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Theory and Comments on Standard Dilatometric Back
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Summary
The robust analytical solution was carried out to describe the stress state in the

massive round boreholes. It gives the chance for complex back analysis of dilato-
metric in situ measurements. The main goal of this presentation is to present the
incorporating phenomenon of influence zone around the boreholes. The analytical
solution gives the chance to describe the progress of plastic zone around the hole.

Introduction
The paper deals with dilatometer measurements in deep boreholes. The dilatome-

ter probe is used for in-situ measurements in boreholes to determine deformation
properties of rock massif. We describe the Solexperts dilatometer system due to
our practical experience with measurements, evaluation and interpretation of more
than 120 in-situ tests executed during 2004 and 2006. The dilatometer measure-
ments are frequently used as a part of geotechnical investigation for tunneling or
dam foundations. Further information can be found in [1] and [2].

The dilatometer probe developed by Solexperts AG (Switzerland) has been suc-
cessfully used for more than 30 years. Determination of the mechanical properties
of the rock mass is based on real-time measurement of the applied pressure and
the resulting deformation – the change of the borehole diameter. The dilatome-
ter probe consists of a metal core, which holds three potentiometeric displacement
transducers placed in the centre of the core, Figure 1. The axes of the transducers
are oriented 120˚ to each other and vertical distance between the transducers is 75
mm. The borehole wall is loaded by means of a reinforced one meter long packer
sleeve fixed to the core of the probe at its both ends. The packer can be expanded
by compressed nitrogen or air via a high-pressure hose connected to either nitrogen
bottles or a compressor. The deformation of the borehole wall is directly measured
by the transducers, which contact the borehole wall through steel pins with spher-
ical heads. The installation of the probe into the borehole is usually done with a
drilling rig.

A dilatometer test has usually two to four loading cycles, as described in the
example from the investigation for the Brenner Base Tunnel, Figure 2. At first,
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Figure 1: Scheme of Solexperts dilatometer, after [2]

the probe is inflated to a base pressure, about 0.5 MPa higher than the hydrostatic
pressure at the test position in order to establish a good contact between the packer
and the borehole wall. The first cycle consists of initial loading and subsequent
unloading to the base pressure. The following cycles consists of reloading up to the
maximum pressure of the previous load cycle, initial loading to a higher level and
then unloading to the base pressure level.

The common test evaluation is derived from Lamé’s equation:

E =
Δp∗d ∗ (1+ν)

Δd
, (1)

where Δp = pressure difference; d = borehole diameter; Δd = change of bore-
hole diameter; ν = Poisson’s ratio. In case where no results of laboratory tests are
available for the tested rock formation, we assume the Poisson’s ratio of 0.33 with
respect to rock quality. The averaged displacement measurements of the all three
transducers are mainly used for the calculation of the Young’s moduli. The defor-
mation modulus (V) is calculated based on data of initial loading from each load
cycle using linear regression along the corresponding section of the curve. The
deformation modulus from reloading phase of each cycle is calculated in a similar
manner.
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The modulus of elasticity E1 is calculated from the slope of a secant connecting
the first and the last point of the unloading phase, which corresponds to the initial
loading range for each cycle. However in cases of very step slopes which corre-
spond to very small elastic deformation of the borehole wall and thus to very high
moduli, it appears to be more appropriate to calculate E2 from the entire unloading
curve for each load cycle. An example of a dilatometer test is depicted in Figure 2.

Figure 2: Dilatometer test in borehole Va-B-03/04s, 986.5 m depth, chlorite schists.
Graphical representation from the DilatoII software program: average from defor-
mation measurements of all three extensometers, after [2]

Governing theory of the back analysis
Theoretical base of the back analysis is as follows. Let us assume displacement

field in the form

u(r;ϕ;x) = u(r;ϕ), v(r;ϕ;x) = v(r;ϕ), w(r;ϕ;x) = w(r;ϕ)+ax+b. (2)

a, b are unknown parameters. Referring to the Kantorovich method (details in Rek-
torys (1969)) the functions of the displacement field can be in cylindrical coordina-
tive system expressed in series

u(r;ϕ) = u0(r)ψ0 +
∞

∑
j=1

u j(r)ψ j +
∞

∑
j=1

ū j(r)ψ̄ j,

v(r;ϕ) = v0(r)ψ0 +
∞

∑
j=1

v j(r)ψ j +
∞

∑
j=1

v̄ j(r)ψ̄ j,
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w(r;ϕ) = w0(r)ψ0 +
∞

∑
j=1

wj(r)ψ j +
∞

∑
j=1

w̄ j(r)ψ̄ j;

ψ0 = 1, ψ j = cos jϕ, ψ̄ j = sin jϕ; j = 1,2, . . .

System of the ordinary differential equation can be derived for elastic isotropic
material using standard steps of deformation variant. Their solution is the displace-
ment field vector

u =C10 lnr +C20 +
∞

∑
j=1

(
C1 jr j +C2 jr− j)cos jϕ +

∞

∑
j=1

(
C̄1 jr j +C̄2 jr− j)sin jϕ,

v =A10r +A20r−1 +
[
A11r2 +A21r−2 +A31 +A41 lnr

]
cosϕ+[

B11r2 +B21r−2 +B31 +B41 lnr
]

sinϕ+
∞

∑
j=2

(
A1 jr

j+1 +A2 jr
−( j+1) +A3 jr

j−1 +A4 jr
−( j−1)

)
cos jϕ+

∞

∑
j=2

(
B1 jr

j+1 +B2 jr
−( j+1) +B3 jr

j−1 +B4 jr
−( j−1)

)
sin jϕ,

w =B10r +B20r−1+
[

B11
5−4ν
−1+4ν

r2−B21r−2+B31+B41

(
1

3−4ν
+lnr

)]
cosϕ+

[
A11

−5+4ν
−1+4ν

r2 +A21r−2 −A31 −A41

(
1

3−4ν
+ lnr

)]
sinϕ+

∞

∑
j=2

(
B1 j

j +4−4ν
j−2+4ν

r j+1 −B2 jr−( j+1)+B3 jr j−1+B4 j
−j+4−4ν
j+2−4ν

r−(j−1)
)

cos jϕ+

∞

∑
j=2

(
A1 j

−j−4+4ν
j−2+4ν

r j+1+A2 jr
−( j+1)−A3 jr

j−1−A4 j
j−4+4ν
j +2−4ν

r−( j−1)
)

sin jϕ,

(3)

and corresponding isotropic elastic stress state

σr

2G
=

A10

1−2ν
−A20r−2 +

[ −2
−1+4ν

A11r−2A21r−3 +
3−2ν
3−4ν

A41r−1
]

cosϕ+
[ −2
−1+4ν

B11r−2B21r−3 +
3−2ν
3−4ν

B41r−1
]

sinϕ+

+
∞

∑
j=2

(
A1 j

j2 − j−2
j−2+4ν

r j −A2 j ( j +1) r−( j+2) +A3 j ( j−1) r j−2

−A4 j
j2 + j−2
j +2−4ν

r− j
)

cos jϕ+
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+
∞

∑
j=2

(
B1 j

j2 − j−2
j−2+4ν

r j −B2 j ( j +1) r−( j+2) +B3 j ( j−1) r j−2

−B4 j
j2 + j−2
j +2−4ν

r− j

)
sin jϕ,

σϕ

2G
=

A10

1+2ν
+A20r−2 +

[ −6
−1+4ν

A11r +2A21r−3 +
−1+2ν
3−4ν

A41r−1
]

cosϕ+
[ −6
−1+4ν

B11r +2B21r−3 +
−1+2ν
3−4ν

B41r−1
]

sinϕ+

+
∞

∑
j=2

(
A1 j

− j2 −3 j−2
j−2+4ν

r j +A2 j ( j +1) r−( j+2) −A3 j ( j−1)r j−2

+A4 j
j2−3 j +2
j +2−4ν

r− j
)

cos jϕ+

+
∞

∑
j=2

(
B1 j

− j2 −3 j−2
j−2+4ν

r j +B2 j ( j +1) r−( j+2) −B3 j ( j−1)r j−2

−B4 j
j2−3 j +2
j +2−4ν

r− j
)

sin jϕ,

(4)

σx = ν
(
σr +σϕ

)
.

The unknown integral constants are calculated from the known boundary condi-
tions.

Improvement of the standard back analysis formula
The standard back analysis formula is derived from three boundary conditions,

namely the zero displacement in radial direction in infinity, the measured displace-
ment on the probe hole interface and the known pressure in the same place. We
would like to enhance the formula from two aspects. At first, we would like to
incorporate developing of the plastic zone around the hole. The thickness is de-
scribed by radius R̄1 > R1, where R1 is the radius of the hole. The second aspect is
the phenomenon of the influence zone around the hole described by R2, we assume
zero radial displacement in the finite distance R2. Using equations (3) and (4) the
three boundary conditions mentioned above yields

E =
Δp∗ (1+ν)

1
2 Δd ∗ R̄1

R2
2−R̄2

1

(
R2

2
R̄2

1
+ 1

1−2ν

) . (5)

There is no problem verified by the limit process thru formula (5) formula (1).



94 Copyright © 2008 ICCES ICCES, vol.7, no.2, pp.89-94

To introduce formula (5) we carried out back analysis on the results presented
in Fig. 2. The input data for calculation are Δp = 10.8(MPa), Δd = 30(μm),
ν = 0.33, R1 = 46(mm). Standard back analysis gives presented value of Young’s
modulus E = 43.800 (GPa). Let us assume the radius of influence zone in the
range R2 ∈ 〈3R̄1;5R̄1〉 and let us estimate the thickness of plastic zone in the range
δpl ∈ 〈0,1R̄1;0,9R̄1〉. We calculated the values of the Young’s modulus on the
boundary of estimated intervals. The values are listed in following tables. Table 1
for influence zone R2 = 3R̄1, table 2 for R2 = 5R̄1

Table 1
R̄1 1.1R1 1.2R1 1.3R1 1.4R1 1.5R1 1.6R1 1.7R1 1.8R1 1.9R1

E(GPa) 32.46 35.41 38.36 41.32 44.27 47.22 50.17 53.12 56.07

Table 2
R̄1 1.1R1 1.2R1 1.3R1 1.4R1 1.5R1 1.6R1 1.7R1 1.8R1 1.9R1

E(GPa) 41.62 45.41 49.19 52.97 56.75 60.54 64.32 68.11 71.89

Conclusion
Several ideas were introduced for back analysis of the dilatometric measure-

ment in the deep boreholes. In this case geostatic stress state has a significant effect
on the compaction of the rock massive. Due to this fact we started to incorporate
the idea of influence zone for the back analysis. Neglecting this fact causes over-
estimation of the material parameters as a Young’s modulus. On the other hand,
the higher Young’s modulus can be explained by progression of the plastic zone
around boreholes.
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