individual payoffs; subsequently, it gives rise to strong incentives for them to in-
teract with each other. Coordinating amongst multiple divisions within the organization requires
extensive communication, and this is regarded as one of the main concerns in managing modern
organizations (Calvó-Armengol and Beltran (2009)). See also Milgrom and Roberts (1992) for more
elaboration on the importance of coordination for the organizations. Since members’ interactions
take place in very refined levels (a member may intensively exchange ideas with close colleagues
but may never speak to others), the structure of communication is best modeled as a nexus of
network. In this networked structure, members (players) are represented as distinct nodes, and
the possibilities of communication or interactions between a pair of members are represented by a
link that connects them. This allows us to explicitly incorporate the local effects. In addition, the
heterogeneity (regarding members’ abilities) can be easily described as the nodes’ characteristics
(see Calvó-Armengol and Beltran (2009) for details).

This paper investigates how an organization designer can promote the communication amongst
their members (players hereafter) by choosing the sequence of players that make their decisions
accordingly. One could interpret this sequential-move feature as a hierarchy within the organization;
thus, players that are assigned to move earlier are promoted to higher ranks and their decisions
become prominent and readily observable by others. We show in this parsimonious setup that
sequentiality alone can be substantially beneficial for the aggregate benefit of the organization.
Accordingly, we provide some simple, yet non-trivial, design principles for the “configuration” of
optimal sequence. To the best of our knowledge, no prior work has ever explored this particular
angle. Furthermore, at a higher level, our model setup may be interpreted as different sorts of
social networks (such as crime organizations, political connections, and labor markets). Thus, our
theoretical analysis may also provide justifications or suggestions to other social networks beyond
the organization structure applications.

To achieve this goal, we adopt the elegant framework proposed by Ballester et al. (2006) with
a social network and a set of players, which originally was introduced to describe crime organiza-
tions but then was found to have broad applications in network economics. In this setting, players
are heterogeneous in terms of their intrinsic valuations (which can be alternatively interpreted as
their abilities), and each player may be connected to only a subset of other players as described
by the network structure. Each player’s contribution generates some positive externality to oth-
ers. The peer effects have widely been documented in various empirical and experimental studies
(see, e.g., Bandiera et al. (2004), Falk and Ichino (2006), and the book by Jackson (2008) for an
extensive survey). Moreover, there is strategic complementarity among the players (i.e., a more
aggressive decision by a player reinforces other players’ decisions). The model setup incorporates
the local network effects and includes the micro-level descriptions of underlying networks. We use
the adjacency matrix to describe the physical network structure embedded among the players.

We first analyze a two-stage game in which a group of players (leaders) move first, and their
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contributions are observed by others; the remaining players (followers) then determine their con-
tributions simultaneously. Building upon the equilibrium characterizations, we examine the opti-
mal selection of the leader and follower groups, with the objective being the aggregate contribu-
tion amongst players. This allows us to examine how the organization designer should promote
members given the organization’s network structure and their heterogeneous intrinsic valuations
(or abilities). We show that the problem is mathematically equivalent to the classical weighted
maximum-cut (MAX-CUT) problem, i.e., to find a set partition such that the number of cross
links, weighted by the players’ intrinsic valuations, between the two groups is maximized. While
this problem is in general NP-hard, numerous heuristics and approximation algorithms have been
proposed in the literature of computer science and operations research. Furthermore, when players
possess homogeneous intrinsic valuations, there are some polynomial-time solvable cases such as
the planar graphs (Hadlock (1975)), graphs without K5 minors (Barahona (1983)), and weakly
bipartite graphs with non-negative weights (Grötschel and Pulleyblank (1981)).

A special case of the above group selection problem may be of particular interest: if we are
allowed to pick up only one player to move first, who should be the person of interest? This key
leader problem parallels the key player problem in Ballester et al. (2006), who argue that the
outsider may be able to remove one player from the criminal network and therefore intends to
identify the key player that impacts the network most. We give an exact index to characterize
this key leader problem without using any approximation. We show that the key leader can be
substantially different from the key player identified in Ballester et al. (2006), and it need not be the
player with the highest intrinsic valuation. We then proceed to investigate the two-stage network
design problem for some specific network structures. In the case of unweighted complete graphs,
we establish an intuitive pecking order for any given size of leader group: it is always beneficial
to assign players with higher intrinsic valuations to the leader group. We then provide a concrete
method to determine the optimal size of leader group. In particular, with homogeneous intrinsic
valuations (and hence homogeneous players), it is optimal to split them into two halves. This
provides a theoretical ground for a simple rule of thumbs – the 50-50 rule. In complete bipartite
graphs, it is always optimal to split the players based on the two groups naturally defined by the
bipartite structure. Furthermore, when the two groups have the same size, we shall nominate the
group with a higher average intrinsic valuation as the leaders. On the other hand, when the average
intrinsic valuations are the same between two groups, the one with a smaller size should move first;
thus, early adopters should be relatively rare. As an example, in a star (hub-spokes) network, the
hub, a natural influencer or trend-setter, should make the decision before all the spokes. We also
provide the general formula for other mixed scenarios.

Next, we relax the two-stage restriction and examine the structure of optimal mechanism. We
show that starting from any fixed sequence, the aggregate contribution always goes up while insert-
ing any sequentiality, i.e., making any set of simultaneous-moving players choose their contributions
sequentially. Note that this result does not hinge on any structural assumptions of the underlying
network. This result suggests that any “local” modification towards the sequential-move game is
beneficial. It also serves as a robust design principle if we are bound by some physical restrictions
for freely choosing any sequence. Pushing this idea further, the optimal sequence turns out to be
a chain structure, i.e., players should move one by one, as it maximally capitalizes the positive
feedback effects. With homogeneous intrinsic valuations, we further show that any chain structure
yields the same maximum aggregate contribution, irrespective of the configuration of the chain.
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Finally, with strategic substitutes, most of our results continue to hold in this alternative setting.
If instead the network designer aims at maximizing the players’ aggregate payoff, the chain struc-
ture remains optimal with strategic complements, but this result no longer holds with strategic
substitutes. The group selection criterion differs from the maximum-cut problem, but some design
principles continue to apply (such as the pecking order based on their intrinsic valuations and
the 50 − 50 rule). These design principles hopefully help the network/organization management
problem in various scenarios.

The remainder of this paper is organized as follows. In Section 2, we review some relevant
literature. Section 3 introduces the model setup and the benchmark simultaneous-move game.
Section 4 studies the two-stage games wherein some players decide their contribution levels before
others. Section 5 discusses the key leader problem, and Section 6 provides further examples of
network structures for illustration. Section 7 examines general sequences of events and establishes
the optimality of chain structure. Section 8 extends our analysis to some alternative scenarios. We
draw some concluding remarks in Section 9. All the technical proofs are relegated to the appendix.

2 Literature review

Our paper is related to the vast literature on network externality. The central premise of this
research stream is that the utility generated from possessing a product gets higher as more other
players/consumers use it. The classical papers take the macro-economic perspective and primarily
focus on the aggregate level of network externality; see, e.g., Rohlfs (1974) for the self-enhancing
and self-fulfilling characteristics of telephone and fax machine industries, Katz and Shapiro (1985)
for the complementary goods, Farrell and Saloner (1986) on technology adoption, and Economides
(1996) for an extensive survey of this literature. In contrast, we acknowledge the local network
effects and explicitly model the physical network structure amongst players. This is in line with
the network economics literature whereby researchers are motivated by ample empirical evidence
and start introducing the local network effects into their theoretical constructs. Applications can
be found in labor markets, developing countries, risk sharing, diffusion and social structure, and
social learning; see Jackson (2008) for a comprehensive survey.

As aforementioned, our paper is closely related to the influential paper by Ballester et al.
(2006), who study the simultaneous-move network game. They show that the Nash equilibrium
extensively uses the measure “weighted Katz-Bonacich Centrality” and therefore establishes the
connection between the network economics literature and the sociology literature. We extend their
analysis by allowing for sequential moves. We characterize the optimal group selection problem
in the two-stage game and show that the optimal hierarchy turns out to be a chain structure.
See also Ballester and Calvó-Armengol (2010), Bramoullé and Kranton (2007), and Corbo et al.
(2006) for further discussions. A recent contribution by Candogan et al. (2012) incorporates the
pricing decisions into the framework of Ballester et al. (2006). They characterize the optimal
price discrimination as a function of the underlying social interactions. They also investigate
the alternative scenarios with uniform or two-price schemes when the seller’s price discrimination
power is limited. All the above papers consider simultaneous-move games amongst a network of the
players, whereas we introduce the sequential-move feature into this network game. There are some
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papers that examine the learning aspect in dynamic networks (e.g., Acemoglu et al. (2011) and
Acemoglu et al. (2013)); however, the players’ strategies and the economic forces in these papers
are fundamentally different from ours.

Our study is closely related to the literature on strategic complementarities. Stemming from
the classical contribution by Bulow et al. (1985), it has been observed that strategic complementar-
ities can arise in various forms. To the best of our knowledge, no prior work incorporates both the
local network effects and examines the strategic consequences of sequential-move games. Our work
also adds to the vast literature on the timing of decision making among players. This includes the
classical comparison between Cournot competition and Stackelberg leader-follower game, and the
discussions on the first-mover and second-mover advantages; see, e.g., Amir and Stepanova (2006),
Hoppe (2000), Hoppe and Lehmann-Grube (2005), and Kerin et al. (1992). Our study shows that
in the presence of strategic complementarity, players in a network game can benefit from moving
sequentially; furthermore, it leads to a Pareto improvement amongst all players irrespective of the
underlying network structure.

The organization structure design problem has been a central topic in economics. Stemming
from the seminal work by Radner (1962), this research stream examines how a team of players
should be organized while facing costly communication and information processing. This includes
Alonso et al. (2008), Aoki (1986), Crémer (1980), and Marschak and Radner (1972). We abstract
away the communication costs and therefore complement this research stream by studying the
pure effect of strategic complementarity. The network structure is explicitly described in Calvó-
Armengol and Beltran (2009), but they emphasize the information gathering aspect and consider
a simultaneous-move game. In a two-player setup, Huck and Biel (2012) show that sequential-
moving may be beneficial if conformity (i.e., behaving similarly) is inherently important for the
players. The conformity also generates strategic complementarity between the two players. Thus,
their paper is in spirit similar to our two-node example, and we proceed to characterize the optimal
design of sequential-move game for the multiple-player network game.

3 The model

We adopt the elegant framework proposed by Ballester et al. (2006) with a social network and a set
of players N = {1, 2, · · · , N}. Each player, indexed by i, is represented as a node of the network
and is entitled to determine the level of contribution xi. Since we aim at deriving general principles
to various kinds of social networks, we will keep the model descriptions generic.

Payoff structure. We use the following payoff structure to capture these two features:

πi(x1, x2, · · · , xn) = αixi −
1

2
x2i + δ

N∑
j=1

gijxixj , (1)

where {xj}’s correspond to the contributions by these players. In (1), αi > 0 measures the intrinsic
marginal utility for player i; as aforementioned, it could also be interpreted as the player’s ability
in other contexts. The first two terms collectively suggest the diminishing marginal return of the
player’s own contribution. The last term captures the network effect among the players. Parameter
δ > 0 controls the strength of this effect, and it is common across all the players.
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The cross term gijxixj indicates the interaction between the pair of players i, j, and we assume
that gij ≥ 0 to capture the strategic complementarity. The matrix G = (gij) summarizes the cross
effects between players. If two players are frequently involved in the same community or group,
their cross effect is strong (gij is large). For some examples, G is the adjacency matrix of a
directed graph. Naturally, the cross effect appears only amongst different players’ contributions;
thus, gii = 0, i.e., there is no self-loop. We do not require G to be symmetric, and some of our
analysis goes through even if some components of G are negative. Nevertheless, in the majority
of this paper we will refrain from making implications of the negative components, as our primary
goal is to study the strategic complementarity in social networks. In Section 8, we discuss why
some of our results continue to hold when strategic substitution occurs.

Network game and notation. The above descriptions give rise to a concrete environment
of social network regarding the players’ actions and payoffs. To specify a network game, we shall
introduce the timing and information structure. We will examine various scenarios to illustrate the
impacts of sequentiality. Before we proceed, we introduce some notation that will be intensively
used throughout the paper.

For a matrix T , the transpose is denoted as T ′. The zero matrix (of suitable dimensions) is de-
noted as 0. If T is a square matrix, then TD is a matrix with diagonal entries TDii = tii, i = 1, · · ·N,
and off diagonal entries TDij = 0, ∀i 6= j. Unless indicated otherwise, vector x = (x1, · · · , xN )′ is a
column vector. For any subset A of N , xA (in bold) denotes the vector of (xi)i∈A; that is, it is a
sub-vector wherein the sequence of selected components follows their original sequence in vector x.
The (non-bold) term xA =

∑
i∈A xi is the sum of these selected components. Let 〈x,y〉 denote the

inner product of two column vectors x,y.

We say that two matrices A, B satisfy A � B if and only if Aij ≥ Bij , ∀i, j. In other words,
this dominance relationship applies to the component-wise comparisons. For any pair of functions
f1 and f2, we call f1(δ) = O(f2(δ)) as δ → 0, if lim supδ→0 |

f1(δ)
f2(δ)
| < ∞, and f1(δ) = o(f2(δ)), as

δ → 0, if limδ→0 |f1(δ)f2(δ)
| = 0. In this paper, the function f2 is a power function of δ (i.e., δk for an

integer k = 1, 2, · · · ).

Simultaneous-move game. Now we introduce the benchmark scenario wherein all players
determine their contribution levels simultaneously. This game has been studied by Ballester et al.
(2006), and we include it for completeness.

First, we note that the game is supermodular and the payoffs are quadratic and concave in
{xi}’s. Therefore, the best response function for a player i is linear and increasing in other players’
contributions:

BRi(x−i) = αi + δ
∑
j 6=i

gijxj .

Therefore, the Nash equilibrium in this simultaneous-move game is just the solution to:

xNi = BRi(x
N
−i) = αi + δ

∑
j 6=i

gijx
N
j .

Rewriting the above (using matrix notation), we obtain:

xN = α+ δG · xN ⇔ xN = [I− δG]−1α. (2)
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where α = (α1, · · · , αn)′.

Taylor expansions. The matrix is well defined and invertible if δ is small enough.1 In this
case, we have the following Taylor series:

[I− δG]−1α = (I + δG+ δ2G2 + · · · )α = α+ δGα+ δ2G2α+ · · · .

For sufficiently small δ, the matrix M := [I− δG]−1 is well defined and nonnegative, with

mij =

+∞∑
k=0

δkg
[k]
ij = ((I− δG)−1)ij = δij + δgij + δ2g

[2]
ij + · · · ,

where g
[k]
ij is the ij entry of Gk. The term mij counts the number of paths in G that start at node

i and end at node j, and paths of length k are weighted by δk. This matrix measures the impact of
player i’s contribution on player j’s contribution through direct and indirect influences. The direct
influence arises from the payoff externality between players i and j, and the indirect influences
follow from the impact of player i’s contribution upon other players that ultimately connect to
player j.

In compliance with the network economics literature, we shall implicitly assume that δ is suf-
ficiently small such that the equilibrium is well-defined; otherwise, some players intend to make
infinite contributions due to very strong positive feedback effects. We will not be explicit in describ-
ing the exact bound for δ in the majority of our analysis, since this does not help understanding
the economic intuition of the problem. This applies to both the simultaneous-move game and
sequential-move games (to be formally defined momentarily). In some worked examples, however,
we will briefly indicate the bounds for completeness.

Equilibrium outcomes. The best response functions immediately lead to the unique Nash
equilibrium:

xNi = bi(G, δ, α),

where the vector
b(G, δ, α) = [I− δG]−1α

is called the weighted Katz-Bonacich Centrality of parameter δ and weight vector α. This measure
stands out among various ones proposed by sociology researchers, because it naturally ties in the
Nash equilibrium in the simultaneous-move games (Ballester et al. (2006)).

In the analysis below, we need a variant of this equilibrium outcome when the diagonal entries
of matrix G are nonzero. This is given in the next lemma.

Lemma 1. For sufficiently small δ, the unique Nash equilibrium outcome x of the simultaneous-

move game with payoff functions

ui(x) = βixi −
1

2
x2i + δxi(

N∑
j=1

tijxj).

1The exact upper bound is 1/µ1(G) if G is symmetric, where µ1(G) is the largest eigenvalue of G.
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is given by

x =
[
1− δ(T + TD)

]−1
β, (3)

where T = (tij)N×N , and TD is a matrix with diagonal entries TDii = tii, i = 1, · · ·N, and off

diagonal entries TDij = 0, ∀i 6= j. Moreover,
[
1− δ(T + TD)

]−1
is symmetric if T is symmetric.

Having discussed the simultaneous-move game, we next consider the two-stage sequential-move
games and compare them with this benchmark. We will start with the general two-stage problems,
where a single leader case is just a special case. We will then build upon the results and observations
in the two-stage games to characterize the optimal mechanism with a general hierarchy.

4 Two-stage games

In this section, we analyze the two-stage case.

Leaders versus followers. In any two-stage game, a group of players move first, and their
contributions are observed by others; following this, the remaining players then determine their
contributions simultaneously. Thus, we can partition the players into two groups: the leader group
A and the follower group B. In this simplest sequential-move game, the leaders correspond to the
influencers, opinion leaders, or trend-setters.

The equilibrium concept is subgame perfect Nash equilibrium (SPNE) because now the game
involves multiple rounds of interactions (Fudenberg and Tirole (1991)). For convenience, let us
rewrite the matrix G as a block matrix:

G =

(
GAA GAB
GBA GBB

)
.

Second stage. The equilibrium can be solved using backward induction. Let vector xA
denote the contributions chosen by the nodes in A. In the second stage, since the contributions of
the leader group have been determined, the subgame is again a network game with nodes B and
adjacency matrix GBB, and parameters α′B = αB + δGBAxA. By Lemma 1, the equilibrium in the
subgame after observing xA is given by

xB(xA) = Uα′B = U(αB + δGBAxA), where U = [I − δGBB]−1. (4)

Moreover, the matrix U is symmetric if GBB is, and GDBB = 0 because gii = 0, ∀i. The inclusion
of xA shows that the followers’ contributions are crafted by the leaders’ prominent decisions.

First stage. Let us now go backwards to the first stage. Anticipating the followers’ actions,
the nodes in A will play a game with payoff functions given by:

ui = αixi −
1

2
x2i + δxi

∑
j∈A

gijxj +
∑
j∈B

gijxj(xA)

 , ∀i ∈ A,
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where xj(xA) =
∑

k∈B Ujk(αk + δ
∑

l∈A gklxl) by (4). Plugging in xj(xA), we obtain that

ui =

αi + δ
∑
j∈B

∑
k∈B

gijUjkαk

xi −
1

2
x2i + δxi

∑
j∈A

gijxj + δ
∑
j∈B

∑
k∈B

∑
l∈A

gijUjkgklxl

 .

In other words, it is a (modified) network game on the set A with parameters

β = αA + δGAB U αB, and T = GAA + δGAB U GBA.

Equilibrium characterization. We can then apply Lemma 1 to the above modified game.
We summarize the characterization below.

Theorem 1. For sufficiently small δ,2 the unique subgame perfect Nash equilibrium of the two-stage

game is given by: (
xA

xB

)
= S

(
αA

αB

)
(5)

with

S =

( [
1− δ(T + TD)

]−1
δ
[
1− δ(T + TD)

]−1
GABU

δUGBA
[
1− δ(T + TD)

]−1
U + δ2UGBA

[
1− δ(T + TD)

]−1
GABU

)
, (6)

where

T = GAA + δGAB U GBA, and U = [I − δGBB]−1.

Moreover, if G is symmetric, then S is symmetric as well.

Theorem 1 leads to some simple interpretations of the equilibrium outcomes. First, the equilib-
rium contributions are linearly increasing in each component of α, where the sensitivities are given
by the matrix S. This suggests that an increase of each player’s intrinsic valuation has positive
and straightforward impacts on all the players’ contributions, and the magnitudes are succinctly
summarized by the matrix S. Second, while followers (in set B) play their best responses to other
players’ contributions, leaders anticipate the followers’ subsequent reactions and incorporate these
effects into their decision making. This is a signature feature of Stackelberg game, or more generally
any sequential-move game.

Third, it is verifiable that S �M, where the matrix M captures the sensitivities of intrinsic
valuations in a simultaneous-move game. To see this, it suffices to compare these two matrix
component-wise. Using Block matrix inversion formula, we can write M as follows:

M = [1− δG]−1 =

(
[1− δ(T + 0)]−1 δ [1− δ(T + 0)]−1GABU

δUGBA [1− δ(T + 0)]−1 U + δ2UGBA [1− δ(T + 0)]−1GABU

)
, (7)

2For example, the result holds when δ < 1
2µ1(G)

if G is symmetric. The exact upper bound of the parameter δ

depends on both the network G and the leader group A, and its expression is complicated. Here we just give an

upper bound which does not depend on A.
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where the matrices U and T are defined in Theorem 1. In other words, If we replace the matrix
TD by the zero matrix in (6), we will get the matrix [1− δG]−1.

Comparing the entries of (6) and (7), we observe the following. To show that S � M =
[1− δG]−1, it suffices to show that[

1− δ(T + TD)
]−1 � [1− δT ]−1

This follows immediately from[
1− δ(T + TD)

]−1 − [1− δT ]−1 = [1− δT ]−1 δTD
[
1− δ(T + TD)

]−1 � 0,

for sufficiently small δ. Here we use the fact A−1 −B−1 = B−1(B −A)A−1. This component-wise
dominance therefore implies that the equilibrium contributions in this two-stage sequential-move
game are higher. This is formally stated in the following proposition.

Proposition 1. For sufficiently small δ, the equilibrium contribution profile in any two-stage game

is component-wise higher than that in the simultaneous-move game.

Proposition 1 suggests that the sequential-move game effectively utilizes the positive feedbacks
and partially restores the social efficiency. In particular, each player contributes more in the two-
stage game, irrespective of the underlying network structure. This is reminiscent of the findings in
Beckmann (2005), who shows in the tax competition context that sequentiality is beneficial in the
presence of strategic complementarities.

Before we proceed, we note that the results are extendable to the (modified) network game
wherein the diagonal entries of G are not all zeros. We summarize our findings as the following
corollary, and we will use this fact in the proof of the Proposition 6 later on.

Corollary 1. If the diagonal entries of G are not all zeros, the results in Theorem 1 still hold,

except that the matrix U is replaced by Ũ = [1− δ(GBB +GDBB)]−1. In other words, we have:

S̃ =

 [
1− δ(T̃ + T̃D)

]−1
δ
[
1− δ(T̃ + T̃D)

]−1
GABŨ

δŨGBA

[
1− δ(T̃ + T̃D)

]−1
Ũ + δ2ŨGBA

[
1− δ(T̃ + T̃D)

]−1
GABŨ

 ,

where

T̃ = GAA + δGABŨGBA, and Ũ = [1− δ(GBB +GDBB)]−1.

Moreover, the statement of Proposition 1 remains valid.

Contribution differential. To get more quantitative results about the difference between
the two-stage game and the simultaneous-move game, we express the differences of contributions
by comparing the entries of (6) and (7), we have:(

xA
xB

)
−
(

xNA
xNB

)
=

(
∆ δ∆GABU

δUGBA∆ δ2UGBA∆GABU

)(
αA
αB

)
(8)
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where
∆ =

[
1− δ(T + TD)

]−1 − [1− δT ]−1 .

Moreover, for small δ, we can get a more concise expression using Taylor expansion.

Theorem 2. For sufficiently small δ, we can characterize the increment of equilibrium contribution

profile between the two-stage and simultaneous-move games using Taylor expansion up to the order

of δ3 : (
xA

xB

)
−

(
xNA

xNB

)
= δ2

(
(GABGBA)D 0

0 0

)(
αA

αB

)
+O(δ3). (9)

Theorem 2 provides a succinct expression of the incremental benefit of the sequential-move
game. The first nontrivial term in the difference (9) is of order δ2, which means that these two con-

tribution vectors have the same linear term. The square term δ2
(

(GABGBA)DαA
0

)
only depends

on αA but not on αB. The literature on network economics is primarily interested in the situations
wherein δ is reasonably small (for stability consideration) but not completely negligible (so that
the peer effects remain active). In such a scenario, we can concentrate on the δ2 term and ignore
the higher order term.

Group selection. The primary advantage of Theorem 2 is to facilitate the network design
problem after characterizing the equilibrium outcomes. In our two-stage setup, suppose that we
are free to choose any subset of players into the leader group A. If our goal, as a central planner,
is to maximize the aggregate contribution, the problem can be written as follows:

max
A⊂N

L(A) = 1′A(GABGBA)DαA =
∑
i∈A

∑
j∈B

gijgjiαi, (10)

where 1A is a vector of 1s with length |A|. The aggregate contribution is used as the criterion
because it represents the collective efforts by all the members in the organization, and empirically
this may be measured (through some proxies) by outside observers. In Section 8, we discuss the
alternative criterion – the aggregate payoff – and reexamine the same research question.

This program (10) is a combinatorial optimization problem. As an example, suppose that G
is the adjacency matrix of an undirected graph; i.e., gij ∈ {0, 1}, and gij = gji. In this case, let N i

denote the set of neighbors of i. The objective function is then:

L(A) =
∑
i∈A

∑
j∈B

gijgjiαi =
∑
i∈A

∑
j∈B

gijgijαi =
∑
i∈A

∑
j∈B

gijαi =
∑
i∈A

#|N i ∩B|αi,

where #|N i ∩ B| counts the number of i’s neighbor nodes that are not in the set A (B = N\A),
and L(A) is the sum of these nodes weighted by the numbers αi over all the nodes in the set A.
Here we use the fact that g2ij = gij as gij ∈ {0, 1}.

When the nodes are homogeneous (αi = α,∀i ∈ N), the problem is then to find a set A
such that the number of cuts between A and its complement N\A is maximized. This problem is
labeled as “maximum-cut” (MAX-CUT) and is well studied in the literature of computer science
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and operations research. It is easy to describe but in general an NP-hard problem. Polynomial-time
solvable cases include the planar graphs (Hadlock (1975)), graphs without K5 minors (Barahona
(1983)), and weakly bipartite graphs with non-negative weights (Grötschel and Pulleyblank (1981)).
Numerous heuristics and approximation algorithms have been proposed. For example, Goemans
and Williamson (1995) provide a 0.878-approximation randomized algorithm (i.e., the worst-case
efficiency loss is around 12%). Most of these algorithms fall into one of the two categories: best-
in and worst-out. The former starts with an empty graph and in each step determines which
node to add to the existing subgraph, whereas the latter starts with an initial graph and identifies
the node that performs the worst to kick out. Notably, since L(A) corresponds not only to the
weighted number of cross links but also the second-order term of the aggregate contribution, the
approximation ratio (worst-case bound) of any polynomial-time approximation scheme for MAX-
CUT applies directly to the aggregate contribution.

Since the algorithmic treatments of the MAX-CUT problems are abundant in the literature, in
this paper we suppress the discussions and simply present some analytically solvable cases. First, we
observe that an obvious upper bound of L(A) is #|N i|α, the number of all the links in N multiplied
by α. The solutions are easy for some special graphs. For example, if αi = 1,∀i, the upper bound
of the program (10) is the total number of edges on the graph G. For a bipartite graph Km,n,
all the links are between two groups and there is no edges between any pair of nodes within each
group. Given the structure, the optimal solution to the program (10) is A = M or A = N . Another
example is the circle of 2n nodes, O2n. It is a subgraph of the bipartite graph Kn,n. Therefore, the
solution is given by A = {1, 3, 5, · · · , 2n−1} (which is unique up to isomorphism). For a circle with
odd nodes O2n+1, 2n + 1 remains the upper bound, but this cannot be achieved. The maximum
cut has only 2n edges. As the third example, consider a complete graph Kn in which every node is
connected to all other nodes. The optimal size of A is arg maxk=1,2,··· ,n k(n− k), which is n/2 if n
is even, or (n± 1)/2 if n is odd.

The above discussions suggest a clear principle of finding the optimal partition for the two-
stage game for arbitrary graphs. In the next two sections, we work out some specific examples and
seek additional principles for this network design problem.

5 Key leader problem

A special case of the above group selection problem may be of particular interest: if we are allowed
to pick up only one player to move first, who should be the person of interest? This key leader
problem parallels the key player problem in Ballester et al. (2006), who argue that the outsider
may be able to remove one player from the criminal network and therefore intends to identify the
key player that impacts the network most. Thanks to equations (6) and (7), we can give an exact
index, called L-index, to characterize this key leader problem without using Taylor expansions. To
simplify the notation, we assume G is symmetric in this section.

To identify the key leader, we consider a sequential-move game in which player i moves in the
first stage and the rest move simultaneously in the second stage. The equilibrium contribution of
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player i, using (6), is

xLi =
αi + δ

〈
βi, (I− δG−i)−1 α−i

〉
1− 2δ2

〈
βi, (I− δG−i)−1 βi

〉 . (11)

where matrix G is rewritten as follows:

G =

(
0 β′i
βi G−i

)
.

Meanwhile, using (7), the equilibrium contribution of player i in the simultaneous-move game is

xNi =
αi + δ

〈
βi, (I− δG−i)−1 α−i

〉
1− δ2

〈
βi, (I− δG−i)−1 βi

〉 = bi(G, δ, α) =

N∑
j=1

mijαj . (12)

Comparing the coefficients of αj in (12), we obtain that

mii =
1

1− δ2
〈
βi, (I− δG−i)−1 βi

〉 , (13)

mij

mii
= j-th entry of (I− δG−i)−1 δβi, j 6= i.

We can then derive the equilibrium contributions of other players. Afterwards, we compare across
scenarios with different leaders to determine the key leader. The results are summarized in the
following proposition.

Proposition 2. Define

Li :=
(mii − 1)

(2−mii)

bi(G, δ, 1)

mii
bi(G, δ, α) (14)

as the leading index of player i. The solution to the key leader problem, i∗, has the highest leading

index,i.e, Li∗ ≥ Lj ,∀j ∈ N .

The above approach also gives a new derivation of the inter-centrality measure defined in
Ballester et al. (2006) who study the overall impact if a player is removed from the network.
Removing a player i from the network is equivalent to changing the player i’s contribution from
xNi = bi(G, δ, α) to 0, or ∆xi = −bi(G, δ, α). The following corollary re-establishes (Ballester et al.
2006: Theorem 3) using our derivations.

Corollary 2. Define ci := bi(G,δ,1)
mii

bi(G, δ, α) as the inter-centrality measure. The solution to the

key player problem, j∗, has the highest inter-centrality measure, i.e. cj∗ ≥ cj , ∀j ∈ N .

In Ballester et al. (2006), the inter-centrality measure is defined as ci =
b2i (G,δ,α)
mii

, which is con-
sistent with our new definition, as they assume that {αi}’s are homogeneous (and are normalized to
1). Our new definition works even if {αi}’s are heterogeneous. Also, when {αi}’s are heterogeneous,
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one cannot naively use
b2i (G,δ,α)
mii

as the inter-centrality measure; the appropriate extension of their
result is stated in the above corollary.

To see the difference of inter-centrality measure and L-index, let us assume that αi = 1,∀i.
Consider two nodes i, j in a network G and suppose that bi(G, δ, 1) = bj(G, δ, 1)3 and 1 ≤ mjj <
mii < 2. It is easy to see that ci < cj , but Li > Lj .

4 In other words, for regular graph, the key
player is the node with lowest mii, while the key leader is the node with highest mii. This can be
seen from the following example. In Figure 1, we revisit a regular graph studied in Calvo-Armengol
and Jackson (2004), where there are three kinds of players: 1, 2, 3. The calculations in Table 5
show that player 3 is the key leader, whereas player 1 is the key player.

1

2

3

4

5

6

7

8

9

10

Figure 1: A regular graph, from an example in Calvo-Armengol and Jackson (2004)

players mii bi ci Li

1 1.168 2.5 5.347 1.086

2 1.198 2.5 5.216 1.288

3 1.216 2.5 5.139 1.417

Table 1: Comparison of different measures with δ = 0.2

6 Some specific network structures

To better articulate the nature of equilibrium outcomes, in this section we study some special
graphs.

3For example, if the graph G is regular with degree k, bi(G, δ, 1) = 1
1−dδ for every node.

4Because
∂(b2i /mii)

∂mii
= −b2i /m2

ii < 0 and
∂

(
(mii−1)
(2−mii)

b2i
mii

)
∂mii

=
b2i (1+(mii−1)2)

((2−mii)mii)2
> 0.
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6.1 Complete graph

Let us first start with unweighted complete graphs, i.e., every node is connected to the rest of the
graph. Since it is unweighted, without loss of generality we make gij = 1, ∀i 6= j. This does not
imply that all the nodes are identical, however, because players may be endowed with heterogeneous
valuations ({αi}’s). Figure 2 presents an example of the complete graph with N = 4 nodes. For
general N , the adjacency matrix can be written as G = J − I, where I is the identity matrix and
J is the matrix of 1s.

Figure 2: a complete graph with 4 nodes

Using Theorem 1, we can obtain the equilibrium outcomes in the sequential-move game and
compare them with those in the simultaneous-move game. The results are summarized in the
following proposition.

Proposition 3. In an N -node unweighted complete graph, the aggregate equilibrium contribution

in the two-stage game with L leaders is given by:5∑
j∈N\L αj

1− (N − L− 1)δ
+

1 + δ

1− (N − L− 1)δ

(1− (N − L− 1)δ)
∑

i∈L αi + δL
∑

j∈N\L αj

1− δ(N − 2)− δ2(2N − L− 1)
. (15)

Proposition 3 gives a simple expression of the aggregate contribution, which is our primary
objective in this paper. It is possible to characterize the equilibrium contributions at the individual
levels, although they depend heavily on the detailed network structure and therefore the exact
expressions are very complicated. Incidentally, we can also apply Theorem 1 to derive the above
results; nonetheless, it requires inverting the matrices.

We now build upon Proposition 3 and investigate the optimal partition of leader-follower
groups. In the two-node case, this problem is trivial – one player is the leader, whereas the other
is the follower. Proposition 3 implies that the player with a higher intrinsic valuation should move

first. To see this, we let N = 1, F = 1; (15) then reduces to
(1+δ)αl+(1+δ−δ2)αf

1−2δ2 . Since the weight

5Here we need the condition that δ is small enough such that

1− δ(N − 1) > 0, 1− δ(N − 2)− δ2(2N − L− 1) > 0,∀L = 1, 2, · · · , N.

This is equivalent to 1− (N − 2)δ − (2N − 2)δ2 > 0, or δ < 2

N−2+
√
N2+4N−4

. A sufficient condition is δ < 1
N

.
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on αl is greater, the player with a higher α should move first. With more than two nodes, the set
partitioning becomes involved. To this end, we decompose our analysis into two steps.

Optimal selection of leaders. First, we assume that the size of leader groups is fixed
exogenously. In this case, the remaining question is which players to select into the leader group.
Proposition 3 leads to a clear-cut prediction (that is similar to the two-node case) regarding the
selection of leader group.

Corollary 3. Consider the two-stage game with L leaders for an N -node unweighted complete

graph. To maximize the aggregate contribution, the players with the L highest {αi}’s should be

chosen to move in the first stage.

We have argued this feature for the two-node case. The same intuition carries over to arbitrary
complete nodes with any fixed number of leaders. Specifically, the leaders’ contributions induce
positive feedbacks from all the followers. Each leader anticipates these positive feedbacks and
therefore her contribution is amplified by N times, the size of follower group that she has direct
influences upon. The pecking order suggested by Corollary 3 follows as a higher leader’s intrinsic
valuation leads to a more significant amplification.

Optimal size of leader group. Corollary 3 allows us to simplify the problem of finding the
optimal partition. We now proceed to examine the optimal number of leaders. To concentrate on
the timing rather than on the individual heterogeneity, we assume that the players are homogeneous.
In this case, αi = αj , and without loss of generality αi = 1, ∀i ∈ N . With this simplification, we
can express the aggregate contribution, φ(L), as follows:

φ(L) =

∑
j∈N\L αj

1− (N − L− 1)δ
+

1 + δ

1− (N − L− 1)δ
×

(1− (N − L− 1)δ)
∑

i∈L αi + δL
∑

j∈N\L αj

1− δ(N − 2)− δ2(2N − L− 1)

=
N − L

1− (N − L− 1)δ
+

1 + δ

1− (N − L− 1)δ
× (1 + δ)L

1− δ(N − 2)− δ2(2N − L− 1)
.

For sufficiently small δ, we again use Taylor expansions to get the leading terms of φ(L).

Proposition 4. The first three terms of φ(L) as a function of δ:

φ(L) = N + δN(N − 1) + δ2
{
N(N − 1)2 + L(N − L)

}
+O(δ3).

Note that the linear term does not depend on L at all. As a comparison, in the simultaneous-
move game, L = 0:

φ(0) =
N

1− δ(N − 1)
= N + δN(N − 1) + δ2N(N − 1)2 +O(δ3),

which corresponds to the aggregate contribution. Hence,

φ(L)− φ(0) = L(N − L)δ2 +O(δ3).

This has an intuitive interpretation using Theorem 2. Since the original graph is complete, each
node in L is connected to all the N − L nodes in the second stage. Therefore, the total number
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between these two groups are L(N − L). Obviously, the optimal size is bN2 c if δ is small. This
provides a theoretical ground for a simple rule of thumbs – the 50-50 rule.

Finally, let us comment on the heterogeneous case. If {αi}’s are different, the problem of
finding the optimal size of leader group can be done in N steps. In each step, we calculate the
sum of the L highest {αi}’s multiplied by N − L. Afterwards, we compare the maximum of these
numbers. This is certainly doable but the insights are less transparent.

6.2 Complete bipartite graph

In this subsection, we study another important family of networks – the bipartite graphs. For a
complete bipartite graph KM,N , the adjacency matrix is

G(M,N) =

[
0 JM×N

JN×M 0

]
,

where Jmn is an m by n matrix of 1s. By the definition of bipartite graph, there is no direct
link between any pair of players within the same group. The graph is complete when every node
in group M is connected to every node in group N . See Figure 3 for an example of a complete
bipartite graph with M = 3 and N = 2. In other words, there is an important feature that naturally
distinguishes them into two groups. In the social network literature, the canonical example is the
match between men and women; the star (hub-spokes) network is a special case of bipartite graph
with a single node in one group.

Figure 3: A complete bipartite graph K3,2

Figure 4: A star with 5 nodes

We again apply Theorem 1 to this specific graph to obtain the equilibrium outcomes in the
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sequential-move game. Let ᾱ =
∑
i∈M αi
M and β̄ =

∑
j∈N βj
N denote the average marginal utilities in

these two groups. We obtain the following result.

Proposition 5. Consider the two-stage game of a complete bipartite graph. The aggregate contri-

bution when group M moves first is higher than the aggregate contribution when group N moves

first if and only if
(1 +Nδ)(ᾱ+Nδβ̄)

(1− δ2(MN +N))
>

(1 +Mδ)(β̄ +Mδᾱ)

(1− δ2(MN +M))
. (16)

As a corollary, we have:

Corollary 4. In the two-stage game of a complete bipartite graph, if the two groups have the same

size, i.e., M = N , the group with higher average α should move first.

Corollary 4 re-establishes the insight we obtain from complete graphs. From the social effi-
ciency perspective, we shall allow players who are highly intrinsically motivated to lead others. As
another special case, we suppose that the average valuations are the same between the two groups:
ᾱ = β̄. In particular, this holds true when groups are homogeneous, i.e., αi = βj ,∀i, j.

Corollary 5. In the two-stage game of a complete bipartite graph, if ᾱ = β̄, the group with a

smaller size should move first.

Given that the star network is a special case of the bipartite graph, Corollary 5 shows that
the center hub should move first. This somehow provides a justification for why fashion influencers
are typically composed of a relatively small group of people, and a priori they are substantially
different from others. Incidentally, (16) is equivalent to:

ᾱ− β̄ + (N −M)δ(ᾱ+ β̄) + δ2
(
(N2 +N)β̄ − (M2 +M)ᾱ

)
> 0.

This condition is more likely to hold if ᾱ is high or the group size N is large. These results are
consistent with Corollaries 4 and 5. Also, if δ is relatively small, the dominant term is ᾱ − β̄. In
other words, if the strength of the complementarity is reasonably bounded, the group with a higher
average marginal utility should move first.

7 General sequence

In this section, we characterize the structure of optimal mechanism. Building upon the results
from the two-stage settings, we observe that making the players move sequentially yields a higher
aggregate contribution. In this section, we prove that this is a general principle. Pushing this idea
to the extreme, the optimal sequence turns out to be a chain wherein players move one by one. To
set up the general sequence problem, we first define some technical terms.
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Definition 1. A sequence S = (P1, P2, · · · , Pk) is just a partitioning of N such that Pi ∩ Pj =

∅,∀i 6= j and ∪1≤i≤kPi = N . The number |S| = k corresponds to the number of steps of this

sequence.

For convenience, let ∅ denote the sequence for the simultaneous-move game. For each S, we
can define an extensive-form game with complete information as follows. First, players in P1 move
in the first period simultaneously, players in P2 move in the second period simultaneously, · · · , and
players in Pk move in the k-th period simultaneously. The actions, once taken, are observable to
all the remaining players who move later.

Fixed sequence. We start with the problem with a fixed sequence of moves. This interme-
diate step not only is necessary for establishing the optimality of chain structure but also distills
the key drivers of sequential moves. We use backward induction to characterize the equilibrium
outcomes and state our main results in the next theorem.

Theorem 3. For sufficiently small δ, for any sequence of moves S, the equilibrium outcome

x(S, G, δ, α) is a linear function of α:

x(S, G, δ, α) = Z(S, G, δ)α,

where Z(S, G, δ) is a matrix independent of α. The aggregate equilibrium contribution is∑
xi(S, G, δ, α) = 1′Z(S, G, δ)α,

where 1 is a vector of 1s. Moreover, if G is symmetric, then Z(S, G, δ) is also symmetric.

As a special case, consider the sequence S = (N), i.e., all players move together in the “first
stage.” In this case, Z(∅, G, δ) = [1 − δG]−1 and it coincides with the result in the simultaneous-
move game. The sequence S = (A,N\A) corresponds to the two-stage game wherein group A is
the leader group, and the remaining players move in the second stage. In this case, Z(S, G, δ) is
derived by (6) in Theorem 1.

The proof of Theorem 3 also gives us an algorithm to compute the matrix Z(S) for any
sequence S = (P1, P2, · · · , Pk). Recall that in analyzing the two-step game, U = [I − δGBB]−1

plays an important role in equilibrium characterizations. In the general sequential-move game, a
corresponding matrix (labeled as U too for consistency) can be established via the induction steps.
Given the matrix U , we can apply the formula in (31) in the appendix to find Z(S). This can be
done in O(N3) steps and thus does not lead to computational burden. Nevertheless, to find the
matrix U we need to apply Theorem 3 to the subsequence S ′ = (P2, · · · , Pk). In the sequel, when
G and δ are obvious in the context, we write Z(S) and x(S, a) for short.

Optimality of chain structure. Having characterized the equilibrium outcome for a fixed
sequence, we now proceed to compare equilibria for different sequences. To this end, we shall
formally define how to refine a given sequence.

Definition 2. Sequence S̃ is a refinement of S = (P1, P2, · · · , Pk) if there exists r such that

S̃ = (P1, · · · , Pr−1, Q1, Q2, Pr+1, · · ·Pk) where Q1 ∪Q2 = Pr and Q1 ∩Q2 = ∅.
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Obviously, (A,N\A) is a refinement of the sequence ∅. Previously, we have shown that the
matrix for the two-stage game dominates the matrix in the simultaneous-move game. The next
proposition proves that this pattern holds for any refinement.

Proposition 6. For any fixed G, suppose that S ′ is a refinement of S. Then Z(S̃, G, δ) �
Z(S, G, δ).

Proposition 6 suggests that sequentiality improves the social efficiency in a strong sense, as
every refinement necessarily leads to a higher aggregate contribution. Note that this result does
not hinge on any structural assumptions of the underlying network; it only requires the strategic
complementarity, i.e., G ≥ 0, embedded in this social network context. This result is not obvious
as it stands, as changing the sequence affects the incentives of the nodes in the beginning of
the sequence as well. Proposition 6 also leads to a handy guideline. If we are bound by some
physical restrictions and cannot freely choose any sequence, we can always improve upon the current
situation by injecting more sequentiality “locally” to the process. This unambiguously and strictly
improves the aggregate contribution and social welfare.

Pushing the above idea to the extreme, we can characterize the optimal sequence. Define
a chain as a sequence with step N , i.e., players determine their contributions one by one. As a
corollary of Theorem 6, we obtain the following.

Corollary 6. For any fixed G, a chain maximizes the aggregate contribution among the players.

Corollary 6 establishes the optimality of chain structure. The intuition is as follows. Recall
that in the two-stage games we show that the aggregate contribution is tightly connected to the
number of cross links between the leader and follower groups. This constitutes a proxy of the
magnitude of positive feedback effects in the two-stage games. When we are entitled to determine
the sequence arbitrarily, naturally we shall intensify the feedback effects to the extent possible. It
turns out that the best way to exploit the indirect influences is to maximize the numbers of links
across groups from different layers, and this is attained by the chain structure.

Also, we can show a counterpart of Theorem 2 for general sequence S, which might be useful
in its own right.

Theorem 4. For any sequence S = (P1, P2, · · · , Pk), we have the Taylor expansion for

Z(S, G, δ)− Z(∅, G, δ) = δ2Λ(S) +O(δ3)

where

Λ(S) =



(∑k
j=2GP1PjGPjP1

)D
0 0 0 0

0
(∑k

j=3GP2PjGPjP2

)D
0 0 0

0 0
. . . 0 0

0 0 0
(
GPk−1PkGPkPk−1

)D
0

0 0 0 0 0


,
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and Z(∅, G, δ) = [1− δG]−1.

The difference of the matrix D(S) = Z(S, G, δ) − Z(∅, G, δ), up to the error term of O(δ3),
is a diagonal matrix, with entry dii = δ2

∑
j∈∪ks=r+1Ps

gijgji if i ∈ P r. For the perspective of the

nodes in P1,
(∑k

j=2GP1PjGPjP1

)D
only depends on the set ∪kr=2Pr = N\P1, but not on the exact

decomposition of the subsequence S ′ = (P2, · · · , Pk). Similarly, the equilibrium contributions of
nodes in P2 depend only upon ∪kr=3Pr but not the exact decomposition.

We can define the function on the sequence S = (P1, · · · , Pk) as follows:

L(S) =

k∑
r=1

∑
i∈P r

 ∑
j∈∪ks=r+1Ps

gijgji

αi.

If G is the adjacency matrix for an undirected graph, then the matrix L counts the path from each
node to the nodes who move after her, weighted by the αi.

Corollary 7. If S ′ is a refinement of S, then L(S ′) ≥ L(S).

This result can also be shown directly by the definition of L, and it echoes Proposition 6 in
that any sort of sequentiality strictly improves the social welfare. Finally, we consider a special
case with homogeneous intrinsic valuations.

Corollary 8. Suppose that G is the adjacency matrix for an undirected graph without self loop

(gii = 0), and αi = 1,∀i. If the sequence of S is a chain, then L(S) = 1
2

∑
ij gij, which counts the

number of links in G. In particular, this number does not depend on the configuration of the chain.

Notably, Corollary 8 implies that the sequencing given a chain is irrelevant for the aggregate
contribution, as long as players have homogeneous intrinsic valuations. Thus, the implementation
of the optimal hierarchy is surprisingly simple. The underlying reason for this irrelevance is the
following. When the players have homogeneous intrinsic valuations, the aggregation contribution
depends mainly on the aggregation of positive feedbacks within players. Therefore, when a chain
structure is adopted, the aggregate contribution is reflected by the summation of all the feedback
effects, irrespective of the order by which these effects are aggregated.

An example. To close this section, we use the following example to illustrate the intuition
behind our main theorem. The same idea applies to any general graph. Consider the complete
graph with 6 nodes (see Figure 5). In this case, the adjacent matrix is symmetric, and all the
off-diagonal entries are equal to 1, i.e, gij = 1,∀i 6= j. Recall that the aggregate contribution
is directly pinned down by the best response matrix. For the sequence S1 = {{1, 2}, {3, 4, 5, 6}},
L(S1) = 4α1 + 4α2 (see Table 2 for details). This measures the positive feedbacks and is a direct
index of aggregate contribution.

Now we consider an alternative sequence S2 = {{1, 2}, {3, 4}, {5, 6}}, which is apparently a
refinement of S1 as we split the group {3, 4, 5, 6}. Under this sequence, L(S2) = 4α1+4α2+2α3+2α4

(see Table 3). After further refinements, in the end we reach the chain structure, sequence S3 =
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Figure 5: K6: a complete graph with 6 nodes

{{1}, {2}, {3}, {4}, {5}, {6}}. The corresponding matrix is L(S3) = 5α1 + 4α2 + 3α3 + 2α4 +α5 (see
Table 4). It is obvious to see that

L(S3) = 5α1 + 4α2 + 3α3 + 2α4 + α5

> L(S2) = 4α1 + 4α2 + 2α3 + 2α4

> L(S1) = 4α1 + 4α2.

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

Table 2: Sequence S1 = {{1, 2}, {3, 4, 5, 6}}, L(S1) = 4α1 + 4α2

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

Table 3: Sequence S2 = {{1, 2}, {3, 4}, {5, 6}}, L(S2) = 4α1 + 4α2 + 2α3 + 2α4

This is consistent with Corollary 7. Thus, the aggregate contribution gets higher when we
make any set of simultaneous-moving players choose their contributions sequentially. As illustrated
in the tables, the additional blocks account for this additional feedback effect from the sequentiality.
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0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

Table 4: Sequence S3 = {{1}, {2}, {3}, {4}, {5}, {6}}, L(S3) = 5α1 + 4α2 + 3α3 + 2α4 + α5

8 Extensions

In this section, we consider some variants of our model characteristics.

8.1 Strategic substitution

While we primarily focus on the strategic complementarity, we note that Ballester et al. (2006)
also include the case with strategic substitutes. To incorporate this effect, we should relax the
assumption that gij ≥ 0 for all i, j. We shall also allow for some combinations of positive and
negative components in matrix G. Since {gij}’s capture the local relationships amongst players,
a reasonable assumption is the reciprocity (and its inverse): if gij ≥ 0, then gji ≥ 0; on the other
hand, if gij < 0, then gji < 0. This ensures that if player j’s action imposes a negative externality
on player i’s utility, then so does player i’s action on player j’s utility.

With this assumption, most of our results continue to hold in this alternative setting. To
see this, first consider the two-stage game. Recall from (9) that the contribution differential

depends on

(
(GABGBA)D 0

0 0

)(
αA
αB

)
. This suggests that gij and gji always appear together in the

product form gijgji. Regardless of whether they represent strategic substitutes or complements, the
product term is necessarily positive. The group selection problem is maxA⊂N

∑
i∈A
∑

j∈B gijgjiαi.
Therefore, this maximum cut problem is mathematically equivalent to that for an alternative graph
for which each component gij is replaced by |gij |. Our analysis then applies to this alternative
graph (with strategic complementarity). The examples with complete and bipartite graphs can be
analyzed in exactly the same manner.

When we are able to choose the general sequence, the aggregate contribution can be expressed

as: L(S) =
∑k

r=1

∑
i∈P r

(∑
j∈∪ks=r+1Ps

gijgji

)
αi. We observe again the product terms gijgji. There-

fore, even if the original graph features a mixture of strategic substitution and complementarity,
any refinement of sequence strictly increases the aggregate contribution. As a result, the optimal
sequence turns out to be a chain as predicted in Section 7. When the players have homogeneous
intrinsic valuations but differ in their network-related payoffs ({gij}’s), the aggregate contribution
given a chain does not depend on its configuration, and thus the implementation remains simple.
All the above arguments do not require any a priori symmetry in {gij}’s that goes beyond the
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reciprocity assumption.

8.2 Aggregate payoff

Insofar we use the aggregate contribution as the proxy of network activities. An alternative measure
in this network game is the aggregate payoff. The aggregate payoff, given the contribution vector
x, is:

W (x) =
∑
i∈N

αixi − 1

2
x2i + δ

∑
j∈N

gijxixj

 = 〈x, α+ δGx〉 − 1

2
〈x,x〉.

In the simultaneous-move benchmark, (Ballester et al. 2006: page 1412) have shown that

W (xN ) = 〈xN , α+ δGxN 〉 − 1

2
〈xN ,xN 〉 =

1

2

∑
i∈N

(xNi )2.

Now consider the general sequence. Recall the contribution differential in (9). As a conse-
quence, we have the following welfare comparison result.

Lemma 2. For small δ, the welfare difference is given by

∆W (S) = W (x(S))−W (x(∅)) = δ3α′GΛ(S)α+O(δ4).

From Lemma 2, the leading term of ∆W is δ3α′GΛ(S)α. The order of welfare improvement
is δ3, which is one order lower than that of aggregate contribution improvement. Moreover, we
observe that the finer the sequence S, the greater the leading term of aggregate payoff. The above
expression immediately leads to the following result:

Proposition 7. If S ′ is a refinement of S, then Λ(S ′) � Λ(S). Therefore, the aggregate payoff

under S ′ is higher than that under S. Consequently, the sequence that maximizes the aggregate

payoff is a chain.

The above proposition suggests that using the aggregate payoff as the proxy of network design
yields the same prediction as the aggregate contribution. Note that unlike the aggregate contri-
bution, this result does not apply when there are strategic substitutes. In fact, if all {gij}’s are
negative, i.e., the network game involves purely strategic substitutes, the chain structure leads to
the worst outcome of aggregate payoff. This is because with negative {gij}’s, in the simultaneous-
move game each player neglects the negative externality she imposes on others. Thus, each player
tends to contribute too much compared with the first-best (coordinated) level. As discussed in
Section 8.1, any increased sequentiality boosts each player’s contribution; thus, the equilibrium
contributions are further away from the first-best levels. This is in line with the observation of
Von Stengel (2010), who considers a duopoly game with negative externalities and demonstrates
that sequential-move is harmful to firms’ profitability.
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In addition, since Lemma 2 applies to any general sequence, we can also articulate the group
selection problem in the two-stage game:

max
L⊂N

δ3α′GΛα, where Λ is induced by L.

This is not equivalent to a max-cut problem. Thus, in general aggregate contribution and aggregate
payoff lead to different selections of leader groups. However, some of our findings continue to hold.

For example, suppose that the network is a complete graph. In this case, let L denote the
number of leaders, and F = N − L is the number of followers. Note that

α′G = (
∑
k 6=1

αk, · · · ,
∑
k 6=n

αk)
′,

and
Λα = (N − L) · (α1, · · · , αL, 0, · · · , 0).

Hence, the inner product of these vectors is

(N − L)
∑
i∈L

αi
∑
k 6=i

αk = (N − L)
∑
i∈L

αi(A− αi).

where A =
∑N

i=1 αi.

If we fix L, the number of leaders, and intend to pick L players such that the above expression
is maximized. It turns out that the same pecking order applies: we shall always choose the players
with the highest {αi}’s. This follows from the same pairwise interchange argument.6 On the other
hand, when players have homogeneous intrinsic valuations (all the {αi}’s are the same), then the
objective becomes maxL(N − L)(N − 1)L and the maximum is attained at L∗ = N

2 . This leads to
the 50− 50 rule again.

9 Conclusions

In this paper we investigate how an organization designer can promote the communication amongst
their membes. Our model setup features payoff externalities and strategic complementarity amongst
players. We show in this parsimonious setup that sequentiality alone can be substantially beneficial
to the aggregate benefit. Specifically, we first analyze the two-stage game whereby we categorize
them as the leader and follower groups. Compared with the simultaneous-move benchmark, the

6Suppose that there are two players i, j such that αi ≤ αj . Consider a selection in which player i is selected into

the leader group but player j is not. If we make the pairwise interchange between players i and j but keep all other

players in their original groups, the contribution differential is

αj(
∑
k 6=j

αk)− αi(
∑
k 6=i

αk) = (αj − αi)
∑
k 6=i,j

αk ≥ 0.

This unambiguously improves the aggregate payoff (if {gij}’s are non-negative).
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equilibrium contribution by any individual player in any two-stage sequential-move game is unam-
biguously higher. We establish the isomorphism between the optimal selection of the leader and
follower groups and the classical weighted maximum-cut (MAX-CUT) problem. We give an exact
index to characterize this key leader problem without using any approximation, and show that the
key leader can be substantially different from the key player identified in Ballester et al. (2006).

We then apply our results to some leading examples of specific network structures. For un-
weighted complete graphs, we establish an intuitive pecking order for any given size of leader group,
and with homogeneous intrinsic valuations it is optimal to split the players into two halves. For the
complete bipartite graphs, players shall be split based on the two groups naturally defined by the
bipartite structure. Furthermore, when the two groups have the same size, we shall nominate the
group with a higher average intrinsic valuation as the leaders. On the other hand, when the average
intrinsic valuations are the same between two groups, the one with a smaller size should move first.
We then relax the two-stage restriction and examine the structure of optimal mechanism. We show
that any form of sequentiality strictly improves the aggregate contribution, and consequently the
optimal sequence turns out to be a chain structure, i.e., players should move one by one. Finally,
with strategic substitutes, most of our results continue to hold in this alternative setting. If instead
the network designer aims at maximizing the players’ aggregate payoff, the chain structure remains
optimal with strategic complements, but this result no longer holds with strategic substitutes. The
group selection criterion differs from the maximum-cut problem, but some design principles con-
tinue to apply (such as the pecking order based on their intrinsic valuations and the 50− 50 rule).
Our flexible framework may be interpreted as different sorts of social networks; therefore, the above
design principles may be applicable to a broad class of contexts.

A Appendix. Proofs

Before we proceed, we first introduce some definitions and then prove a technical lemma. We say
that two matrices A, B satisfy A � B if and only if Aij ≥ Bij ,∀i, j. Let 0 denote the matrix of 0s.
Then, A � B iff A−B � 0. It is easy to show the following. (1) If A � 0, B � 0, then A+B � 0.
(2) If A � 0, B � 0, then AB � 0. (3) If A � B � 0, C � D � 0, then AC � BD.

Lemma 3. The n-by-n matrix aI + bJ is invertible if and only if a 6= 0 and a+ bn 6= 0. Moreover,

the inverse matrix of aI + bJ is 1
a [I− b

a+bnJ] if a 6= 0 and a+ bn 6= 0.

Proof: The eigenvalues of J are (0, · · · , 0, n). Hence, the eigenvalues aI+bJ are (a, · · · , a, a+
bn). This then implies that it is invertible if and only if a 6= 0, a+ bn 6= 0. The second part can be
verified directly by using the fact J2 = nJ. �

Now we proceed to establish the main results in the paper.

Proof of Lemma 1. The equilibrium conditions are:

BRi(x−i) = βi + δ(
N∑
j=1

tijxj) + δxitii = xi.
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Equivalently, it means that
[
1− δ(T + TD)

]
x = β, and therefore x =

[
1− δ(T + TD)

]−1
β. Also,

if T is symmetric,
[
1− δ(T + TD)

]
is symmetric; consequently,

[
1− δ(T + TD)

]−1
is symmetric as

well. �

Proof of Theorem 1. By Lemma 1, the equilibrium contribution profile xA is given by:

xA =
[
1− δ(T + TD)

]−1
β =

[
1− δ(T + TD)

]−1
(αA + δGABUαB)

=
[
1− δ

(
(GAA + δGABUGBA) + (GAA + δGABUGBA)D

)]−1
(αA + δGABUαB).

Also, (4) gives rise to the equilibrium contribution profile xB :

xB(xA) = U(αB + δGBA
[
1− δ(T + TD)

]−1
(αA + δGABUαB))

= δUGBA
[
1− δ(T + TD)

]−1
αA +

(
U + δ2UGBA

[
1− δ(T + TD)

]−1
GABU

)
αB.

For the second part, if G is symmetric, then G′AA = GAA, G
′
BB = GBB, G

′
AB = GBA, G

′
BA =

GAB. Therefore, U = [1 − δGBB]−1 is also symmetric, and subsequently T = GAA + δGABUGBA
is symmetric as well. It is then readily observable that S is symmetric. �

Proof of Proposition 1. It suffices to show that the matrix S given in (6) dominates the
matrix [1− δG]−1, i.e., S � [1− δG]−1. Then, it is obvious that:(

xA
xB

)
= S

(
αA
αB

)
≥ xN = [1− δG]−1

(
αA
αB

)
.

To establish the result, we need to find a convenient expression for the [1 − δG]−1 using the
block matrix:

[1− δG]−1 =

(
[1− δ(T + 0)]−1 δ [1− δ(T + 0)]−1GABU

δUGBA [1− δ(T + 0)]−1 U + δ2UGBA [1− δ(T + 0)]−1GABU

)
, (17)

where the matrices U and T are defined in Theorem 1. In other words, If we replace the matrix
TD by the zero matrix in (6), we will get the matrix [1− δG]−1.

To this end, it is equivalent to show that the solution to this linear equation:

[1− δG]

(
yA
yB

)
=

(
1− δGAA −δGAB
−δGBA 1− δGBB

)(
yA
yB

)
=

(
αA
αB

)
is given by

(
yA
yB

)
=

(
[1− δ(T + 0)]−1 δ [1− δ(T + 0)]−1GABU

δUGBA [1− δ(T + 0)]−1 U + δ2UGBA [1− δ(T + 0)]−1GABU

)(
αA
αB

)
. (18)

We can express yB in terms of xA, i.e., −δGBAyA + (1− δGBB)yB = αB or

yB = (1− δGBB)−1(αB + δGBAyA) = U(αB + δGBAyA).
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Plugging this into (1− δGAA)yA − δGAByB = αA, we have

(1− δGAA)yA − δGABU(αB + δGBAyA) = αA.

Therefore,

yA = [1− δ ((GAA + δGABUGBA))]−1 (αA + δGABUαB) = [1− δT ]−1 (αA + δGABUαB).

Accordingly,

yB = U(αB + δGBAxA) = δUGBA [1− δT ]−1 αA +
(
U + δ2UGBA [1− δT ]−1GABU

)
αB,

which is exactly (18).

Comparing the entries of (6) and (17), we observe that S � [1− δG]−1 is implied by[
1− δ(T + TD)

]−1 � [1− δT ]−1 .

This follows immediately from[
1− δ(T + TD)

]−1 − [1− δT ]−1 = [1− δT ]−1 δTD
[
1− δ(T + TD)

]−1 � 0,

for sufficiently small δ. Here we use the fact A−1−B−1 = B−1(B−A)A−1. Thus, the result holds
true. �

Proof of Corollary 1. The first part is straightforward. To compare the sequential-move and
simultaneous-move games, we shall examine the modified simultaneous-move game. The equilib-
rium matrix for the simultaneous-move game is given by [1−δ(G+GD)]−1, and (17) now becomes:

[1− δ(G+GD]−1 =

 [
1− δT̂

]−1
δ
[
1− δT̂

]−1
GABŨ

δŨGBA

[
1− δT̂

]−1
Ũ + δ2ŨGBA

[
1− δT̂

]−1
GABŨ

 ,

while here T̂ = GAA +GDAA + δGABUGBA, and Ũ = [1− δ(GBB +GDBB)]−1.

Note that

T + TD = GAA +GDAA + δGABUGBA + δ(GABUGBA)D � T̂ = GAA +GDAA + δGABUGBA.

Thus,
[
1− δ(T + TD)

]−1 � [1− δT̂]−1 for sufficiently small δ. By the similar argument, we also

have S̃ � [1− δ(G+GD]−1 even if G contains nonzero diagonal entries. Moreover, the superiority
of sequential-move game over the simultaneous-move game still holds. In other words, Proposition
1 remains valid even if G has nonzero diagonal entries. �

Proof of Theorem 2. First, we define:

∆ =
[
1− δ(T + TD)

]−1 − [1− δT ]−1 .
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Comparing the entries of (6) and (17), we have:(
xA
xB

)
−
(

xNA
xNB

)
=

(
∆ δ∆GABU

δUGBA∆ δ2UGBA∆GABU

)(
αA
αB

)
.

We observe that

∆ =
[
1− δ(T + TD)

]−1 − [1− δT ]−1 = [1− δT ]−1 δTD
[
1− δ(T + TD)

]−1
.

Note that

δTD = δ(GAA + δ2GABUGBA)D = δGDAA + δ2(GABUGBA)D = δ2(GABUGBA)D,

where we use the fact that GDAA = 0 (gii = 0, ∀i). Therefore, ∆ is at least of order δ2, and conse-
quently δ∆GABU = O(δ3). Similarly, we can show that δUGBA∆ = O(δ3), and δ2UGBA∆GABU =
O(δ4).

Therefore, the only δ2 term is contained in ∆ :

∆ = δ2 [1− δT ]−1 (GABUGBA)D
[
1− δ(T + TD)

]−1
.

Here, U = [1− δGBB]−1 = I +O(δ),

(GABUGBA)D = (GAB(1 +O(δ))GBA)D = (GABGBA)D +O(δ).

Also note that [1− δT ]−1 = 1 +O(δ), and
[
1− δ(T + TD)

]−1
= 1 +O(δ). Thus,

∆ = δ2 [1− δT ]−1 (GABUGBA)D
[
1− δ(T + TD)

]−1
= δ2(1 +O(δ))

[
(GABGBA)D +O(δ)

]
(1 +O(δ))

= δ2(GABGBA)D +O(δ3).

Combing all the results, we get:(
∆ δ∆GABU

δUGBA∆ δ2UGBA∆GABU

)
= δ2

(
(GABGBA)D 0

0 0

)
+O(δ3),

which completes the proof. �

Proof of Proposition 2. Comparing (11) and (12) gives us the relation between player i’s
equilibrium contribution under the two scenarios:

xLi =
1− δ2

〈
βi, (I− δG−i)−1 βi

〉
1− 2δ2

〈
βi, (I− δG−i)−1 βi

〉xNi (19)

=
1− (1− 1

mii
)

1− 2(1− 1
mii

)
xNi =

1

2−mii
xNi =

1

2−mii
bi(G, δ, α).

Here we have used the fact that δ2
〈
βi, (I− δG−i)−1 βi

〉
= 1− 1

mii
by (13).
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The next step is to study the impact of i’s contribution on other players. Note that the rest
of the group (N\{i}) play their best-responses in both scenarios, i.e.,

x∗−i(xi) = b(G−i, δ, α−i + δβixi) = (I− δG−i)−1 (α−i + δβixi). (20)

If the player i’s contribution changes by ∆xi, the incremental contributions of players in N\{i} are
given by:

∆x∗−i(xi) = (I− δG−i)−1 δβi∆xi (21)

According to (13), we obtain the following expression: ∆x∗j (xi) =
mij
mii

∆xi, ∀j 6= i. Therefore, the
change of aggregate contribution due to ∆xi is

(1 +
∑
j 6=i

mij

mii
)∆xi =

∑N
k=1mik

mii
∆xi =

bi(G, δ, 1)

mii
∆xi. (22)

Here we use the fact that
∑N

k=1mik = bi(G, δ, 1).

Notice that player i’s contribution increases from xNi = bi(G, δ, α) to xLi = 1
2−miix

N
i =

1
2−mii bi(G, δ, α). Thus, if i is selected as the leader, the change of aggregate contributions is

bi(G, δ, 1)

mii

(
1

2−mii
bi(G, δ, α)− bi(G, δ, α)

)
=

(mii − 1)

(2−mii)

bi(G, δ, 1)

mii
bi(G, δ, α). (23)

This then leads to the L-index specified in the proposition. �

Proof of Corollary 2. Using (22), the change of aggregate contribution is

bi(G, δ, 1)

mii
∆xi = −bi(G, δ, 1)

mii
bi(G, δ, α).

�

Proof of Proposition 3. We again start with the benchmark case. In this simultaneous-move
game, the equilibrium contributions are given by

xN = [I − δG]−1α = [(1 + δ)I− δJ]−1α =
1

1 + δ
[I− δ

1− (N − 1)δ
J]α.

The last equality follows from Lemma 3. For each player i, the equilibrium contribution profile is
given by:

xNi =
αi + δ

1−(N−1)δ
∑N

j=1 αj

1 + δ
, ∀i = 1, 2, · · · , N,

and the aggregate contribution is

N∑
i=j

xj =

∑N
j=1 αj

1− (N − 1)δ
. (24)

We can interpret the factor (N − 1)δ as the amplification factor. An implicit assumption is that δ
is sufficiently small such that (N − 1)δ < 1.
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Next, we examine the two-stage game. Let L denote the set of first-movers (leaders), and
N\L represents the rest of players (followers). First, let us study the subgame in the second stage.
This can be done similarly as the subgraph is still complete but with only N −L nodes (this is the
primary advantage of working with a complete graph). In addition, we only care about the sum
of the contributions of the players in N\L. Given the contributions xi, i ∈ L, the subgame is a
network game, where parameters {αj , j ∈ N\L}’s are modified as αj → αj + δ(

∑
i∈L xi). Hence,

the aggregate equilibrium contribution is (from (24)):

∑
j∈N\L

xj(x1, x2, · · · , xL) =

∑
j∈N\L αj + δ(N − L)(

∑
i∈L xi)

1− (N − L− 1)δ
. (25)

Anticipating the feedback in the second stage, each player i in L plays another network game
with the following payoff:

ui = αi −
1

2
x2i + δxi

 ∑
j∈L,j 6=i

xj +
∑

j∈N\L

xj(x1, x2, · · · , xL)


= αi −

1

2
x2i + δxi

 ∑
j∈L,j 6=i

xj +

∑
j∈N\L αj + δ(N − L)(

∑
i∈L xi)

1− (N − L− 1)δ

 .

The equilibrium is obtained by taking the first-order conditions:

αi − xi + δ

 ∑
j∈L,j 6=i

xj +

∑
j∈N\L αj + δ(N − L)(

∑
i∈L xi)

1− (N − L− 1)δ

+ δxi
δ(N − L)

1− (N − L− 1)δ
= 0, i ∈ L.

Summing over i ∈ L yields:∑
i∈L αi −

∑
i∈L xi + δ2(N−L)

1−(N−L−1)δ
∑

i∈L xi

+δ
(

(L− 1)
∑

i∈L xi + L
∑
j∈N\L αj+δ(N−L)(

∑
i∈L xi)

1−(N−L−1)δ

) = 0.

Therefore, we can find the aggregate contribution in L:

∑
i∈L

xi =

∑
i∈L αi + δL

1−δ(N−L−1)
∑

j∈N\L αj

1− δ(L− 1)− δ2L(N−L)
1−(N−L−1)δ −

δ2(N−L)
1−(N−L−1)δ

. (26)

Plugging this into (25), we can find the aggregate contribution in this two-stage game.

From (25) and (26), we have:

∑
i∈L

xi+
∑

j∈N\L

xj =

∑
j∈N\L αj

1− (N − L− 1)δ
+

(1 + δ)

1− (N − L− 1)δ

(1− (N − L− 1)δ)
∑

i∈L αi + δL
∑

j∈N\L αj

1− δ(N − 2)− δ2(2N − L− 1)
.

�
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Proof of Corollary 3. It suffices to show that in (15), the coefficient of the term
∑

i∈L αi is
greater than that of

∑
j∈N\L αj , as the sum of these terms is fixed. To this end, it suffices to show

that:

−1

1− (N − L− 1)δ
+

1 + δ

1− (N − L− 1)δ
× (1− (N − L− 1)δ)− δL

1− δ(N − 2)− δ2(2N − L− 1)
> 0

⇐⇒ (1 + δ)(1− (N − 1)δ) > 1− δ(N − 2)− δ2(2N − L− 1)

⇐⇒ 1− δ(N − 2)− (N − 1)δ2 > 1− δ(N − 2)− δ2(2N − L− 1)

⇐⇒ 2N − L− 1 > N − 1

⇐⇒ N > L,

where the last inequality obviously holds. �

Proof of Proposition 4. This follows from tedious but straightforward calculations. �

Proof of Proposition 5. Let us start with the simultaneous-move benchmark. To character-
ize the equilibrium, we only need to find the inverse matrix of 1− δG. We observe that the payoff
functions for nodes in each group are:{

ui = αixi − 1
2x

2
i + δxi(

∑
j∈N yj), i ∈M,

uj = βjyj − 1
2y

2
j + δyj(

∑
i∈M xi), j ∈ N,

and the best responses are: {
xi = αi + δ(

∑
j∈N yj), i ∈M,

yj = βj + δ(
∑

i∈M xi), j ∈ N.
(27)

Thus, summing over them yields:{ ∑
i∈M xi =

∑
i∈M αi +Mδ(

∑
j∈N yj),∑

j∈N yj =
∑

j∈N βj +Nδ(
∑

i∈M xi).
(28)

Equivalently, (∑
i∈M xi∑
j∈N yj

)
=

1

1−MNδ2

(∑
i∈M αi +Mδ

∑
j∈N βj∑

j∈N βj +Nδ
∑

i∈M αi

)
.

Theorem 2 suggests that to maximize the aggregate contribution, we shall partition the players
based on the bipartite structure (because this maximizes the number of cross links). Therefore,
there are only two candidates: either group M moves first (and becomes the leader group), or group
M moves in the second stage. We shall start with the former scenario, as the latter is simply the
mirror image.

In this case, in the second stage the best responses of yj are given in (27) as the subgraph in
N is empty. Consequently, the aggregate contribution in group N is:∑

j∈N
yj(xM) =

∑
j∈N

βj +Nδ(
∑
i∈M

xi(xM)). (29)
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Given the feedback from the followers, the payoff of a leader i in M is

ui(xM) = αixi −
1

2
x2i + δxi

∑
j∈N

yj(xM)

 = αixi −
1

2
x2i + δxi

∑
j∈N

βj +Nδ(
∑
i∈M

xi)

 .

The first-order conditions are

αi − xi + δ

∑
j∈N

βj +Nδ(
∑
i∈M

xi)

+Nδ2xi = 0, ∀i ∈M.

This system of linear equations can be solved via simple Gaussian eliminations. Similarly, we can
derive the equilibrium contributions when group N moves first.

For our purpose, we only need to compare the aggregate contribution. To this end, taking
summation over i ∈M yields:

∑
i∈M

αi − (1− δ2N)
∑
i∈M

xi +Mδ

∑
j∈N

βj +Nδ(
∑
i∈M

xi)

 = 0 (30)

⇐⇒
∑
i∈M

xi =

∑
i∈M αi +Mδ

∑
j∈N βj

1− δ2(MN +N)
.

Hence, the aggregate contribution in N is just

∑
j∈N

yj =
∑
j∈N

βj +Nδ(
∑
i∈M

xi) =
∑
j∈N

βj +Nδ

(∑
i∈M αi +Mδ

∑
j∈N βj

1− δ2(MN +N)

)
.

Let ∆X denote the increment of aggregate contribution from group M , and similarly for ∆Y

from group N . As the nodes in N are playing best responses, by (29) we have ∆Y = Nδ∆X . Now
we can compare the increment of aggregate contribution:

∆Y + ∆X = (1 +Nδ)∆X = (1 +Nδ)

(∑
i∈M αi +Mδ

∑
j∈N βj

1− δ2(MN +N)
−
∑

i∈M αi +Mδ
∑

j∈N βj

1− δ2MN

)
=

Nδ2(1 +Nδ)(
∑

i∈M αi +Mδ
∑

j∈N βj)

(1− δ2(MN +N))(1− δ2MN)
.

Recalling that ᾱ =
∑
i∈M αi
M and β̄ =

∑
j∈N βj
N , we obtain that

∆ = ∆Y + ∆X =
MNδ2

1−MNδ2
× (1 +Nδ)(ᾱ+Nδβ̄)

(1− δ2(MN +N))
.

Similarly, we can derive the increment of aggregate contribution when group N moves first:

∆′ =
MNδ2

1−MNδ2
× (1 +Mδ)(β̄ +Mδᾱ)

(1− δ2(MN +M))
.
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The comparison immediately leads to the proposition. Note that to make these numbers meaningful
(for stability considerations), we assume that δ < 1/

√
MN + max(M,N). �

Proof of Corollary 4. If M = N , then (16) is equivalent to

ᾱ+Nδβ̄ > β̄ +Mδᾱ = β̄ +Nδᾱ⇔ (1−Nδ)(ᾱ− β̄) > 0.

The result follows because 1−Nδ > 0. �

Proof of Corollary 5. To this end, it suffices to show that:

N > M ⇐⇒ (1 +Nδ)2

1− δ2MN − δ2N
>

(1 +Mδ)2

1− δ2MN − δ2M
.

This obviously holds because (1 +Nδ)2 > (1 +Mδ)2 and 1− δ2MN − δ2N < 1− δ2MN − δ2M . �

Proof of Theorem 3. We prove this theorem by induction on the step of the sequence.
Suppose that k = 1. In this case, it is simply the simultaneous-move game, and we know that
x(N,G, δ, α) = [I − δG]−1α. Thus, the matrix T is equal to [I − δG]−1, which is symmetric if G is.

Now suppose that the results hold for any sequence with steps smaller than k. Consider a
sequence S = (P1, P2, · · · , Pk) with step k. Let A = P1 denote the nodes in the first step, let
B = N\A = ∪2≤i≤kPi, and S ′ = (P2, · · · , Pk) as the subsequence. For each xA, the subgame
is again a network game with sequence S ′, nodes B with adjacency matrix GBB, and parameter
α′B = αB + δGBAxA. Note that the step of sequence S ′ is k − 1. Therefore, by induction the
equilibrium in the subgame is given by xB = Uα′B = U(αB + δGBAxA) for a matrix U . Moreover,
the matrix U is symmetry if GBB is by induction.

Given the feedback in the subgame, the nodes in A choose xi to maximize:

ui = αixi −
1

2
x2i + δxi

∑
j∈A

gijxj +
∑
j∈B

gijxj(xA)

 , ∀i ∈ A.

The rest of the analysis is similar to the case with two stages in the proof of Theorem 1, except
that the matrix U is given by the induction step.

In all, we get:

Z(S) =

( [
1− δ(T + TD)

]−1
δ
[
1− δ(T + TD)

]−1
GABU

δUGBA
[
1− δ(T + TD)

]−1
U + δ2UGBA

[
1− δ(T + TD)

]−1
GABU

)
(31)

where U is given by the induction step, and T = GAA + δGABUGBA. �

Proof of Proposition 6. The proof is composed of several steps. In Step 1, we show that if
the response function in the subgame is stronger, the equilibrium in the first stage is also stronger.
Step 2 establishes the equivalence between the general sequence and a specific two-stage game
regarding the equilibrium outcomes. Finally, Step 3 shows that the equilibrium contribution profile
under two-stage (A1, A2) is higher than the single-stage game for group A.

Step 1.
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Without loss of generality, we assume that r = 1, i.e., we just split the first set P1. This can
be observed in the following lemma. Define two matrices

Z =

( [
1− δ(T + TD)

]−1
δ
[
1− δ(T + TD)

]−1
GABU

δUGBA
[
1− δ(T + TD)

]−1
U + δ2UGBA

[
1− δ(T + TD)

]−1
GABU

)

and

Z̃ =

 [
1− δ(T̃ + T̃D)

]−1
δ
[
1− δ(T̃ + T̃D)

]−1
GABŨ

δŨGBA

[
1− δ(T̃ + T̃D)

]−1
Ũ + δ2ŨGBA

[
1− δ(T̃ + T̃D)

]−1
GABŨ

 ,

where T = GAA + δGABUGBA, T̃ = GAA + δGABŨGBA.

We claim that if Ũ � U , then Z̃ � Z. To prove this, observe that if Ũ − U � 0, T̃ − T =
δGAB(Ũ − U)GBA � 0. Therefore, T̃ + T̃D − (T + TD) � 0, and hence[

1− δ(T̃ + T̃D)
]−1
−
[
1− δ(T + TD)

]−1
=
[
1− δ(T + TD)

]−1
(T̃ + T̃D − (T + TD))

[
1− δ(T̃ + T̃D)

]−1
� 0.

In other words, [
1− δ(T̃ + T̃D)

]−1
�
[
1− δ(T + TD)

]−1
.

Combined with Ũ � U , we can show that

δ
[
1− δ(T̃ + T̃D)

]−1
GABŨ � δ

[
1− δ( T + TD)

]−1
GABU.

The comparisons for the rest terms are similar and hence are omitted.

The above argument shows that if the response function in the subgame is stronger, the
equilibrium in the first stage is also stronger. This positive feedback then makes the whole response
function stronger. Therefore, by the induction argument, we only need to check the result when
we just split the first set P1 into two sets, i.e., the case with r = 1.

Step 2.

If r = 1, without loss of generality we can assume that k = 2. This is intuitive since from the
perspective of the nodes in P1, they only care about the response functions of nodes in P2 ∪ P2 ∪
· · ·∪Pk as a whole. Consequently, we can simply reduce their response functions to the equilibrium
response matrix U in the subsequence (P2 ∪P2 ∪ · · · ∪Pk). The existence of U is given in the proof
of Theorem 3.

Now suppose that r = 1 and k = 2. In this case, let S = (A,B) and S̃ = (A1, A2, B). For
each xA, the equilibrium in the subgame is given by xB = Uα′B = U(αB + δGBAxA) for matrix U .
Taking the feedback into account, the nodes in A are playing a network game with payoffs:

ui = αixi −
1

2
x2i + δxi

∑
j∈A

gijxj +
∑
j∈B

gijxj(xA)

 , ∀i ∈ A,
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where xj(xA) =
∑

k∈B Ujk(αk + δ
∑

l∈A gklxl) by (4). Plugging in and switching dummy variables
if necessary, we obtain that

ui = αixi −
1

2
x2i + δxi

∑
j∈A

gijxj +
∑
j∈B

gij

(∑
k∈B

Ujk(αk + δ
∑
l∈A

gklxl)

)
=

αi + δ
∑
j∈B

∑
k∈B

gijUjkαk

xi −
1

2
x2i

+δxi

∑
j∈A

gijxj + δ
∑
j∈B

∑
k∈B

∑
l∈A

gijUjkgklxl

 .

In other words, the nodes in A play a new network game with parameters:

α̃A = αA + δGABUαB, and G̃AA = GAA + δGABUGBA.

S = (A,B) corresponds to the simultaneous-move game in the new network game on A, and the
sequence S̃ = (A1, A2, B) maps to the two-stage (A1, A2) game in the new network game on A.
Hence, we can reduce the proof to the case with k = 1.

Step 3.

The next step is to show that the equilibrium contribution profile under two-stage (A1, A2) is
higher than the single-stage game for group A. If this is true, then the equilibrium of the nodes in
B is also higher as their response functions xB = Uα′B = U(αB + δGBAxA) are increasing in xA.
All in all, we can reduce everything into the case with k = 1.

If k = 1, the basic argument is given in Proposition 1. However, after reducing everything into
the case k = 1 on the nodes in A, the “effective” influence matrix

G̃AA = GAA + δGABUGBA

may have nonzero diagonal entries. Therefore, we have to use the analogous part to establish the
result. Combing these steps, we then complete the proof. �

Proof of Corollary 6. This follows immediately from Proposition 6. �

Proof of Theorem 4. We again prove it by induction on the step k. For k = 1, the result is
trivial. For k = 2, it is shown in Theorem 2.

For genera k, define sequence S = (P1, P2, · · · , Pk) . Furthermore, A = P1 denotes the nodes
in the first step, and B = N\A. Thus,

Z(S) =

( [
1− δ(T + TD)

]−1
δ
[
1− δ(T + TD)

]−1
GABU

δUGBA
[
1− δ(T + TD)

]−1
U + δ2UGBA

[
1− δ(T + TD)

]−1
GABU

)
,

by (31), where U is given by the induction step, and T = GAA + δGABUGBA. Also, by (17), we
have

[1− δG]−1 =

 [
1− δT̂

]−1
δ
[
1− δT̂

]−1
GABÛ

δÛGBA

[
1− δT̂

]−1
Û + δ2ÛGBA

[
1− δT̂

]−1
GABÛ

 ,
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with Û = [1− δGBB]−1, and T̂ = GAA + δGABÛGBA. By induction, we obtain that

U − Û = δ2


(∑k

j=3GP2PjGPjP2

)D
0 0 0

0
. . . 0 0

0 0
(
GPk−1PkGPkPk−1

)D
0

0 0 0 0

+O(δ3).

To compare these two matrices, we first show that:

(T + TD)− T̂ = GAA + δGABUGBA + (GAA + δGABUGBA)D − (GAA + δGABÛGBA)

= δGAB(U − Û)GBA + δ(GABUGBA)D

= δ(GABGBA)D +O(δ2).

Because GDAA = 0 and (U − Û) = O(δ2), U = I +O(δ). Therefore:[
1− δ(T + TD)

]−1 − [1− δT̂]−1 =
[
1− δT̂

]−1
δ
(

(T + TD)− T̂
) [

1− δ(T + TD)
]−1

= δ2(GABGBA)D +O(δ3).

Similarly, we can show that:

δ
[
1− δ(T + TD)

]−1
GABU − δ

[
1− δT̂

]−1
GABÛ = O(δ3),

δUGBA
[
1− δ(T + TD)

]−1 − δÛGBA [1− δT̂]−1 = O(δ3),

and

U + δ2UGBA
[
1− δ(T + TD)

]−1
GABU −

(
Û + δ2ÛGBA

[
1− δT̂

]−1
GABÛ

)
= U − Û +O(δ3)

= δ2


(∑k

j=3GP2PjGPjP2

)D
0 0 0

0
. . . 0 0

0 0
(
GPk−1PkGPkPk−1

)D
0

0 0 0 0

+O(δ3).

Plugging in these terms, we establish the results. �

Proof of Corollary 7. By Proposition 6, Z(S ′) � Z(S). Therefore,

Z(S ′)− Z(∅)
δ2

� Z(S ′)− Z(∅)
δ2

.

Taking the limits as δ → 0, the result follows directly from Theorem 4. �

Proof of Corollary 8. Under these conditions, if S is a chain, we can assume S = (1, · · · , N).
Then the term L(S) simply counts the number of 1s on the upper diagonal part of G. In other
words, L(S) =

∑
j>i gij = 1

2

∑
ij gij , where we use the fact that gii = 0, ∀i. �
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Proof of Lemma 2. First, the gradient of W (x) is ∇W (x) = α − x + δ(G + G′)x, which
equals δG′xN at x(∅) = xN = [1 − δG]−1α. Note that x(S) − x(∅) = δ2Λα + O(δ3) from (9).
Therefore,

∆W = W (x(S))−W (x(∅))
= 〈δG′xN ,x(S)− x(∅)〉+O(δ4)

= 〈δG′xN , δ2Λα+O(δ3)〉+O(δ4)

= δ3α′GΛα+O(δ4).

Here we use the fact that xN = α+O(δ). �

Proof of Proposition 7. This is a direct consequence of Lemma 2. �
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