
Middleware for the Autonomous Web Services (AWS)

Makoto Oya, Masaki Ito, Taisuke Kimura

Shonan Institute of Technology, 1-1-25, Tsujido Nishi-Kaigan, Fujisawa, 251-8511, Japan

Abstract. The purpose of the Autonomous Web Services (AWS) is to enable
business transaction exchange in the Internet between systems having different
business process models, by dynamically harmonizing them when the systems
encounter. Based on the principles and the basic methods proposed in the
previous researches such as [3], we succeeded in development of the
experimental implementation of the AWS middleware. The AWS middleware
consists of three software layers - the dynamic model harmonization layer, the
application framework layer, and the messaging layer. This paper mentions the
development principles, operation concepts, proposed specifications, detailed
algorithms and test results of the AWS middleware that we developed. This
success of implementation demonstrates the AWS's theoretical properness and
its availability to real world applications, as well as the applicability of the
improved model harmonization algorithm proposed in this paper.

Keywords: Web Services, autonomy, business process model, e-commerce

1 Introduction

The Web services is a well matured technology and widely used as the infrastructure
for business transaction exchange between systems over the Internet. In the present
Web services, it is prerequisite that a global business process model across relevant
systems, like BPEL [6], is precisely defined in advance, and each system is built
conforming to the global business process model (Fig.1 (a)). Therefore, a voluntarily
and freely built system cannot participate in the concerning service. This prerequisite
is very strong and not appropriate for ordinary business transactions except large scale
or fixed form transactions. The Autonomous Web Services (AWS), whose concept
was defined in [3], does not assume the existence of a predefined global business
process model. It dynamically harmonizes (i.e. adjusts each other) business process
models in individual systems when the systems encountered in the Internet (Fig.1
(b)). The AWS aims to realize that systems independently built and having different
business models can freely exchange business transactions.

The AWS's theoretical backbone is the Dynamic Model Harmonization (DMH),
proposed in [1][2], and systematized in [3]. In addition, the AWS's core technologies
include the application framework based on model driven execution and the
messaging mechanism as their infrastructure. Based on these preceding research
results, we succeeded in development of the experimental implementation of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357215691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Makoto Oya, Masaki Ito, Taisuke Kimura

AWS middleware. The purpose of the AWS middleware is to execute the AWS's
complex mechanism hiding the implementation details from applications. It enables
application developers easy to develop AWS applications only by coding business
logics corresponding to input/output operations.

Fig. 1. Present Web Services and the Autonomous Web Services (AWS)

The structure of this paper is: Section 2 surveys the core technologies of the AWS in
the previous works. It also contains a newly improved DMH algorithm. Section 3 is
the main part of this paper and explains the development principle, operation
concepts, specifications and detailed algorithm of the AWS middleware that we
developed. Section 4 provides brief discussions and conclusions.

2 Essences of the Autonomous Web Services (AWS)

This section surveys the theoretical background and principles of the AWS. It also
proposes the improved DMH algorithm.

2.1 Dynamic Model Harmonization (DMH)

The core principle of the AWS is the DMH (Dynamic Model Harmonization) (Fig.2).
Systems export own business process models (BPMs). A BPM is a description of
possible flow of input and output message sequences. An example is "ask estimation,
and receive the estimation results, then, order, and receive its acceptance". The BPMs
of both systems are exchanged when the systems encounter over the Internet. By the
DMH algorithm, the original BPM is modified adjusting with the opponent's BPM.
Then, the business transaction exchange starts using the modified BPM (called the
harmonized BPM). In this way, business conversation between systems having
different BPMs is executed with best efforts.

- a global business process model is predefined.
- all systems must conform to the global model.

company
E

company
D

company
C

company
B

company
A

- no business process model across systems.
- dynamically harmonized when encountered.

company
E

company
D

company
C

company
B

company
A

Internet

(a) Present Web Services (b) Autonomous Web Services (AWS)
Internet

Middleware for the Autonomous Web Services (AWS) 3

Fig. 2. Overview of the Dynamic Model Harmonization

BPM is formally defined as BPM = (O, B), where:

• O is a set of operations op, where op = (pattern, format), a pattern specifies
'output' or 'input', and a format specifies a format of message, and

• A behavior B is, in general, represented as a finite state machine, namely:
B = (S, λ, F, Φ), where S is a set of states, λ (∈S) is a starting status, F (⊂S) is a
set of final states, and Φ is a transition function.

Note that O corresponds to "interface" or "portType" in WSDL [8], and pattern
corresponds to the MEP (message exchange pattern) though restricted 'input only' and
'output only'.

As discussed in [3], we assume a three-valued matching function t_match(f, g) is
given from the outer environment, where f is an output and g is an input format, and
 t_match(f, g) = true (if all instances of f match to g), or
 false (if some instance of f does not match to g), or
 undefined (if cannot determine either true or false).

Variety of implementation of t_match() is possible. A trivial one is: true if f = g and
false if f ≠ g when both f and g are in a same name space, and undefined when f and g
are in different name spaces. This trivial t_match() is used at testing the middleware
in this research. Implementation of t_match() is out of scope of this paper but another
interesting research theme. Solutions applying ontology or semantic web have been
proposed [2][5][4]. At the same time, it is valuable to report that the DMH properly
harmonizes BPMs even in cases when such a simple t_match() is applied.

In this paper, we limit a behavior B is a non-deterministic automaton, as the previous
studies did. Under this limitation, Φ is restricted as S × O → S. We introduced the
following DMH algorithm improved from the previous researches [1][3].

Let an original BPM of the own system be M and a BPM received from the opponent
system be M', where M = (O, (S, λ, F, Φ)) and M' = (O', (S', λ', F', Φ′)). First, create
N = (P, (T, µ, G, Γ)) in the following steps:

• P = { (o, o') | o ∈ O and o' ∈ O' and o_match(o, o') ≠ false}, where o_match(o, o')
is t_match(fo, fo') if o is output and o' is input, and t_match(fo', fo) if o is input and
o' is output, and false if both o and o' are input or output. (fo and fo' are formats of
o and o' respectively.)

• T = S × S', µ = (λ, λ'), G = F × F'.

BPM
(original)

BPM
(harmonized)

DMH
algorithm

execute business application

BPM
(original)

BPM
(harmonized)

DMH
algorithm

execute business application

business transaction exchange

BPM
exchange

System Z1 System Z2

4 Makoto Oya, Masaki Ito, Taisuke Kimura

• Γ((s, s'), (o, o')) = Φ(𝑠𝑠, 𝑜𝑜)× Φ′(𝑠𝑠′ , 𝑜𝑜′), where (s, s') ∈ T and (o, o') ∈ P.
• Remove all τ ∈ T and its relating paths from Γ that are not reachable from µ or do

not reach to G. Remove elements of T and G that do not appear in the resulting Γ.

Then, create a harmonized BPM Mh = (Oh, (Sh, λh, Fh, Φℎ)) as a "projection" of N:

• Oh = { o | (o, o') ∈ P }, Sh = (s | (s, s') ∈ T }, λh = λ, Fh = { s | (s, s') ∈ G} and
• Φℎ(s, o) = ∪X ∪Y Γ((s, s'), (o, o')) [where X: for all s' satisfying (s, s') ∈ T, and Y:

for all o' satisfying (o, o') ∈ P.]

2.2 Model Driven Application Execution

As a consequence of BPM modification, the control flow of the application program
must also be modified. The second problem is how to handle this situation. The
following solution has been proposed in [3]:

• A user develops an application program as a set of process units (called AP
segments) corresponding to each input/output operation.

• The AWS middleware successively transits a status of the harmonized BPM, and
invokes an AP segment corresponding to an input/output operation at the current
status. (see Fig.3)

2.3 Messaging Mechanism with VL Session

The third problem is on infrastructure to perform message exchange over the
Internet/Web. It is well known that peer-to-peer asynchronous messaging is most
appropriate for business message exchange. Many studies have been done and the
protocol for Web services has already been standardized [9]. In addition to these well-
known technologies, [3] has pointed out the necessity to manage very long sessions
(VL sessions) and endurable queues. Fig.3 illustrates information flow from the DMH
to peer-to-peer message sending/receiving through a VL session.

Fig. 3. DMH, Application Execution, and Messaging

harmonized BPM

AP seg.
AP seg.
AP seg.
AP seg. send

receive
send

sendout1

out3
out2

in1

application

inQ

outQ
VL session

P2P messaging

D
M
H

original
BPM

opponent's
BPM

model harmonization application execution messaging

Middleware for the Autonomous Web Services (AWS) 5

3 AWS Middleware

This is the main part of this paper, explaining the development principles, operation
concepts, specifications and detailed algorithms of the AWS middleware that we
developed.

The purpose of the AWS middleware is to execute the AWS's complex mechanisms
such as BPM modification, application flow modification and message
sending/receiving protocol, and to hide such AWS's implementation details from
application programs. Thus, an application developer can easily develop an AWS
application that performs a series of transaction exchange in the AWS's way, only by
describing a BPM and coding business logics corresponding to input/output
operations. The AWS middleware consists of three software layers, the model
harmonization layer, the application framework layer, and the messaging layer, which
respectively correspond to the three phases in Fig.3.

3.1 Model Harmonization Layer

As Fig.3 shows, the role of the model harmonization layer is to get an original BPM
description and an opponent's BPM description, execute the DMH algorithm, and
generate a harmonized BPM. The harmonized BPM is passed to the application
framework layer as a Java object, not as an external description. The issues on
implementing the model harmonization layer were (a) a format of BPM description,
(b) implementation of the DMH algorithm, and (c) a specification of a BPM object
passed to the application framework layer. (b) was realized by implementing the
algorithm in 2.1. The solutions to (a) and (c) are mentioned below in this section,.

3.1.1 BPM Description

We adopted XML encoding to describe a BPM, considering consistency with other
Web technologies. BPM is formally defined as (O, B). O is a set of operations, which
corresponds to a portType or an interface in WSDL. We introduce BPM description
syntax for O simplifying the WSDL syntax. As for a behavior B, two types of
description are considered - (i) in a state transition table form, (ii) in a regular
expression form. (i) is a simple way and has a merit relationship between AP
segments and an application control flow is simplified, but has a demerit a description
tends to be long. On the other hand, (ii) realizes a short description and easy to
understand, but has a problem timings of AP segment invocation are not explicit and
may have difficulty in programming AP segment codes. Therefore, we adopted both
types of description. Users can choose either convenient description type depending
on the application. Fig.4 shows an example of BPM description in two types.

6 Makoto Oya, Masaki Ito, Taisuke Kimura

Fig. 4. Two Types of BPM Description

3.1.2 BPM Object

A BPMS is internally represented by a Java object. Several methods are prepared to a
BPM object for access in the framework layer. Important are init() to reset the current
status to the initial status, getNextOps() to return an array of possible next operations
when transits from the current status, and transit(op) to transit to the next status from
the current status after executing an operation op. getNextOps() simply returns a set
of next possible operations and does not causes state transition. When more than two
operations are next possible, a desired operation can be selected by
setNextOperations() by the AP segment. Note that a special operation 'term' is
returned when the current status is final. Fig.5 shows an example of status transitions
by transit() and operation sequences returned by getNextOps().

Fig. 5. Example of State Transition and Next Possible Operations

3.2 Application Framework Layer

The application framework layer controls the application execution flow driven by the
harmonized BPM object, and performs the message input/output and the format

<BPModel>
<operations>

<operation name="AskEstim" format="Est01">
<pattern>output</pattern> </operation>

<operation name="RecEstim" format="Rep01">
<pattern>input</pattern></operation>

.....
</operations>
<behavior>

<atom operation="AskEstim"/>
<atom operation="RecEstim"/>
<choice>
<sequence>

<atom operation="Order"/>
<atom operation="RecAccept"/>

</sequence>
<atom operation="Cancel"/>

</choice>
</behavior>
</BPModel>

<BPModel>
..operations description, same as (b)..

<behavior>
<states>

<state no="0">
<next operation=" AskEstim">1</next>

</state>
<state no="1">
<next operation ="RecEstim">2</next>

</state>
<state no="2">
<next operation= ="Order">3</next>
<next operation="Cancel">4</next>

</state>
<state no="3">
<next operation= ="RecAccept">4</next>

</state>
<state no=“4"></state>

</states>
<first>0</first>
<last>4</last>

</behavior>
</BPModel>

(a) State transition table type description (b) Regular expression type description

state
0
1
2
3
2
-

transition
init()

transit(O1)
transit(O2)
transit(O3)
transit(O4)

transit('term')

NextOps
O1

O2, O5
O3, 'term'

O4
O3, 'term'

-4

0 1

3

O4O1 O2

O3

O5start

final

...

2

Middleware for the Autonomous Web Services (AWS) 7

translation in place of the application program. At the same time, it hides the AWS's
underlining complex mechanism from application programs. This section mentions
what functions are prepared for application developers and how these functions are
realized inside the framework.

3.2.1 Functions prepared for Application Development

The body of the application framework layer is a class AWSFramework. A developer
creates an application class inheriting AWSFramework. Section 2.2 explains an
application is created as a set of AP segments. We implemented an AP segment as a
Java method (called an AP method). To develop an application, a developer codes
Java methods in an application class corresponding to each operation in the original
BPM. Fig.6 is an example of application. This class contains three AP methods,
apOrder(), apResponse() and apPay(). Only by writing such a simple program, the
AWSFramework invokes an appropriate AP method along with state transition of the
harmonized BPM, and behind performs complicated tasks including
sending/receiving messages.

Fig. 6. Example of Application Program

We introduced a XML format "config" file to specify a mapping between operations
and AP methods, considering the separation of protocol and programming [3]. Fig.7 is
an example of config file corresponding to the program in Fig.6.

Fig. 7. Example of Config File

A config file also includes classes to encapsulate details of message data format
encoding, called a container class. In Fig.6 for example, AP methods (apOrder,
apResponse and apPay) receives container classes (OrderData, ResResult and
PaymentData) instead of message texts themselves. Container classes, coded by an
application developer, must implement generateMessage() that generates a message
text from a container object, and purseMessage() that creates contents of a container
object from a message text. AWSFramework invokes them when performs message

public class Ap extends AWSFramework {
public void apOrder(OrderData out) {

out.item = 'TV-45001'; out.qty = 6; }
public void apResponse(ResResult in) {

/* process delivery date (in.date) and price(in.price) */ }
public void apPay(PaymentData out) {

out.payDate = payment date; }
publc Boolean dMatch(String data, Format format) {

/* check whether data matches with format */ }
}

<operation name="Order"> <method>apOrder</method>
<parameter>OrderData</parameter> </operation>

<operation name="Response"> <method>apResponse</method>
<parameter>ResResult</parameter> </operation>

<operation name="Payment"> <method>apPay</method>
<parameter>PaymentData</parameter> </operation>

8 Makoto Oya, Masaki Ito, Taisuke Kimura

input/output. Two other methods, initialize() and terminate(), can be included in an
application class. They are invoked right after the VL session starts and right before
the VL session terminates. In addition, a special method dMatch() must be included
which determines whether a message text matches with a given format.

3.2.2 Execution Mechanism in the Framework

The model harmonization layer passes a harmonized BPM objet to the
AWSFramework. Successively transiting a status of the BPM object, the
AWSFramework selects an appropriate AP method and invokes it with its container
object cObj as a parameter. Fig.7 is a pseudo code outlining the process inside the
AWSFramework.

Fig. 8. Processing inside the AWSFramework

After generating and starting a VL session object, setting the status of bpm to the
initial status, and invoking initialize(), it enters the main loop transiting the status

(vlSession = new VLSession()).start();

bpm.init();
nextOps = bpm.getNextOps().clone();
invoke('initialize');

while(nextOps[0]!='term') {
if(nextOps.length==1 and getPattern(nextOps[0])=='output')

{
op=nextOps[0];
bpm.transit(op);
nextOps = bpm.getNextOps().clone();
cObj = genContainerObj(op);
invoke(getMethod(op),cObj);
mess = cObj.generateMessage();
vlSession.send(mess);

}
else if(getPattern(op)=='input' for(op:nextOps)) {

mess = vlSession.receive();
for(op:nextOps) if(dMatch(getFormat(op),mess)) break;
bpm.transit(op);
nextOps = bpm.getNextOps().clone();
cObj = genContainerObj(op);
cObj.purseMessage(mess);
invoke(getMethod(op),cObj);

}
}
invoke('terminate');
vlSession.terminate();

public getNextOperation() {return nextOps;}
public setNextOperation(ops) {nextOps = ops.clone();}

Middleware for the Autonomous Web Services (AWS) 9

using bpm.transit(). nextOps in Fig.7 is an array containing next operations. 'term' is
set in nextOps if the current status is final. The default value of nextOps is
bpm.getNextOps(), a sequence of operations that may occur from the current status.
When the length of nextOps is 1 (that is, when next operation is deterministic), or
when the length is >1 but all operation patterns are 'input', the next operation(s) are
executable. Otherwise, the AP method can restrict possible operations using
setNextOperation(). The first "if" clause in the main loop in Fig.7 is the process for
'output' operation and the second "else-if" clause is for 'input'. In the case of 'output',
after generating a container object and invoking the AP method, it sends a message
text created by generateMessage() by the send() method provided by the messaging
layer. In the case of 'input', it first receives a message and determines a corresponding
operation op using dMatch(), then injects data into a container object using
purseMessage() and invokes the concerning AP method. Note that getMethod(),
getContainerObj(), getPattern() and getFormat() are the methods to access the config
information, which respectively return the corresponding AP method object, the
container class object, the pattern ('input' or 'output') and the format name.

3.3 Messaging Layer

3.3.1 Peer-to Peer Asynchronous Messaging with VL Session

The mechanism of the messaging layer is completely hidden from applications. It
provides the peer-to-peer, asynchronous, reliable and stored-forward-type messaging
feature between application endpoints to the upper layer. A long term lasting session
called a VL session is established between applications from the beginning to the end
of a series of transactions (see Fig.3). The VL session is the concept introduced in [3].
The interface from the application framework layer is designed simple - just to use
concise methods to a VL session object, e.g., start(), send, receive() and terminate().

3.3.2 Underlying System Configuration and Protocol

The messaging layer supports two types of underlying configuration of systems - a
configuration (called a symmetric configuration) where both sides of system have
Web servers (Fig. 9), and a configuration (called an asymmetric configuration) where
only one side has a Web server (Fig. 10). The former is for usual business transaction
exchange between ordinal enterprises, and the latter is for smaller configurations such
as for a SME (small and medium enterprise) or a mobile system. In the symmetric
configuration, a message data retrieved from the output queue (outQ in the figures) is
sent by a HTTP request, and the HTTP response simply acknowledges the results. In
the asymmetric configuration, the way of sending a message data from the side
without a Web server (system A in Fig.10) to the side with a Web server (system B in
Fig.10) is same as the symmetric configuration, but different when sending a message
from system B to system A. System A, time to time, sends to system B a HTTP

10 Makoto Oya, Masaki Ito, Taisuke Kimura

request asking download, and receives message data associated with the HTTP
response if outQ in system B has data to be sent.

Fig. 9. Symmetric System Configuration

Fig. 10. Asymmetric System Configuration

The messaging protocol was implemented over HTTP and SOAP/Framework, as a
simplified form of the ebXML Messaging standard [9]. The reason this standard is not
directly applied is that the standard specification is too big and having unnecessary
functions for this experimental implementation, and we needed some modification to
permit plural number of downloading to improve performance of reliable messaging.

In addition, the followings were considered at implementing the messaging layer.

• Implementation of queues: Taking account of durability, queues were implemented
upon DBMS (PostgreSQL). Eight tables are defined, enabling the retry control and
the messaging sequence assurance required in reliable messaging.

• Asynchronization and performance: Multi process/thread structure is applied.
• VL session management: It is a policy of the AWS that no global server manages a

session across systems. Therefore, a VL session is managed in individual systems
cooperating with each other. A session ID, for example, is generated in conjunction
with an opponent system's algorithm.

app F/W

outQ

inQ

send

receive
Web

server

app F/W

outQ

inQ

send

receive
Web

server

HTTP
data

ack.

data

ack.

System A System B

app F/W

outQ

inQ

send

receive

app F/W

outQ

inQ

send

receive
Web

server

HTTP
data

ack.

download req.

data

System A System B

Middleware for the Autonomous Web Services (AWS) 11

4 Discussion and Conclusions

4.1 Discussion

The implementation was done using Java. After completing basic software tests, we
evaluate the developed AWS middleware from two viewpoints, artificial tests and
benchmark tests. In the former viewpoint, theoretically comprehensive BPMs are
created and the appropriateness and functionality of the the AWS middleware are
verified and evaluated. On the other hand, benchmark tests (Table.1 shows some of
them) are created simulating real trading applications and evaluate its availability. A
portion of artificial and benchmark tests has been completed by now, and it was
confirmed that the implementation of each layer is appropriate and properly works,
and the introduced specifications are adequate and enough encapsulate the
implementation details.

Table 1. Benchmark Tests (Samples)

Let us evaluate the topics of the each layer this paper mentions. We proposed and
developed two types of BPM description (see 3.1.1). This provides to application
developers free choice of convenient way of description. The proposed specification
of the application framework layer (3.2.1) is evaluated through testing as appropriate,
and makes an application program codes simpler (such as in Fig.6). AP methods
realized as Java methods are automatically invoked by the framework, and
input/output data passed to/from applications are encapsulated. The executions
mechanism in the framework (mentioned in 3.2.2) was verified through this
experimental implementation and testing. At the same time, it was found that more
study is necessary in cases an application consists of many processes and/or threads.
Several considerations were done at implementing the messaging layer (as mentioned
in 3.3), the properness of the solutions was verified through this development.

4.2 Conclusions

Basic ideas and theories of the AWS are the DMH, the application framework based
on model driven execution, and the messaging mechanism as their infrastructure. In
this study, we implemented the middleware for the AWS. The success of this
experimental development proves properness and availability of these ideas, theories
and relating technologies. The developed AWS middleware provides the full basic
functionality of AWS, and hides the complex implementation details from application
programs. The ultimate goal of the AWS is to provide the next generation Web
services infrastructure enabling free and flexible business transaction exchanges
among independently built autonomously managed systems. Future issues include the

Simple01
Simple02
Fork01
Fork02
Loop01
Loop02

Basic transaction
Multiple step transaction
Transaction with a simple branching
Multiple branching transaction
Simple looping business process
Composite looping business process

12 Makoto Oya, Masaki Ito, Taisuke Kimura

dynamic model harmonization among more than three systems, enhancement of
capability of a state machine in a behavior, implementation of improved t_match()
applying ontology for example, implementation of parallel business processes
execution, and security.

Acknowledgement
This implementation was done with cooperation of our students: Hiroteru Otomo,
Masamichi Hiramoto, and Kyohei Yoshikawa. This work was supported by the Grant-
in-Aid for scientific Research, KAKENHI (21500110).

References
[1] M. Oya et al, "On Dynamic Generation of Business Protocols in Autonomous Web

Services", IEICE transaction on Information and Systems, vol. J87-D-I, no. 8, pp. 824-832,
2004 (in Japanese); Systems and Computers in Japan, Wiley, Vol.37, No.2, pp. 37-45, 2006.

[2] M. Oya, and M. Ito: "Dynamic Model Harmonization between Unknown eBusiness
Systems", IFIP I3E, Springer ISBN:0-387-28753-1, pp. 389-403, 2005.

[3] M. Oya: "Autonomous Web Services Based on Dynamic Harmonization", IFIP I3E,
Springer, ISBN:978-0-387-8590-2, pp. 139-150, September, 2008.

[4] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan, "Automatic Discovery, Interaction,
and Composition of Semantic Web Services", Journal of Web Semantics, vol. 1, Issue 1, pp.
27-46, 2003.

[5] B. Martino1, "An Ontology Matching Approach to Semantic Web Services Discovery",
Lecture Notes in Computer Science, Springer, pp. 550-558, 2006.

[6] Y. Chabeb, S. Tata,D. Belaid, "Toward an integrated ontology for web services", Proc. of
ICIW 2009 , art. no. 5072561, pp. 462-467, 2009.

[7] M. Oya, M. Ito, S. Tsukamoto, R. Takagi, T. Kimura, "AWS (Autonomous Web Services
and its Middleware", IPSJ 71st Conference Proceedings, pp. 1-503-504, 2009. (in Japanese)

[8] 8. R. Chinnici et al, Web Services Description Language (WSDL) Version 2.0, W3C
Recommendation, 2007.

[9] OASIS, "ebXML Messaging Services Version 3.0", OASIS Standard, 2007.
[10] OASIS, "Web Services Business Process Execution Language Version 2.0", OASIS

Standard, 2007.
[11]. J. Miller et al, MDA Guide Version 1.0.1, OMG doc. omg/2003-06-01, 2003.

