
Communicating Process Architectures 2008
P.H. Welch et al. (Eds.)
IOS Press, 2008
c© 2008 The authors and IOS Press. All rights reserved.

135

FPGA based Control
of a Production Cell System

Marcel A. GROOTHUIS, Jasper J.P. VAN ZUIJLEN and Jan F. BROENINK

Control Engineering, Faculty EEMCS, University of Twente,
P.O. Box 217 7500 AE Enschede, The Netherlands.

{M.A.Groothuis ,J.F.Broenink}@utwente.nl ,J.J.P.vanzuijlen@alumnus.utwente.nl

Abstract. Most motion control systems for mechatronic systems are implemented on
digital computers. In this paper we present an FPGA based solution implemented on
a low cost Xilinx Spartan III FPGA. A Production Cell setup with multiple parallel
operating units is chosen as a test case. The embedded control software for this system
is designed in gCSP using a reusable layered CSP based software structure. gCSP is
extended with automatic Handel-C code generation for configuring the FPGA. Many
motion control systems use floating point calculations for the loop controllers. Low
cost general purpose FPGAs do not implement hardware-basedfloating point units.
The loop controllers for this system are converted from floating point to integer based
calculations using a stepwise refinement approach. The result is a complete FPGA
based motion control system with better performance figuresthan previous CPU based
implementations.

Keywords. embedded systems, CSP, FPGA, Handel-C, gCSP, 20-sim, motion
control, PID, code generation.

Introduction

Nowadays, most motion controllers are implemented on programmable logic controllers
(PLCs) or PCs. Typical features of motion controllers are the hard real-time timing require-
ments (loop frequencies of up to 10 kHz). Running multiple controllers in parallel on a single
PC can result in missing deadlines when the system load is becoming too high. This paper
describes the results of a feasibility study on using a Xilinx Spartan III 3s1500 FPGA for
motion control together with a CSP based software framework.

FPGAs are programmable devices that can be used to implementfunctionality that is
normally implemented in dedicated electronic hardware, but can also be used to execute tasks
that run normally on CPU based systems. Having a general purpose FPGA as motion control
platform compared to CPU based implementations has severaladvantages:

• Parallel execution: no Von Neumann bottleneck and no performance degradation un-
der high system load due to large scale parallelism;

• Implementation flexibility: from simple glue-logic to soft-core CPUs;
• Timing: FPGAs can give the exact timing necessary for motioncontrollers;
• High speed: directly implementing the motion controller algorithms in hardware al-

lows for high speed calculations and fast response times. Although not directly re-
quired for the chosen system this can, for example, be beneficial for hardware-in-
the-loopsimulation systems. Typical PC based solutions can reach upto 20-40 kHz
sampling frequencies, while FPGA based solutions can reachmulti-MHz sampling
frequencies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


136 M.A. Groothuis et al. / FPGA based Control of a Production Cell System

A main disadvantage is that a general purpose FPGA is not natively capable of doing
floating point calculations, which are commonly used in motion control systems. For more
information on FPGAs and their internal structure, see [1].

One of our industrial partners in embedded control systems is moving from their stan-
dardised CPU + FPGA platform towards an FPGA-only platform.A soft-core CPU imple-
mented on the FPGA is used to execute the motion controllers.This approach however still
suffers from the Von Neumann bottleneck and the implementation of a soft-core CPU re-
quires a large FPGA.

The target for this feasibility study is a mock-up of a Production Cell system (see figure
1) based on an industrial plastic molding machine. This system consists of 6 moving robots
that are each controlled by a motion controller. The previous implementation of the system
software was running on an embedded PC. The motion controllers in this implementation
suffer from performance degradation when the system is under high load (when all moving
robots are active at the same time). The Production Cell system already contains an FPGA. It
is currently only used as an I/O board (PWM generators, quadrature encoder interfaces and
digital I/O), to interface the embedded PC with the hardware.

The problems with the software implementation, the possible benefits of using an FPGA
and the move towards FPGA-only platforms resulted in this feasibility study in which we
wanted to implement a motion control system inside an FPGA without using a soft-core CPU.

We have used a model based design approach to realize the FPGAbased motion control
implementation for this setup. The tools 20-sim [2] and gCSP[3] are used to design the loop-
controllers and the embedded control software. The CSP process algebra and the Handel-C
hardware description language [4] are used in combination with code-generation from 20-sim
and gCSP for the design and implementation of the embedded control software.

Section 1 gives more background information on the production cell setup, our previous
experiments, motion control and our model based design method. Section 2 describes the
designed software framework and section 3 describes the consequences for the design of
the loop controllers when running them on an FPGA. This paperconcludes with the results
(section 4) and conclusions of this feasibility study and future work.

1. Background

1.1. Production Cell

An industrial Production Cell system is a production line system consisting of a series of
actors that are coordinated to fulfill together a productionstep in a factory. The production
cell system that is used for this feasibility study is a mock-up designed to resemble a plas-
tics molding machine that creates buckets from plastic substrate. The system consists of sev-
eral devices that operate in parallel [5]. Its purpose is to serve as a demonstrator for CSP
based software, distributed control and to prototype embedded software architectures. Figure
1 shows an overview of the setup.

The setup is a circular system that consists of 6 robots that operate simultaneously and
need to synchronize to pass along metal blocks. In this papereach of these robots is called
a Production Cell Unit, or PCU. Each PCU is named after its function in the system (see
also figure 1). The operation sequence begins by inserting a metal block (real system: plastic
substrate) at thefeeder belt. This causes the feeder belt to transport the block to thefeeder
which, in turn, pushes the block against the closedmolder door. At this point, the actual
molding (real system: creating a bucket from the plastic substrate) takes place. The feeder
retracts and the molder door opens. Theextraction robotcan now extract the block (real
system: bucket) from the molder. The block is placed on theextraction beltwhich transports
it to therotation robot. The rotation robot picks up the block from the extraction belt and puts



M.A. Groothuis et al. / FPGA based Control of a Production Cell System 137

Figure 1. The Production Cell setup

it again on the feeder belt to get a loop in this demonstrationsetup. This loop can also result
in a nice (for teaching purposes) deadlock when 8 or more blocks are in the system. This
deadlock occurs when all sensor positions are occupied withblocks, resulting in the situation
that all robots are waiting for a free position (at the next sensor), in order to move their block
forward.

The belts allow for multiple blocks to be buffered so that every PCU can be provided
with a block at all times, allowing all PCUs to operate simultaneously. The blocks are picked
up using electromagnets mounted on the extraction robot andthe rotation robot. Infrared
detectors (sensors in figure 1) are used for detection of the blocks in the system. They are
positioned before and after each PCU.

1.2. Previous Experiments

Several other software based solutions have been made in thepast to control the Production
Cell setup. The first implementation [6] is made using gCSP [7] in combination with our
CTC++ library [8] and RTAI (real-time) Linux. 20-sim [2] is used to model the system dy-
namics and to derive the control laws needed for the movements in the system. Its purpose
was to evaluate gCSP/CTC++ for controlling a complex mechatronic setup. This software
implementation operates correctly when the system is not overloaded with too many blocks.
When all 6 PCUs are active and many sensors are triggered at the same time, the CPU load
reaches 100%, resulting in a serious degradation of system performance, unsafe operation,
and sometimes even in a completely malfunctioning system. Another implementation [9] is
made using the Parallel Object Oriented Specification Language (POOSL [10], based on Mil-
ner’s CCS [11]). The main focus for this implementation was on the combination of discrete
event and continuous time software, the design method and predictable code generation. The
properties (e.g. timing, order of execution) of the software model should be preserved during
the transformation from model to code. This implementationalso could not guarantee meet-
ing deadlines for control loops under high system load. Furthermore, neither implementation
incorporates safety features in its design.

1.3. gCSP

gCSP is our graphical CSP tool [7] based on the graphical notation for CSP proposed by
Hilderink [12]. gCSP diagrams contain information about compositional relationships (SEQ,
PAR, PRI-PAR, ALT and PRI-ALT) and communication relationships (rendezvous channels).



138 M.A. Groothuis et al. / FPGA based Control of a Production Cell System

An example of a gCSP diagram with channels, processes and SEQand PAR compositions is
given in figure 3. From these diagrams gCSP is able to generateCSPm code (for deadlock and
livelock checking with FDR2/ProBE), occam code and CTC++ code [8]. Recent additions
to gCSP are the Handel-C code generation feature (see section 4) and animation/simulation
facilities [13].

1.4. Handel-C

Handel-C [4] is an ANSI C based hardware description language born out of the idea to
create a way to map occam programs onto an FPGA. Handel-C usesa subset of ANSI C,
extended with CSP concepts like channels and constructs. Its built-in support for massive
parallelism and the timing semantics (single clock tick assignments) are the strongest features
of Handel-C. The close resemblance with the C programming language makes it a suitable
target for tools with C based code generation facilities. This was one of the reasons that Rem
et al. [14] used Handel-C as a code generation language together with MATLAB/Simulink
to design an FPGA based motion controller. While Simulink can be used to generate FPGA
optimized motion controller code by using Handel-C templates for each library block, it does
not support the design of a software framework with multipleparallel processes containing
these motion controllers (targeted for FPGA usage). gCSP ismore suited for this purpose.

1.5. Motion Control

Typical motion control systems consist of motion profiles (the trajectory to follow) and loop
controllers. Their purpose is to control precisely the position, velocity and acceleration of
rotational or translational moving devices, resulting in asmooth movement. The control laws
for the loop controllers require a periodic time schedule inwhich jitter and latency are un-
desired. Hard real-time behaviour is required for the software implementation, to assure pre-
dictable timing behaviour with low latency and jitter. Missing deadlines may result in a catas-
trophic system failure. The embedded control software of a motion control system often con-
tains a layered structure [15] as shown in Fig. 2 .

H
a

r
d

 r
e

a
l-

t
im

e

S
o

f
t
 r

e
a

lt
im

e

Figure 2. Embedded control system software structure

The typical software layers in motion control systems are:

• Man-machine/user interface;
• Supervisory control;
• Sequence control;
• Loop control;
• Data analysis;
• Measurements and actuation.

Besides a functional division in layers from a control engineering point of view, a di-
vision can also be made between hard real-time and soft real-time behaviour: the closer the
software layer is to the machine or plant, the more strict thetiming must be. Hence, the su-



M.A. Groothuis et al. / FPGA based Control of a Production Cell System 139

pervisory control and parts of the sequence control are softreal-time, and mostly run at lower
sampling frequencies. In the case of the Production Cell, atleast loop controllers (including
motion profiles) and sequence controllers (to determine theorder of actions) are needed.

1.6. Design Method

To structure the design process for these kind of systems, weuse the following design ap-
proach:

• Abstraction;
• Top-down design;
• Model-based design;
• Stepwise refinement, local and predictable, aspect oriented

For the system software this means that we start with a top-level abstraction of the sys-
tem that is refined towards the final implementation. During these stepwise refinements we
focus on different aspects (e.g. concurrency, interactions between models of computation,
timing, predictable code generation) of the system. To design the loop controller, we follow
a similar stepwise refinement approach. The first step isphysical system modelling: model
and understand the plant dynamics. The second step iscontrol law design: design a proper
control law for the required plant movements. The third stepis theembedded control sys-
tem implementationphase in which relevant details about the target are incorporated in the
model. These include the non-idealness of the interfaces with the outside world (sampling,
discretization, signal delays, scaling), target details (CPU, FPGA). This step ends with code
generation and integration of the loop controllers into thesystems embedded software. Veri-
fications by simulation are used after the first three steps. Validation and testing are done on
the last steprealization.

In the following two sections, the above design method is applied on the production cell
FPGA design.

2. Structure and Communication

This section describes the design and implementation of theCSP based structural and com-
munication (S&C) framework in which the loop controllers are embedded. First, require-
ments are formulated, after which the design is constructedin a top-down way.

2.1. Requirements

To focus the experiments and tests, the following requirements are formulated:

• Decentralised design to allow distribution across multiple FPGAs (or CPUs) if
needed. This means that each PCU must be able to operate independently and that a
central supervisory controller is missing.

• CSP based. Exploit parallelism. The setup consists of parallel operating robots, so the
natural parallelism of the set up will be exploited.

• Generic. It should be usable for both a software and hardwareimplementation and for
other mechatronic setups.

• Layered structure. This setup should be representative forindustrial-sized machine
control. Support for hierarchy using the layered structureis inevitable.

• Safety software distinguished from the normal operation. Handling faults can best be
separated from the normal operation. This better structures the software, so that parts
can be tested individually. Furthermore, design patterns about fault handling strategies
can be used here.



140 M.A. Groothuis et al. / FPGA based Control of a Production Cell System

Molder

FeederFeederBelt

Rotation

ExtractionBelt Extractor

Init Terminate

Controller handshake channel

Error channel

1 1

Figure 3. Top-level gCSP diagram

2.2. Top Level Design

We have chosen to implement the ’software’ in a layered structure, taking into account the
above requirements. The resulting top-level design is shown in figure 3. It shows an abstract
view of the Production Cell system with PCUs implemented as parallel running CSP pro-
cesses. Each PCU is connected to its neighbours using rendezvous channels. No central su-
pervisory process exists and the PCUs are designed such thatthey are self sustaining. Since
the production cell setup has a fixed direction for the blocks(feeder belt> feeder> molder
door> extractor> extraction belt> rotation), normal communication is only necessary with
the next PCU. The communication is a handshake (CSP rendezvous) for transporting a block.
This normal communication will be called thenormal-flowof the system. When a failure
occurs, communication with both neighbours is required. For instance, when the feeder is
stuck, not only should the molder door be opened, but also thefeeder belt should be stopped
in order to stop the flow of blocks. The next sections describethe design of the PCUs in more
detail.

2.3. Production Cell Unit Design

A PCU is designed such that most of its operation is independent of the other PCUs. Each
PCU can be seen as an independent motion control system. Communication with its neigh-
bours is only needed for delivering a block to the next PCU, orin case of local failures that
need to be communicated to both neighbours. Based on the layered structure described in sec-
tion 1.5 and other implementations [16,15,17] a generic CSPmodel is made for all 6 PCUs.
Figure 4 shows this PCU model, containing three parallel running processes. The controller
process implements the motion controller intelligence viaa sequence controller and a loop
controller. Section 2.5 describes the controller in more detail. The command process imple-
ments the Man-machine interface for controlling a PCU from aPC (e.g. to request status
info or to command the controller). The safety process contains data analysis intelligence to
detect failures and unsafe commands. All communication between the setup, the command
interface and the controller is inspected for exceptional conditions. The safety layer will be
explained in more detail in the next section. The low-level hardware process contains the
measurement and actuation part. Quadrature encoder interfaces for position measurement of
the motors, digital I/O for the magnets and the block sensorsand PWM generators to steer
the DC motors are implemented here.



M.A. Groothuis et al. / FPGA based Control of a Production Cell System 141

Controller handshake channel

User interface channel

Error channel

To next 

PCU

From Previous PCU

To Next 

PCU

From Next 

PCU

From previous 

PCU

Controller

Safety

Command

Production Cell Unit (PCU)

Controller

override

To previous

PCU

Low-level

Hardware

User

Interface

FPGA FPGA

Host PC

From Production Cell

State channel

Hardware interface channel

To Production Cell

State In

State Out

State Out

State In

Sensors
Actuators

Sensors
Actuators

PCI

bus

Figure 4. Production Cell Unit – Model

User interface channel

Error channel

State channel

Hardware interface channel

Exception handler State handlerException catcher

prevErrInprevErrOut

nextErrOutnextErrIn

setState

currentState
exception errState

Sends occurred 

exception or 

sanity check 

failure

Controller

override from

Controller

to

Controller

to

Low-level

Hardware

from

Low-level

Hardware

fromControllertoController

Encoder, End 

switches, IR 

detectors

PWM, magnet

[Safety]

Figure 5. Production Cell Unit – Safety

2.4. Safety

The safety process implements a safety layer following the general architecture of protection
systems [18] and the work of Wijbrans [19]. The safety consists of three stages: theexception
catcher, the exception handlerand thestate handler(see figure 5). Theexception catcher
process catches exceptions (hardware tocontroller errors) as well as sanity check failures
(controller to hardware errors). It sends an error message to theexception handler, which
converts the error message into three state change messages:

• Its own (safe) controller state via theerrStatechannel;
• A safe controller state for the previous PCU in the chain;
• A safe controller state for the next PCU in the chain.

Thestate handlerprocess controls the states in a PCU and is the link between the nor-
mal flowand the error flow. Here the decision is made what state is being sent to the con-
troller process (figure 4). It receives state information from theException handlerprocess,
theController process and theUser interface.

The highest priority channel is theerrStatestate channel from the exception handler.
This channel transports the ‘safe’ state from the exceptionhandler to the state handler when a
failure has occurred. Once this channel is activated, this state will always be sent to theCon-



142 M.A. Groothuis et al. / FPGA based Control of a Production Cell System

Controller handshake channel

Motion profile channel

Error channel

State channel

Hardware interface channel

Production Cell [Controller]

Loop ControllerSetpoint generator

From previous PCU

To next PCU

Sequence Controller
setpointrequest

ready

State in

State out

override

EncoderDigital In

done

mode

PWM

Digital Out

Figure 6. Production Cell Unit – Controller operation

troller (figure 4). Theoverridechannel is activated as well in order to keep the neighbouring
PCU in its state until the error has been resolved.

2.5. Controller

Figure 6 shows the internals of the controller process. The controller process consists of a
sequence controller, asetpoint generatorand aloop controller. The sequence controller acts
on the block sensor inputs and the rendezvous messages from the previous PCU. It deter-
mines which movement the PCU should make. It controls thesetpoint generatorthat contains
setpoints for stationary positions and it is able to generate motion profiles for movements
between these stationary positions. Theloop controllerreceives setpoints from the generator.
Dependent on the mode set by thesetpoint generatorthe loop controller is able to:

• Run a homing profile;
• Execute a regulator control algorithm (to maintain a stationary position);
• Execute a servo control algorithm (to track motion profiles).

The homing profile mode is needed to initialize the quadrature encoder position sensors on
the motor at start-up. The design of the loop controller algorithm is explained in section 3.

2.6. Communication Sequence

The process framework is now almost complete. The frameworkis now capable of communi-
cating with other PCUs and it can safely control a single PCU.This section briefly describes
the interactions between the PCUs: the startup phase, handshaking and communication.

2.6.1. Normal Flow

When the hardware setup is turned on, all PCUs execute their homing action for sensor
initialization and as a startup test. After the homing phase, the system is idle until a block is
introduced and triggers a sensor. Figure 7 shows an example of the communication between
the PCUs when a single block makes one round starting at thefeeder belt.

2.6.2. Error Flow

In case a failure occurs, for example a block is stuck at thefeeder, the localexception catcher
andexception handlerwill put the feederin a safe state and communicate to the neighbours
(the feeder belt and the molder door) that it has a problem. The molder doorwill open and
thefeeder beltwill stop supplying new blocks.



M.A. Groothuis et al. / FPGA based Control of a Production Cell System 143

Feeder belt Rotation armExtractorMolderDoor Extraction beltFeeder

Feeder home?

Feeder out

Transport block to 

feeder, then stop

Transport block to 

rotation arm 

Door closed?

Push block to the 

door

Open the door
Extactor home?

Door open?
Open door

Bring feeder 

home Pick up block
Pick and place 

block

Transport block

Close door

Pick up block
Transport block

Feeder home?
...

Figure 7. Production Cell – Normal operation sequence diagram

3. Loop Controller Design

An important part of this feasibility study is the implementation of loop-controllers in an
FPGA. The control laws for these loop-controller are designed via step-wise refinement in
20-sim using a model of the plant behaviour. The design of these loop-controllers was orig-
inally done for software implementations. The resulting discrete-time PID1 loop controllers
and motion profiles used floating point calculations. The PIDcontroller [20] is based on a
computer algorithm that relies on the floating point data type (see listing 1 for the algorithm).
Its purpose is to minimize theerror between the current position and the desired position.
This error is typically a small value (for the PCUs at most 0.0004m) so some calculation
accuracy is needed here. The chosen FPGA has no on-board floating point unit (FPU), so
another solution is needed here.

3.1. Floating Point to Integer

Table 1 shows some alternatives to using a floating-point data type.

Table 1. Alternatives to using the floating point data type on an FPGA

Alternative Benefit Drawback

1. Floating point
library

High precision; re-use existing
controller

Very high logic utilization because each cal-
culation gets its own hardware

2. Fixed point li-
brary

Acceptable precision High logic utilization because each calcula-
tion gets its own hardware

3. External FPU High precision; re-use existing
controller

Only available on high end FPGAs; expensive

4. Soft-core
CPU+FPU

High precision; re-use existing
controller

High logic utilization unless stripped

5. Soft-core FPU High precision; re-use existing
controller

Scheduling / resource manager required

6. Integer Native datatype Low precision in small ranges; adaptation of
the controllers needed

The numerical precision is coupled to the logic cell utilization, resulting in a design
trade-off between numerical precision and FPGA utilization [21]. Agility, a provider of em-

1Proportional, Integral, Derivative.



144 M.A. Groothuis et al. / FPGA based Control of a Production Cell System

factor = 1 / (sampletime + tauD ∗ beta ) ;
uD = factor ∗ (tauD ∗ previous (uD ) ∗ beta + tauD ∗ kp ∗ (error −

previous (error ) ) + sampletime ∗ kp ∗ error ) ;
uI = previous (uI ) + sampletime ∗ uD / tauI ;
output = uI + uD ;

Listing 1. The PID loop-controller algorithm

bedded systems solutions formed from the merger of Catalytic Inc. and Celoxica’s ESL busi-
ness, delivers Handel-C libraries for both floating point and fixed point calculation. A main
drawback of the first two options is that the resulting FPGA implementations have very high
logic utilization because each calculation gets its own hardware. This is not a viable alterna-
tive for the chosen FPGA (a small test with 1 PID controller resulted in a completely filled
FPGA for floating point). The third option requires a high-end FPGA with DSP facilities.
The fourth option to use a soft-core CPU with a floating point unit (e.g. a Xilinx Microblaze
CPU with single precision FPU which costs around 1800 LUTs2). The advantage is that we
still can use our existing loop controllers (from the previous software version). The drawback
is that the design becomes more complicated, due to the combination of Handel-C hardware
and soft-core CPU software. Furthermore, we need a scheduler if all 6 PID controllers should
run on the same soft-core CPU. The soft-core CPU solution is excessive for just a PID con-
troller. An FPU-only soft-core is a better choice here, but still some scheduling is needed. The
last option, integer based calculation, is the most suitable for efficient FPGA usage. However,
this requires a redesign of the PID controllers. Despite thedisadvantages of switching to an
integer based PID controller, we have chosen this solution because the first three options are
unfeasible for our FPGA and our goal was to not use a soft-coreCPU.

To make the PID algorithm suitable for integer based control, taking into account the
needed numerical precision, the following conversions arenecessary:

• Integer based parameters;
• Integer based mathematics;
• Proper scaling to reduce the significance of fractional numbers;
• Take into account the quantization effects of neglecting the fractional. numbers

The original controllers used SI-units for I/O and parameters, resulting in many frac-
tional numbers. All signals and parameters are now properlyscaled, matching the value
ranges of the I/O hardware (PWM, encoder). The conversions mentioned earlier are executed
via step-wise refinement in 20-sim using simulations and a side-by-side comparison with the
original floating point controllers. The new integer based controllers are validated on the real
setup using the CPU based solution, to make sure that the resulting FPGA based integer PID
controllers have a similar behaviour compared to the original floating-point version. Some
accuracy is lost due to the switch to integer mathematics, resulting in a slightly larger error
(0.00046m).

4. Realization and Results

The embedded control software structure for the productioncell setup from section 2 was
first checked for deadlocks using a separate gCSP model. The top-level structure in figure 3
is extended with an extra block inserter process. An FDR2 test shows indeed a deadlock with
8 blocks or more in the system as described in section 1.1.

For the Handel-C implementation, the gCSP model of figure 3 isrefined in a systematic
way to a version suitable for automatic code generation. To support automatic code gener-

2Look-Up Table, and a measure of FPGA size/utilization, withone LUT for each logic block in the FPGA.



M.A. Groothuis et al. / FPGA based Control of a Production Cell System 145

vo id Rotation (chan∗ eb2ro_err , chan∗ ro2eb_err , chan∗ fb2ro_err , chan∗ ro2fb_err ,
chan∗ eb2ro , chan∗ ro2fb )

{
/∗ D e c l a r a t i o n s ∗ /
chan i n t cnt0_w encoder_in ;
chan i n t 12 pwm_out ;
chan i n t 2 endsw_in ;
chan i n t 1 magnet_out ;
chan i n t state_w setState ;
chan i n t state_w currentState ;
chan i n t state_w saf2ctrl ;
chan i n t state_w override ;
chan i n t 12 ctrl2hw ;
chan i n t state_w ctrl2saf ;
chan i n t cnt0_w hw2ctrl ;
chan i n t 1 magnet_saf ;

/∗ Process Body∗ /
par {

LowLevel_hw(&encoder_in , &pwm_out , &endsw_in , &magnet_out ) ;
seq {
Init(&encoder_in , &magnet_out , &pwm_out ) ;
par {
Command(&setState , &currentState ) ;
Safety(&eb2ro_err , &saf2ctrl , &ro2eb_err , &override , &encoder_in ,

&fb2ro_err , &pwm_out , &setState , &ro2fb_err , &ctrl2hw ,
&currentState , &ctrl2saf , &hw2ctrl ) ;

Controller(&saf2ctrl , &override , &eb2ro , &ctrl2hw , &ctrl2saf ,
&ro2fb , &hw2ctrl , &magnet_saf ) ;

}
Terminate(&encoder_in , &magnet_out , &pwm_out ) ;

}
}

}

Listing 2. Generated Handel-C code for the Rotation PCU

ation, gCSP is extended with Handel-C code generation capabilities. Due to the CSP foun-
dation of gCSP, mapping the gCSP diagrams to Handel-C code was rather straightforward.
Because Handel-C does not support the ALT and PRI-PAR constructs (only PRI-ALT and
PAR are supported) some drawing restrictions were added. Furthermore, gCSP was extended
with the possibilities to add non-standard datatypes to be able to use integer datatypes of a
specific width. Listing 2 shows an example of the gCSP generated Handel-C code for the
rotation PCU. This PCU is implemented in gCSP using the design shown figure 4 (theInit
andTerminateblocks for the hardware are not shown in this figure).

The loop-controllers are implemented using a manually adapted version of the code that
20-sim has generated. Currently, 20-sim generates only ANSI-C floating-point based code.
The Handel-C integer PID controller is first tested stand-alone in a one-to-one comparison
with an integer PID running on the PC containing our FPGA card.

To be able to see what is happening inside the FPGA and to test the PID controllers and
theCommandprocess, we have implemented a PCI bus interface process (see also figure 4)
to communicate between our development PC and the FPGA. Thishas proved to be a useful
debugging tool during the implementation phase. Currentlywe are using the PCI debugging
interface in cooperation with a Linux GUI program to show theinternal status of the PCUs
and to manually send commands to the FPGA.

Table 2 shows some characteristics of the realized FPGA implementation to get an idea
of the estimated FPGA usage for this system. The total FPGA utilization for the Spartan III
1500 is 43% (measured in slices).

The behaviour of the Production Cell setup is similar to the existing software imple-
mentations. Compared to the existing CPU based solutions, the FPGA implementation shows



146 M.A. Groothuis et al. / FPGA based Control of a Production Cell System

Table 2. Estimated FPGA usage for the Production Cell Motion Controller

Element LUTs (amount) Flipflops (amount) Memory

PID controllers 13.5% (4038) 0.4% (126) 0.0%

Motion profiles 0.9% (278) 0.2% (72) 0.0%

I/O + PCI 3.6% (1090) 1.6% (471) 2.3%

S&C Framework 10.3% (3089) 8.7% (2616) 0.6%

Available 71.7% (21457) 89.1% (26667) 97.1%

perfect performance results under high system load (many blocks in the system) and all hard
real-time constraints are met. The controller calculations are finished long before the dead-
line. Usage of the Handel-C timing semantics to reach our deadlines is not needed with a
deadline of 1 ms (sampling frequency of 1 kHz). The PID algorithm itself requires only
464 ns (maximum frequency 2.1 MHz).

The performance of the FPGA based loop controllers is comparable to the CPU based
versions. No visible differences in the PCU movements are observed and the measured posi-
tion tracking errors remain well within limits. An additional feature of the FPGA solution is
the implementation of a safety layer, which was missing in the software solutions.

5. Conclusions and Future work

The result of this feasibility study is a running productioncell setup where the embedded
control software is completely and successfully implemented in a low-cost Xilinx Spartan III
XC3s1500 FPGA, using Handel-C as a hardware description language. The resulting soft-
ware framework is designed such that it is generic and re-usable in other FPGA based or CPU
based motion control applications. An FPGA only motion control solution is feasible, with-
out using a soft-core CPU solution. The switch from CPU basedimplementations towards an
FPGA based solution resulted in a much better performance with respect to the timing and
the system load. However, the design process for the loop controllers requires more design
iterations to ensure that a switch from floating-point calculations to integer based calculations
results in correct behaviour.

The potential for FPGA based motion control systems runningmultiple parallel con-
trollers is not limited to our production cell system. It is also a suitable alternative for our
humanoid (walking) soccer robot that contains 12 controllers and a stereo vision system [22].

Although not needed for this setup, the implemented PID controller can reach frequen-
cies of up to 2.1 MHz, which is impossible to achieve on a PC (maximum 40 kHz). This
means that other applications requiring high controller frequencies can benefit from an FPGA
based controllers.

While this feasibility study shows the potential of using a low-cost FPGA for complex
motion control systems, there is still room for improvementand further investigation.

Table 2 shows that the PID controllers take almost half of therequired FPGA cells. We
have now implemented 6 dedicated PID controllers. A possible optimization would be to im-
plement one PID process and schedule the calculations. We have enough time left to serialise
the calculations. However, this conflicts with our goal of exploiting parallelism within the
FPGA.

The process for designing integer based motion controllersshould be simplified. 20-sim
currently has too little support for assisting in the designof integer based motion controllers.
Research on the topic of integer based control systems couldpotentially result in better design
methods. Besides this, it would also be a good idea to evaluate the other implementation
possibilities from table 1 (especially the soft-core with FPU option), to compare and explore



M.A. Groothuis et al. / FPGA based Control of a Production Cell System 147

these design space choices. In this way we can better advise on what to use for FPGA based
motion control systems in which situations.

Integer based control systems need further research from the control engineering point
of view. Especially with respect to accuracy and scaling effects. This is not only needed for
FPGA based designs but also for microcontroller targets andsoft-core CPUs without an FPU.

While the software framework was successfully designed using gCSP and its new
Handel-C code generation output, there are opportunities for improvement in order to fa-
cilitate the future design of production cell-like systems. The structure and communication
framework can be re-used, so having the option of using library blocks or gCSP design tem-
plates would speed-up the design process. Furthermore, only a subset of the Handel-C and
the gCSP language (GML) is supported by the code-generationmodule. This should be ex-
tended.

References

[1] Clive Maxfield. The Design Warriors Guide to FPGAs, Devices, Tools, and Flows. Mentor Graphics
Corp., 2004. www.mentor.com.

[2] Controllab Products B.V. 20-sim, 2008. http://www.20sim.com.
[3] Dusko S. Jovanovic, Bojan Orlic, Geert K. Liet, and Jan F.Broenink. gCSP: A Graphical Tool for De-

signing CSP systems. In Ian East, Jeremy Martin, Peter H. Welch, David Duce, and Mark Green, editors,
Communicating Process Architectures 2004, pages 233–251. IOS press, Oxford, UK, 2004.

[4] Agility Design Systems. Handel-C, 2008. http://www.agilityds.com.
[5] L.S. van den Berg. Design of a production cell setup. MSc Thesis 016CE2006, University of Twente,

2006.
[6] Pieter Maljaars. Control of the production cell setup. MSc Thesis 039CE2006, University of Twente,

2006.
[7] D.S. Jovanovic.Designing dependable process-oriented software, a CSP approach. PhD thesis, University

of Twente, Enschede, NL, 2006.
[8] Bojan Orlic and Jan F. Broenink. Redesign of the C++ Communicating Threads library for embedded

control systems. In Frank Karelse, editor,5th PROGRESS Symposium on Embedded Systems, pages 141–
156. STW, Nieuwegein, NL, 2004.

[9] Jinfeng Huang, Jeroen P.M. Voeten, Marcel A. Groothuis,Jan F. Broenink, and Henk Corporaal. A model-
driven approach for mechatronic systems. InIEEE International Conference on Applications of Concur-
rency to System Design, ACSD2007, page 10, Bratislava, Slovakia, 2007. IEEE.

[10] Bart D. Theelen, Oana Florescu, M.C.W. Geilen, JinfengHuang, J.P.H.A van der Putten, and Jeroen P.M.
Voeten. Software / hardware engineering with the parallel object-oriented specification language. InACM-
IEEE International Conference on Formal Methods and Modelsfor Codesign (MEMOCODE2007), pages
139–148, Nice, France, 2007.

[11] Robin Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs, 1989.
[12] Gerald H. Hilderink.Managing Complexity of Control Software through Concurrency. PhD thesis, Uni-

versity of Twente, Netherlands, 2005.
[13] T.T.J. van der Steen. Design of animation and debug facilities for gCSP. MSc Thesis 020CE2008, Uni-

versity of Twente, 2008.
[14] B Rem, A Gopalakrishnan, T.J.H. Geelen, and H.W. Roebbers. Automatic Handel-C generation from

MATLAB and simulink for motion control with an FPGA. In Jan F.Broenink, Herman W. Roebbers,
Johan P.E. Sunter, Peter H. Welch, and David C. Wood, editors, Communicating Process Architectures
CPA 2005, pages 43–69. IOS Press, Eindhoven, NL, 2005.

[15] S. Bennett.Real-Time Computer Control: An Introduction. Prentice-Hall, London, UK, 1988.
[16] Herman Bruyninckx. Project Orocos. Technical report,Katholieke Universiteit Leuven, 2000.
[17] S. Bennett and D.A. Linkens.Real-Time Computer Control. Peter Peregrinus, 1984.
[18] P. A Lee and T. Anderson.Fault tolerance, principles and practice. Springer-Verlag, New York, NY, 1990.
[19] K.C.J. Wijbrans.Twente Hierarchical Embedded Systems Implementation by Simulation (THESIS). Uni-

versiteit van Twente, 1993.
[20] Karl J.Åström and T. Hagglund.PID Controllers: Theory, Design and Tuning. ISA, second edition, 1995.



148 M.A. Groothuis et al. / FPGA based Control of a Production Cell System

[21] Michael J. Beauchamp, Scott Hauck, Keith D. Underwood,and K. Scott Hemmert. Embedded floating-
point units in FPGAs. In Steven J. E. Wilton and André DeHon, editors,FPGA, pages 12–20. ACM,
2006.

[22] Dutch Robotics. 3TU humanoid soccer robot, TUlip, 2008. http://www.dutchrobotics.net.


