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Abstract

During the last 40 years, simplicial partitioning has shown itself to be highly
useful, including in the field of Nonlinear Optimisation. In this article, we con-
sider results on the exhaustivity of simplicial partitioning schemes. We consider
conjectures on this exhaustivity which seem at first glance to be true (two of
which have been stated as true in published articles). However, we will pro-
vide counter examples to these conjectures. We also provide a new simplicial
partitioning scheme, which provides a lot of freedom, whilst guaranteeing ex-
haustivity.
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1 Introduction

Simplicial partitioning has shown itself to be highly useful, including in the field of
Nonlinear Optimisation [1, 2, 3, 4, 6, 8, 10].

When we refer to simplices, we mean sets of the form ∆ = [v1, . . . ,vp], where
v1, . . . ,vp ∈ Rn are affinely independent (equivalently dim ∆ = p− 1) and [v1, . . . ,vp]
denotes the convex hull of the set {v1, . . . ,vp}. Note that if p = 3, then this is
simply a triangle. We refer to {v1, . . . ,vp} as the set of vertices of ∆ and we refer to
{{vi,vj} | i, j = 1, . . . , p : i < j} as the set of edges of ∆.

We define the diameter of this simplex as follows, where the vector norm used in
this paper is the Euclidean norm,

δ (∆) := max{‖x− y‖ | x,y ∈ ∆} = max{‖vi − vj‖ | i, j = 1, . . . , p}.

If we have a simplex, ∆, and a finite set of simplices, P = {∆i | i ∈ I}, such that

∆ =
⋃
i∈I

∆i,

dim ∆ = dim ∆i for all i ∈ I,
∅ = reint ∆i ∩ reint ∆j for all i, j ∈ I : i 6= j,

then we say that P is a simplicial partition of ∆. In this article, the only partitions
that we consider are simplicial partitions and we shall thus simply refer to them as
partitions.
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We define the diameter of the partition P given above as

δ (P) := max{δ (∆i) | i ∈ I}.

For two partitions P1 = {∆i | i ∈ I} and P2 = {∆j | j ∈ J }, we say that P1 is
nested in P2 if for all i ∈ I, there exists j ∈ J such that ∆i ⊆ ∆j. Naturally, we then
have that δ (P1) ≤ δ (P2).

In this article, we consider sequences of nested partitions {Pi | i ∈ N}, where
N := {0, 1, 2, . . .}, such that P0 = {∆} and ∆ =

⋃
∆j∈Pi ∆j for all i ∈ N, and where

by a sequence of nested partitions we mean that Pi+1 is nested in Pi for all i ∈ N. It
is then desirable that limi→∞ δ (Pi) = 0, and when this holds we say that the sequence
is exhaustive. In the following subsection we consider an application for this, then in
Subsection 1.2, we consider three possible methods for going from one partition to
the next one in the sequence, and in the remaining sections we look at when we can
guarantee that the sequence of partitions is exhaustive, or give a counter example to
this happening.

1.1 An application of partitioning

Suppose we wish to solve the following problem, where f is a continuous function.

νf (∆) = min
x
{f(x) | x ∈ ∆}.

This is in general an NP-hard problem [5, sections 1.7 and 2.2.3], so instead of solving
exactly, we wish to find a hierarchy of approximate solutions to the problem. More
specifically, we wish to be able to find a sequence {(xk, νk) | k ∈ N} ⊆ ∆ × R such
that νk ≤ νf (∆) ≤ f(xk) for all k and limk→∞ (f(xk)− νk) = 0.

We begin by defining Uf (∆i) := min{f(v) | v is a vertex of ∆i}. We then have
that νf (∆i) ≤ Uf (∆i). Also, from f being continuous, for any sequence of simplices
{∆i | i ∈ N}, contained within a compact set, such that limi→∞ δ (∆i) = 0, we have
that limi→∞ (Uf (∆i)− νf (∆i)) = 0.

Now suppose that we can also compute lower bounds to νf (∆i), given by Lf (∆i),
such that, for any sequence of simplices {∆i | i ∈ N}, contained within a compact set,
with limi→∞ δ (∆i) = 0, we have that limi→∞ (νf (∆i)− Lf (∆i)) = 0. In Example 1.1,
at the end of this subsection, we shall see an example of such a lower bound.

For any partition P , we let

Uf (P) := min{Uf (∆i) | ∆i ∈ P},
Lf (P) := min{Lf (∆i) | ∆i ∈ P}.

We now consider an arbitrary exhaustive sequence of nested partitions {Pi | i ∈ N},
such that P0 = {∆} and ∆ =

⋃
∆j∈Pi ∆j for all i. We can then let xk be one of the

vertices minimising Uf (Pk) and let νk equal Lf (Pk), to get the desired properties for
{(xk, νk) | k ∈ N}.
Example 1.1. Consider f(x) = xTAx, where A is a symmetric matrix and let

Lf (∆) = min
(
{uTAv | {u,v} is an edge of ∆} ∪ {Uf (∆)}

)
.

First we shall show that this is indeed a lower bound.
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Consider an arbitrary ∆ = [v1, . . . ,vp] such that dim ∆ = p − 1. For any x ∈ ∆,
there exists a unique θ ∈ Rp such that x =

∑
i θivi, with θ ≥ 0 and

∑
i θi = 1. We

then have the following result, proving that we do indeed have a lower bound

f(x) =
∑

i,jθiθjv
T
i Avj ≥

∑
i,jθiθjLf (∆) = Lf (∆)

We shall now prove the convergency result. If we consider arbitrary vertices u,v
from ∆, then we have the following, where the matrix norm used in this paper is the
spectral norm.

2uTAv = f(u) + f(v)− (u− v)TA(u− v)

≥ 2Uf (∆)− ‖A‖‖u− v‖2

≥ 2Uf (∆)− ‖A‖δ (∆)2 .

This then implies that

0 ≤ νf (∆)− Lf (∆) ≤ Uf (∆)− Lf (∆) ≤ 1
2
‖A‖δ (∆)2 .

Now, considering this for partitions, we have that

Uf (P) = min{vTAv | v is a vertex in P},
Lf (P) = min

(
{uTAv | {u,v} is an edge in P} ∪ {Uf (∆)}

)
.

1.2 Partitioning methods

In order to go from one partition to the next partition in the sequence, we consider
three alternative methods, which are given in Algorithms 1 to 3. Good introductions
to these are provided in [5]. In this paper, we wish to have as much freedom as possible
in our choices. In Algorithms 1 and 2, the choice of what value of α to pick shall always
be left open, and similarly for the choice of w in Algorithm 3. When in Algorithms 1
and 2 an edge {u,v} is picked, we shall say that we are bisecting this edge, and when
in Algorithms 1 and 3 a subsimplex ∆i is picked then we say that we are partitioning
this subsimplex. As previously mentioned, it is often desirable that the sequence of
partitions is exhaustive, and we shall look at which algorithms and restrictions on
choices ensure this, as well as which ones do not.

Algorithm 1 Classical partitioning of a single subsimplex.

Input: A parameter λ ∈ (0, 1
2
], and a partition {∆i | i ∈ I}.

Output: A partition {∆j | j ∈ J } which is nested in the original partition with⋃
j∈J ∆j =

⋃
i∈I ∆i.

1: Pick an edge {u,v}, from a subsimplex ∆i in the original partition.
2: Pick an α ∈ [λ, 1− λ].
3: Let w = αu + (1− α)v.
4: Let {v1, . . . ,vp−2} be the unique set such that ∆i = [u,v,v1, . . . ,vp−2].
5: Replace ∆i in the partition with two new simplices ∆i,1,∆i,2 such that

∆i,1 = [u,w,v1, . . . ,vp−2],

∆i,2 = [w,v,v1, . . . ,vp−2].

6: Output resultant partition.
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Algorithm 2 Simultaneous partitioning of all subsimplices with a common edge.

Input: A parameter λ ∈ (0, 1
2
], and a partition {∆i | i ∈ I}.

Output: A partition {∆j | j ∈ J } which is nested in the original partition with⋃
j∈J ∆j =

⋃
i∈I ∆i.

1: Pick an edge {u,v}, from a subsimplex in the original partition.
2: Pick an α ∈ [λ, 1− λ].
3: Let w = αu + (1− α)v.
4: for i ∈ I such that {u,v} is an edge of ∆i do
5: Let {v1, . . . ,vp−2} be the unique set such that ∆i = [u,v,v1, . . . ,vp−2].
6: Replace ∆i in the partition with two new simplices ∆i,1,∆i,2 such that

∆i,1 = [u,w,v1, . . . ,vp−2],

∆i,2 = [w,v,v1, . . . ,vp−2].

7: end for
8: Output resultant partition.

Algorithm 1 is a commonly used method for partitioning [2, 4, 6]. However, from
the counter examples in the following section, we shall see that we do not get much
freedom in the choice of {u,v} if we wish to guarantee that the sequence of partitions
is exhaustive. This is because with this method the same edge in two different subsim-
plices should really be considered as two separate edges due to the fact that they are
bisected separately. For this reason we introduce Algorithm 2, which does not have
this problem, and so, as we will see later, gives more freedom. In fact, in such cases
as Example 1.1, this is a natural method to use, as the bounds are dependent on the
edges and vertices, rather than the simplices directly.

Algorithm 3 Radial subdivision of a single subsimplex.

Input: A parameter ρ ∈ (0, 1] and a partition P = {∆i | i ∈ I}.
Output: A partition {∆j | j ∈ J } which is nested in the original partition with⋃

j∈J ∆j =
⋃
i∈I ∆i.

1: Pick a subsimplex ∆i = [v1, . . . ,vp] in the original partition.
2: Pick a w ∈ ∆i such that 0 < ‖w − vj‖ < ρδ (P) for all j.
3: Remove ∆i from the partition.
4: for j = 1, . . . , p such that w /∈ [v1, . . . ,vj−1,vj+1, . . . ,vp] do
5: Add the simplex ∆ = [v1, . . . ,vj−1,w,vj+1, . . . ,vp] to the partition.
6: end for

In Algorithm 3 we consider radial subdivisions, also referred to in the literature
as ω-subdivisions, which provides another commonly used method for partitionnig [1,
3, 8, 10]. The conditions on w are in fact a slight adaptation of the ρ-eccentricity
condition from [8]. In this we were restricted to ρ ∈ (0, 1) and ‖w− vj‖ < ρδ (∆i) for
all j. We have relaxed the restriction on ρ (although we shall later show that ρ = 1
should not be chosen), and added the restriction that w is not one of the vertices of
∆i. In general, if ρ is too small, then it is possible that no w will exist satisfying
this condition. However for ρ ≥

√
3/2 there will exist a point obeying this condition.

This is because, if we let w equal the midpoint of the longest edge of ∆i, then it was
shown in [9, 10] that ‖w−v‖ ≤ 1

2

√
3δ (∆i) for all v ∈ ∆i. This can also be seen using

Lemma 2.2, introduced in the following section.
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Often, when analysing partitions, instead of considering the partition as a whole we
consider sequences of subsimplices ∆i ∈ Pi for all i ∈ N such that ∆0 ⊇ ∆1 ⊇ ∆2 ⊇ · · · .
Conditions are then included to ensure that for any such sequence we have that
limi→∞ δ (∆i) = 0. This would then imply that the sequence of partitions is exhaus-
tive. Although doing this can make the calculations for proving exhaustivity easier,
in this paper will shall mainly be considering the partitions as a whole rather than
sequences of subsimplices for two reasons. The first is that, in practice, keeping track
of all the sequences and ensuring that the conditions hold for them can be computa-
tionally cumbersome. Secondly, Algorithm 2 acts in general on multiple subsimplices
at once, and thus this type of analysis is insufficient.

2 Counter Examples

One simple choice for {u,v} in Algorithms 1 and 2 is such that it is one of the longest
edges in the partition. If we consider using Algorithm 1, then it was shown in [6]
that by doing this for λ = 1

2
, we do indeed get that the sequence of partitions is

exhaustive, and this was extended in [4] to show that this is also true for any fixed
parameter λ ∈ (0, 1

2
], independent of the choice of α. Now, due to the similarity of

Algorithms 1 and 2, we see that this result must also hold for using Algorithm 2.
This result is however of limited practical use as it does not give much freedom in
the choice of {u,v}. Instead, in many practical applications, {u,v} is picked in a
way that works heuristically well for the application, which we shall refer to as a free
bisection, then every so often a controlling bisection is performed which is meant to
ensure the required limiting result [2]. Similarly, Algorithm 3 alone can not guarantee
exhaustivity, as in general we are not bisecting edges, and so we perform Algorithm 3 in
free partitions using a heuristic and every so often a controlling bisection is performed
using Algorithm 1 or 2. This is formalised in Algorithm 4. (An alternative method to
this for Algorithm 3, connected to a ρ-dominance condition, was given in [8], however
this involved keeping tracking of sequences of subsimplices, which we wish to avoid
doing.)

Algorithm 4 Partitioning algorithm.

Input: A simplex ∆ and q ∈ N \ {0} and λ ∈ (0, 1
2
].

Output: A nested sequence of partitions of ∆, denoted {Pi | i ∈ N}.
1: Let P0 = {∆}.
2: for i ∈ N do
3: if i 6≡ q − 1 (mod q) then
4: Let Pi+1 be a nested partition of Pi produced by a free bisection/partition,

using Algorithm 1, 2 or 3.
5: else
6: Let Pi+1 be a nested partition of Pi produced by a controlling bisection, using

Algorithm 1 or 2.
7: end if
8: end for

The controlling bisection is ordinarily in the form of the longest edge being bisected,
and it is often stated by having this as the controlling bisection, whilst leaving the
choice on the free bisection/partition unrestricted, we will have that the sequence of
partitions is exhaustive, where by the free partition being unrestricted we mean that
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ρ is set equal to one. However, although it seems obvious that this must be true, in
the following example we shall see that this is actually not in general the case.

Example 2.1. This counter example will be for p = q = 3, works for Algorithms 1 to 3,
and works for every possible controlling bisection scheme, not just that of bisecting
the longest edge.

We start with the triangle in Fig. 1a, with all edge lengths equal to one. We shall
describe free bisection/partition steps such that after every controlling bisection there
must be at least one triangle in the partition which has t as one of its vertices and
its opposite edge being contained in the edge {u,v}. The diameter of the partitions
is then greater than or equal to the diameter of this triangle, which is in turn greater
than or equal to 1

2

√
3.

(a) (b) (c)

Figure 1: Illustration of Example 2.1.

Suppose that after the ith controlling bisection there is such a triangle, for example
the triangle {t,w,x} in Fig. 1b. The original triangle can be described as the partition
after the 0th controlling bisection, so this is true for i = 0. Now, for our two free
bisection/partition steps we bisect the edge {w,x} to give the vertex y and then
the edge {w,y} to give the vertex z (Fig. 1c). All three of the triangles {t,w, z},
{t, z,y} and {t,y,x} are such triangles as described in the previous paragraph. Now,
whatever edge is bisected in the next controlling bisection, atleast one of these triangles
will be left untouched, and so after the (i + 1)th controlling bisection there will be
such a triangle as described in the previous paragraph. Thus, by induction, we have
constructed a counter example.

From this example, we see that if we wish to guarantee that the sequence of par-
titions is exhaustive then we need to do something to restrict the choice of free bisec-
tions/partitions, and we shall first consider when Algorithm 1 or 2 are used in the free
bisections. The reader most likely noticed that, in Example 2.1, the free bisections
involved bisecting ever smaller edges. Thus one idea would be that perhaps we could
pick a δ > 0 and only bisect edges of length greater than or equal to δ. We would
then wish for δ (PK) ≤ δ for some K ∈ N, at which point we would need to either
terminate the algorithm or reduce δ. It would seem that naturally such a thing would
occur even without the controlling bisections, however we shall see in Example 2.3
that actually it is possible that without the controlling bisections we may not even get
a reduction in δ (Pi). Before presenting this example however, we shall first introduce
the following lemma, which shall be useful in this example, along with being of use
later in the paper.

Lemma 2.2. Consider the triangle in Fig. 2a, with edge lengths given by a, b, c, as
labelled. We partition this triangle as in Algorithm 2 for some α ∈ [0, 1], to produce
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the partitioned triangle in Fig. 2b. Then we have

d2 = αa2 + (1− α)b2 − α(1− α)c2.

(a) Unpartitioned triangle (b) Labelled Triangle

Figure 2: Triangle from Lemma 2.2 before and after partitioning, along with labelling.

Proof. From a standard trigonometric result, called the law of cosines, we get the
following, which immediately implies the required result,

a2 = b2 + c2 − 2bc cos θ and d2 = b2 + (αc)2 − 2b(αc) cos θ.

We are now ready to present the example.

Example 2.3. This counter example is explained for using Algorithm 2, however it also
works for using Algorithm 1, in which case we should pick the subsimplex [u,vi,w]
each time. This counter example is for p = 3, with all edge lengths in the initial
simplex equal to one. We shall then describe how we can always bisect an edge of
length greater than 0.65, but the diameter of the partitions shall remain equal to one.

We start with the triangle in Fig. 3a, with all edge lengths equal to one. For all
i ∈ N, we bisect with α = 1

2
to produce the new vector vi+1, such that if i is even then

we bisect the edge {u,vi}, and if i is odd then we bisect the edge {w,vi}. The first
few steps of this are demonstrated in Fig. 3.

If we let li be the length of the edge bisected to produce vertex vi+1, then using
Lemma 2.2, it can be shown that

l20 = 1, l21 = 3
4
, and l2i = 1

2
− 1

4
l2i−1 + 1

8
l2i−2 for all i ≥ 2.

We can then solve this recursive relation to give the following for all i ∈ N:

l2i = 7
9

((
−1

2

)
i − 1

7

)2
+ 3

7
> 3

7
> (0.65)2.

However, the diameter of the partition remains equal to one as neither of the edges
{u,w} or {v0,w} are ever bisected.

So what about combining these two approaches? For this we get partial success.
We shall see in the next section that if we use Algorithm 2 in the controlling bisections
then even with a slight relaxation to this, the diameter does indeed tend towards zero.
However, if instead we use Algorithm 1 in the controlling bisections then the following
example acts as a counter example to this approach.

Example 2.4. This counter example is an adaptation of Example 2.3. This is for p = 4
with all edge lengths in the initial simplex equal to one. We shall have q = 2, where
in the controlling bisections we bisect a longest edge using Algorithm 1 and in the
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(a) (b) (c)

(d) (e)

Figure 3: First few steps in Example 2.3.

free bisections we shall bisect an edge of length greater than or equal to 0.65 using
Algorithm 1 or 2. However, the diameter of the partitions shall remain equal to one
throughout.

We begin with a simplex with four vertices, labelled t,u,v0,w, and all edge lengths
equal to one. We now have the following partitioning rules for i ∈ N, where all
bisections are performed with α = 1

2
:

• i ≡ 0 (mod 4): Pick the edge {u,vi}, from the subsimplex [t,u,vi,w], to bisect
using Algorithm 1 or 2 to produce the new vertex vi+2 and the new
subsimplices [t,u,vi+2,w] and [t,vi+2,vi,w].

• i ≡ 1 (mod 4): Pick the edge {t,w}, from the subsimplex [t,vi+1,vi−1,w], to bisect
using Algorithm 1.

• i ≡ 2 (mod 4): Pick the edge {w,vi}, from the subsimplex [t,u,vi,w], to bisect
using Algorithm 1 or 2 to produce the new vertex vi+2 and the new
subsimplices [t,u,vi+2,w] and [t,u,vi,vi+2].

• i ≡ 3 (mod 4): Pick the edge {t,u}, from the subsimplex [t,u,vi−1,vi+1], to bisect
using Algorithm 1.

(Note that only some of the new subsimplices are described, however any excluded are
unnecessary for understanding the example.)

For i odd, we are bisecting an edge of length equal to one, i.e. a longest edge, and
for i even, if we let li be the length of the edge bisected, then similarly to Example 2.3,

we have that l2i = 7
9

((
−1

2

)
i/2 − 1

7

)2
+ 3

7
> (0.65)2.

We now return to considering Algorithm 3 in the free partitions. From Example 2.1
we have seen that we must pick ρ ∈ (0, 1). We next consider if simply doing this and
using either Algorithm 1 or 2 in the controlling bisections to bisect the longest edge
will guarantee that the sequence of partitions is exhaustive. Again we get partial
success. In the next section we shall see that if we use Algorithm 2 in the controlling
bisections then the sequence of partitions will be exhaustive. However, if instead we
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use Algorithm 1 in the controlling bisections then we can not in general guarantee
exhaustivity.

Example 2.5. This counter example is for p = 4, with all edge lengths in the initial
simplex equal to one. We shall have q = 2, where in the controlling bisection we
use Algorithm 1 to bisect a longest edge and in the free bisections we shall use Algo-
rithm 3 with ρ = 3

4
. However, the diameter of the partitions shall remain equal to one

throughout.
We begin with a simplex with four vertices, labelled t,u,v0,w, and all edge lengths

equal to one. We now have the following partitioning rules for i ∈ N:

• i ≡ 0 (mod 2): Pick the subsimplex [t,u,vi,w] to partition using Algorithm 3, pro-
ducing the new vertex vi+2 = 1

4
(t + u + vi + w) and the new sub-

simplices [t,vi+2,vi,w] and [t,u,vi+2,w], among others.
• i ≡ 1 (mod 2): Pick the subsimplex [t,vi+1,vi−1,w] and its edge {t,w} to bisect

using Algorithm 1.

For i odd, we are bisecting an edge of length equal to one, i.e. a longest edge. For i
even, we are partitioning a subsimplex using Algorithm 3 and for x = t,u,vi,w we
have

‖x− vi+2‖ = ‖1
4
(x− t) + 1

4
(x− u) + 1

4
(x− vi) + 1

4
(x−w)‖

< 1
4
‖x− t‖+ 1

4
‖x− u‖+ 1

4
‖x− vi‖+ 1

4
‖x−w‖

≤ 3
4
δ ([t,u,vi,w]) .

3 A Convergent Partitioning Scheme

In this section we will consider the following two methods of simplex partitioning.

Method 3.1. Let ∆ be a simplex, q ∈ N \ {0}, λ ∈ (0, 1
2
] and η ∈ (0, 1]. We consider

Algorithm 4 for this, where

• In the free bisections, we always bisect an edge of length greater than or equal
to ηδ (Pi) using Algorithm 1 or 2,

• In the controlling bisections, we bisect one of the longest edges using Algorithm 2.

Method 3.2. Let ∆ be a simplex, q ∈ N \ {0}, λ ∈ (0, 1
2
] and ρ ∈ (0, 1). We consider

Algorithm 4, where

• In the free partitions, we partition using Algorithm 3,

• In the controlling bisections, we bisect one of the longest edges using Algorithm 2.

We shall prove the following result for these methods.

Theorem 3.3. For Methods 3.1 and 3.2 we have that the sequence of partitions is
exhaustive.

For q = 1 this is already known to be true as in this case we are always bisecting
the longest edge. From now on we shall consider q ≥ 2 and shall define the following,
which shall be used throughout this section and the next.
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Definition 3.4. Let δ ∈ (0, δ (∆)], for Method 3.1 define ρ :=
√

1− λ(1− λ)η2,

noting that in such case we have ρ ∈ [1
2

√
3, 1), and further define

p := number of vertices in ∆,

L := δ (∆) ,

γ :=
⌈
logρ(δ/L)

⌉
,

K := 2
q
(1

2
pq)2γ .

In this section we shall prove the following lemma, which in turn proves Theo-
rem 3.3. The bound in this lemma is purely there for the purpose of proving that the
sequence of partitions is exhaustive, and is not tight.

Lemma 3.5. For Methods 3.1 and 3.2 with q ≥ 2, we have δ (Pi) ≤ δ for all i ≥ K.

In order to prove this lemma, we begin by considering the following lemma on
partitioning a triangle.

Lemma 3.6. Consider the triangle [u,v,vi], with all edge lengths being less than or
equal to l ∈ R. Also let ‖u − v‖ be greater than or equal to ηl for some η ∈ (0, 1].
We partition this triangle as in Algorithm 1 for some α ∈ [λ, 1− λ], where λ ∈ (0, 1

2
],

giving the new vertex w = αu + (1− α)v (see Fig. 2b). Then all new edges produced
(i.e. edges {u,w}, {v,w} and {vi,w}) will have lengths less than or equal to ρl.

Proof. From Lemma 2.2 we have

‖vi −w‖2 = α‖u− vi‖2 + (1− α)‖v − vi‖2 − α(1− α)‖u− v‖2

≤ l2 − λ(1− λ)(ηl)2

= ρ2l2.

We will now complete the proof by showing that ‖u−w‖, ‖v −w‖ ≤ ρl:

‖u−w‖ = (1− α)‖v − vi‖ ≤ (1− α)l, ‖v −w‖ = α‖v − vi‖ ≤ αl,

α, (1− α) ≤ 1− λ <
√

(1− λ)2 + λ =
√

1− λ(1− λ) ≤
√

1− λ(1− λ)η2 = ρ.

From this we then get the following corollary.

Corollary 3.7. Let P be a partition and consider performing Algorithm 1 or 2 on this
for λ ∈ (0, 1

2
], with ‖u− v‖ ≥ ηδ (P), where η ∈ (0, 1], to produced a nested partition

P̂. Then any new edges produced, i.e. those in P̂ but not in P, have length less than
or equal to ρδ (P).

If we now return to the methods discussed at the beginning of this section we get
the following.

Corollary 3.8. At any step in Methods 3.1 and 3.2, all new edges produces have length
less than or equal to ρδ (Pi).

In order to keep track of how a particular method is doing, we shall label phases
in it. We say that at step i the method is in phase j if ρj+1L < δ (Pi) ≤ ρjL. We then
have the following lemma.

Lemma 3.9. p̂j := 2
q
(1

2
pq)2j is an upper bound on the number of vertices at the

beginning of phase j (which is also a strict upper bound on the total number of steps
from the beginning of the algorithm to the beginning of phase j).
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Proof. We have that p̂0 = p, therefore the statement is true for j = 0. We shall now
prove that if it is true for a given j, then it must be true for j+1, and so, by induction,
we will have proven the required result.

Suppose for the sake of induction, that p̂j is an upper bound on the number of
vertices at the beginning of phase j. Consider an arbitrary partition P in phase j.
From Corollary 3.8 we get that every new edge produced when bisecting/partitioning
this has length less than or equal to ρδ (P) ≤ ρj+1L. Therefore the only edges of length
strictly greater than ρj+1L present during this phase must have been there from the
start of the phase, and will be the ones bisected during the controlling bisections. The
total number of edges at the start of the phase is less than or equal to 1

2
p̂j(p̂j − 1),

therefore, after at most 1
2
p̂j(p̂j − 1)q steps from the start of the phase, we must have

bisected all edges of length strictly greater than ρj+1L, and thus have left phase j.
Every bisection/partition produces exactly one new vertex, therefore the total number
of vertices at the beginning of phase j + 1 is less than or equal to

p̂j + 1
2
p̂j(p̂j − 1)q = 1

2
p̂2
jq + 1

2
p̂j(2− q) ≤ 1

2
p̂2
jq = p̂j+1.

Finally we note that if P is the partition at the beginning of phase γ, then
δ (P) ≤ ργL ≤ δ. This then completes the proof of Lemma 3.5, which in turn proves
Theorem 3.3.

If we wish to consider the dependence on δ/L more explicitly, we can note that

γ ≤ logρ(δρ/L), 2γ ≤ 2logρ(δρ/L) = (δρ/L)logρ(2).

4 Reconsidering unrestricted free partitioning

In this section we shall reconsider the use of unrestricted free bisections. We start
with the following corollary of Theorem 3.3.

Corollary 4.1. Let ∆ be a simplex, q ∈ N\{0} and λ ∈ (0, 1
2
]. Consider Algorithm 4,

for this where

• In the free bisections we use Algorithm 1 or 2, and we are unrestricted in our
choice of edge to bisect,

• In the controlling bisection, we bisect one of the longest edges using Algorithm 2.

Then for any δ ∈ (0, δ (∆)], within a finite number of steps we must have bisected an
edge of length less than or equal to δ.

We shall demonstrate an application of this theorem in the following example.

Example 4.2. In [2] the authors considered a symmetric nonzero matrix A and the
simplex ∆S = {x ∈ Rn |

∑
i(x)i = 1, x ≥ 0}, with the aim to check if µ ≥ 0, where

µ := min{vTAv | v ∈ ∆S}, and the desire to be able to guarantee completing this
check in finite time when µ > 0. We have that µ ≥ 0 if and only if vTAv ≥ 0 for all
nonnegative vectors v, and such a matrix is described as copositive, so this check is
equivalent to checking copositivity, which is an NP-hard problem [7].

This is in fact closely related to Example 1.1, i.e. f(x) = xTAx, and we will use
the notation given in Subsection 1.1, including that in the example. We recall the
following results from this subsection, where P is a partition of ∆S:

• Lf (P) ≤ µ ≤ Uf (P),
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• For any edge {u,v} in P we have that 1
2
‖A‖‖u− v‖2 ≥ Uf (P)− uTAv,

• Lf (P) ≥ Uf (P)− 1
2
‖A‖‖δ (P)2 .

Therefore, if µ > 0 and we have an exhaustive sequence of partitions, then after a fi-
nite number of steps we will have δ (P) ≤

√
2µ/‖A‖, implying Lf (P) ≥ Uf (P)−µ ≥ 0,

and so the checking would be complete.
An edge {u,v} in a partition is referred to as active if uTAv < 0 and the authors

considered unrestricted free bisections along active edges. They then made the unfor-
tunately common mistake of stating that if we apply Algorithm 4, using Algorithm 1
for all bisections, with the controlling bisections being bisecting a longest edge, then
δ (P) will tend towards zero, which we see from Example 2.4 to not be true in general.

Luckily this can be easily remedied. If instead we apply Algorithm 4, using Algo-
rithm 2 for the controlling bisections, then, for µ > 0, the algorithm would complete
in finite time. This is because for any active edge {u,v} in a partition P , we have

1
2
‖A‖‖u− v‖2 ≥ Uf (P)− uTAv > Uf (P) ≥ µ > 0

which implies

‖u− v‖ >
√

2µ/‖A‖.

If we let δ =
√

2µ/‖A‖ > 0, then, in the free bisections, we are always bisecting active
edges of length strictly greater than δ. Now, from Corollary 4.1, we see that if we have
a controlling bisection of bisecting one of the longest edges using Algorithm 2, then it
is impossible to keep bisecting edges of length greater than δ indefinitely. Therefore,
in a finite number of steps we must run out of active edges to bisect, and thus have
Lf (P) ≥ min{0, Uf (P)} ≥ 0, and so the checking would be complete.

5 The importance of picking a fixed λ or ρ

We finish this article with a final example, this time to act as a reminder to the reader
of the importance of picking a fixed λ in Algorithms 1 and 2, rather than simply
limiting α ∈ (0, 1), as if this is not done then we can not guarantee exhaustivity. This
example can equivalently be seen as emphasising the importance of picking ρ < 1 in
Algorithm 3.

Rather than considering the partitions as a whole, we shall consider a sequence
of nested simplices produced by bisections. Every other step will be a bisection at
the midpoint of the longest edge, however the diameter of the simplices will not tend
towards zero. Returning to the partitions as a whole, this means that even if ever other
step we bisected all subsimplices along one of their longest edges, then we could still
not guarantee exhaustivity. This error has previously occurred in published papers,
see for example [1, Subsection 5.2].

Example 5.1. Let ∆0 = [v0,1,v0,2,v3] be a simplex with 3 vertices and all edge lengths
equal to one. We consider simplices ∆i = [vi,1,vi,2,v3] such that ∆0 ⊃ ∆1 ⊃ ∆2 ⊃ · · · ,
defined recursively as follows:

• i ≡ 0 (mod 2): Let vi+1,2 = vi,2 and vi+1,1 = αivi,1+(1−αi)vi,2, where αi = 1
8

(
1
2

)i/2
.

• i ≡ 1 (mod 2): Let vi+1,2 = vi,1 and vi+1,1 = 1
2
(vi,2 + v3).

A diagram for two steps of this with i even is shown in Fig. 4.
We shall will show that the following hold for all i ∈ N:

12



Figure 4: Diagram illustrating Example 5.1, with i even

1. {vi,2,v3} is a longest edge of ∆i, being the unique longest edge for i > 0,

2. for i even, all edges of ∆i have length greater than 1
4
δ (∆i),

3. for i even, we have ‖vi,2,v3‖ ≥
(

1
4
; 1

2

)
i/2
≥
(

1
4
; 1

2

)
∞ > 0.57, where we recall that

(a; q)k :=
∏k−1

j=0(1− aqj) is the q-Pochhammer symbol.

The significance of these statements is that:

1. for i odd, we are bisecting the unique longest edge at the midpoint,

2. for i even, we are bisecting an edge of length greater than 1
4
δ (∆i),

3. The diameters of the simplices are always greater than 0.57.

For i = 0, all edges are of length one, so the statements trivially hold. Now, for
the sake of induction, assume it is true for all i ≤ 2k, where k ∈ N.

By construction, {vi,2,v3} is the unique longest edge of ∆2k+1 and so the statements
hold for all i ≤ 2k+1. We will now consider the lengths of the edges in ∆2k+2 in order
to prove each of the statements in turn by induction:

1. We shall first prove that {v2k+2,2,v3} is the unique longest edge of ∆2k+2.

‖v2k+2,1 − v2k+2,2‖ =
∥∥(1

2
− α2k)(v3 − v2k,2) + α2k(v3 − v2k,1)

∥∥
< (1

2
− α2k)‖v3 − v2k,2‖+ α2k‖v3 − v2k,1‖

≤ 1
2
‖v3 − v2k,2‖

= ‖v3 − v2k+2,1‖,

‖v3 − v2k+2,1‖ = 1
2
‖v3 − v2k,2‖

< (1− 2α2k)‖v3 − v2k,2‖
≤ (1− α2k)‖v3 − v2k,2‖ − α2k‖v3 − v2k,1‖
< ‖(1− α2k)(v3 − v2k,2) + α2k(v3 − v2k,1)‖
= ‖v3 − v2k+2,2‖.
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2. We now prove that the length of edge {v2k+2,1,v2k+2,2} (i.e. the shortest edge),
is greater than 1

4
times the length of edge {v2k+2,2,v3} (i.e. the longest edge).

‖v2k+2,1 − v2k+2,2‖ =
∥∥(1

2
− α2k)(v3 − v2k,2) + α2k(v3 − v2k,1)

∥∥
> (1

2
− α2k)‖v3 − v2k,2‖ − α2k‖v3 − v2k,1‖

≥ (1
2
− 2α2k)‖v3 − v2k,2‖

≥ 1
4
‖v3 − v2k,2‖

> 1
4

((1− α2k)‖v3 − v2k,2‖+ α2k‖v3 − v2k,1‖)
> 1

4
‖(1− α2k)(v3 − v2k,2) + α2k(v3 − v2k,1)‖

= 1
4
‖v3 − v2k+2,2‖.

3. Finally we prove that the length of edge {v2k+2,2,v3} (i.e. the longest edge) is
greater than

(
1
4
; 1

2

)
k+1

.

‖v3 − v2k+2,2‖ = ‖(1− α2k)(v3 − v2k,2) + α2k(v3 − v2k,1)‖
> (1− α2k)‖v3 − v2k,2‖ − α2k‖v3 − v2k,1‖
≥ (1− 2α2k)‖v3 − v2k,2‖

≥
(

1− 1
4

(
1
2

)k) (1
4
; 1

2

)
k

=
(

1
4
; 1

2

)
k+1

.

6 Conclusion

In this article we have seen that, for simplicial partitioning, whether a sequence of
partitions is exhaustive or not can often defy our intuition. We have provided counter
examples to methods which at first glance we may believe to fulfil this requirement.
Motivated by these counter examples, a new method of partitioning was introduced
which allows us to guarantee this requirement, whilst still giving us a lot of freedom.

Acknowledgment. The author wishes to thank Mirjam Dür for her helpful com-
ments in the writing of this paper.
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