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Abstract:

Solid-state actuators based on active materials allow high operating frequencies with nearly unlimited displace-

ment resolution. This predestines them, for example, for application in highly precise positioning systems. 

However, the nonlinear behaviour in such systems is mainly attributed to actuator transfer characteristics as a 

result of driving with high amplitudes. In this paper a novel self-learning compensation method based on the so-

called modified Prandtl-Ishlinskii approach is presented, which allows extensive compensation of the complex 

solid-state actuator hysteretic and creep nonlinearities during operation. Finally, it is shown in an example in-

volving a two-axis piezoelectric parallel-kinematic positioning system that this compensation substantially de-

creases the deviations of the actual output displacements from the desired displacements of the controlled sys-

tem. 
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Introduction

Solid-state actuators based on active materials allow 

high operating frequencies with nearly unlimited 

displacement resolution. This predestines them, for 

example, for application in highly precise parallel-

kinematic positioning systems. Herewith, the end 

effector is moved by suitable actuators opposite to a 

fixed frame [1]. The required guiding elements are 

mainly realised as elastic joints. Thus, hard nonlin-

earities such as static and sliding friction are not 

present. Consequently, the mechanics can be re-

garded as a linear structural dynamic system consist-

ing of spatially distributed masses, dampers and 

springs. Thus, the nonlinear behaviour in such sys-

tems is mainly attributed to actuator transfer charac-

teristics as a result of driving with high amplitudes. 

The actuator transfer behaviour is normally of 

hysteretic nature and contains in addition complex 

dynamic creep effects, which emerge more or less in 

dependence of the material used [2], [4]. Therefore, 

solutions for compensating these undesirable non-

linear effects must be developed. In previous publi-

cations [2], [3] an off-line compensator synthesis 

was introduced which occurs one-time before the 

start-up of the positioning system. A disadvantage of 

this approach consists in the fact that influences like 

temperature variations or aging remain disregarded. 

To avoid this, the method pursued here is to identify 

and to model hysteretic and creep nonlinearities in 

two phases during operation, i.e. on-line, and on this 

basis in the third step to synthesise a compensator. 

In the first phase a time constant data basis for 

constructing the quadratic cost function from the 

output-input measurement data is generated. The 

cost function is minimised in the subsequent learn-

ing phase. As a result the model parameters are 

identified and a compensator is synthesised. The 

definition of suitable time intervals for the building 

and learning phases depends on certain requirements 

(driving signal form, model order) and is discussed 

in [4]. The superordinate flow control is taken over 

by a synchronous finite Moore machine. With a 

cyclic execution of the single phases the compensa-

tor nearly reaches its optimum after a few cycles. 

In the following modelling the hysteretic and 

creep actuator nonlinearities is introduced at first 

with the help of operator calculus. The theory of 

projected dynamical systems allows model identifi-

cation and compensator synthesis during operation. 

Finally, the efficiency of the developed method is 

verified in an example involving a two-axis piezo-

electric parallel-kinematic positioning system and it 

is shown that on-line compensation of nonlinearities 

substantially decreases the deviations of the actual 

output displacements from the desired displacements 

of the controlled system. 

Concept of self-learning compensator 

The signal flow diagram in Fig. 1 forms the basis of 

realising the self-learning compensator of complex 

actuator hysteretic and creep nonlinearities. Here 
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x(t) and y(t) are the input and output signals of the 

actuator; yr(t) is a given control signal. In the first 

step follows the mathematical description of the real 

output-input actuator characteristic using hysteresis 

operators. Suitable operators include the Kras-

nosel’skii-Pokrovskii operator [5] and the Preisach 

operator [6]. After identifying the model parameters 

during actuator operation (see Experimental results)

the compensator synthesis occurs. 

Compensator 
x(t)yr(t) Solid-state 

actuator 

On-line 
identification 

Compensator
synthesis 

y(t)

wE(t)

rE(t)
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Fig. 1: Signal flow diagram of self-learning com-

pensator

The inverse model required for compensating the 

actuator nonlinearities is calculated numerically. In 

order to reduce the high computational demand, the 

so-called Prandtl-Ishlinskii hysteresis (PIH) operator 

is recommended here. It belongs to the class of 

Preisach operators and guarantees a direct synthesis 

of the compensator, i.e. its inversion can be carried 

out analytically, and the inverse operator exhibits 

the same structure as the original operator. On this 

account the PIH operator is very advantageous for 

real-time applications. 

However, this operator exhibits point-symmetry 

about the origin [3]. If an unsymmetrical actuator 

transfer behaviour is present (for example, due to an 

unsymmetrical driving signal with respect to the 

zero point or as a result of saturation effects at high 

input signal amplitudes), one can unsymmetrically 

deform the point-symmetrical PIH operator by 

means of the subsequent nonlinear and memoryless 

Prandtl-Ishlinskii superposition (PIS) operator. A 

memoryless nonlinearity is understood as a non-

ambiguous characteristic behaviour which exhibits 

no branchings [3]. 

To consider in the modelling the complex dy-

namic creep effects appearing in piezoactuators, the 

PIH operator is complemented here with a creep 

operator.

A. Modelling of complex hysteresis and creep 

One obtains the complex operators for representing 

the real phenomena by the weighted linear superpo-

sition of infinitely many elementary operators with 

different characteristic parameters as so-called 

threshold-continuous model. A finite-dimensional, 

threshold-discrete approximation of the threshold-

continuous model is necessary for application in 

control and signal processing algorithms. The so-

called threshold-discrete modified Prandtl-Ishlinskii 

hysteresis operator, for example, is defined by 
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through the serial connection of the PIH operator H%

and the PIS operator S%/ to form a complete model 

for representing the unsymmetrical hysteretic behav-

iour. The threshold values rHi, i = 0…n, and rSi, i =

– m…m are the characteristic parameters of the PIH 

and PIS operators, respectively [3]. 

To be able to model the complex creep effects 

depending on the prehistory of the input signal x, the 

Prandtl-Ishlinskii creep (PIC) operator K% is intro-

duced, whose order is selected equal to the order n

of the PIH operator [2]. The PIC operator is con-

nected in the hysteretic model (1) in parallel with the 

PIH operator H% and one obtains, finally, as an en-

tire model [2], 
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B. Identifying and inverting 

For describing the deviation of the model behaviour 

! "# $T

E E x tw !  from the measured behaviour of the 

real system y(t) for every time t a scalar output error 

model  
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is defined, which linearly depends on the model 

parameters d

E 1w 2  to be identified. The variable d

indicates the parameter space dimension. ! "# $E x t!

is a vector time function depending on the input 

signal and represents the model behaviour. 

Additionally, a scalar cost function with the start 

time t0 and end time tE is determined 

# $ ! "# $
0

21
, d

2

Et

E E

t

V E x t t& 3w w ,          (4) 

which provides a quadratic measure for the devia-

tion of the model behaviour from the system behav-

iour. The purpose of the identification is to minimise 

the cost function V depending on the model parame-

ters wE. The existence of a global minimum can only 

be guaranteed in the case of a linear or convex cost 

function [4]. 

Due to the structure of the entire model (2) the er-

ror model (3) and the cost function (4) are nonline-
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arly dependent on the model parameters wHi and wKi,

i = 0…n. To ensure linearity, the error model 
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is suggested just as in [2], [4]. By means of the 

equation (5) the inverse PIS operator 1S%
'  is identi-

fied. Due to the property of the Prandtl-Ishlinskii 

method the operator S% can be determined analyti-

cally from 1S%
'  [3]. 

The main condition for inverting the entire model 

(2) is the continuity of the elementary operators and 

the strict monotony of all possible branchings. This 

is fulfilled if the sum of the weights wHi, i = 0…n, as 

well as the sum of the weights wSi, i = – m…0 and i

= 0…m, is positive definite. To ensure thermody-

namic consistency the following must apply as well: 

0,  0,  0...Hi Kiw w i n4 4 &  [3], [4]. By virtue of these 

inequality constrains the admissible parameter set 
d

EK 5 2 , where the weights are identified, is con-

strained. Therefore, the cost function (4) should be 

minimised by means of the so-called quadratic pro-

gram [2], [4] 
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Since the model and compensator synthesis occur 

during operation, the computational demand neces-

sary to solve the numerical solution to the quadratic 

program results in higher sampling periods of the 

time-discrete control. For this reason, an alternative 

method is suggested here based on the theory of 

projected dynamical systems [7]. The starting point 

is to construct a differential equation in which stable 

equilibrium point E8w  matches the solution of the 

optimisation problem (6). It is called the vector 

differential equation with projected gradient vector 

field and is defined by 
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with # $0 0E E Et K& 1w w  [4], [7]. The projection 

mapping Q is determined as the orthogonal projec-

tion of d2  onto the admissible parameter set KE.

Consequently, the solution trajectory (a) starting 

from the initial value 0E EK1w  and leaving the 

parameter set KE is displaced to the boundary EK: ,

see Fig. 2 with d = 2. 

In the following, the differential equation (7) is 

transformed into a difference equation and solved 

on-line during operation after the data basis from the 

output-input measurement data was generated. As a 

result, the model parameter set is obtained, which is 

necessary for compensator synthesis. For lack of 

space, the details concerning the numerical solvabil-

ity of the difference equation as well as the existence 

of the solution trajectory, its uniqueness and its 

global exponential stability are referred to the litera-

ture [4], [7]. 

wE8
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wE0

KE
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Fig. 2: Geometrical interpretation of  equation (7)

Thus, the compensator is explicitly determined as 

the inverse model to (2): 
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The inverse PIS operator 1S%
'  is identified by means 

of the error model (5), and the inverse PIH opera-

tor 1H%
'  can be determined analytically from H%  [3]. 

Experimental results 

In two-axis positioning system shown in Fig. 3 the 

two opposing piezoactuators can be driven in push-

pull operation which leads to a point-symmetrical 

hysteresis loop allowing modelling by means of the 

PIH operator. In the following, however, every axis 

is driven by only one actuator, in order to demon-

strate the efficiency of the modified PI method. 

Fig. 3: Piezoelectric positioning system 

Frame

Elastic
joint 

Piezoac-
tuator 

End
effector

Position-
ing 
sensor



ACTUATOR 2008, 11th International Conference on New Actuators, Bremen, Germany, 9 – 11 June 2008468

 

In the first step, the model orders of each single 

operator are determined: n = 5, m = 3. This is a 

compromise between model accuracy and model 

complexity. The threshold values # $T T T T

E H S K
 &r r r r ,

see Fig. 1, are equidistantly distributed above the 

amplitude range of the driving signal and the output 

signal of the actuator. After a reset phase of 0.1 s 

data is acquired within a duration of Tb = 8 s. Once 

the data basis is created the learning phase with Tl = 

1.9 s follows, providing the basis for the identifica-

tion of the model parameter set # $T T T T

E H S K
 &w w w w

see Fig. 1. According to the error model (5) the 

inverse PIS operator is identified here; its parame-

ters are indicated with an apostrophe. In the last step 

the compensator parameters # $T T T T

E H S K
   &r r r r and

# $T T T T

E H S K
   &w w w w  are ascertained. 

Fig. 4: Time plots of the actual value sx(t) and the 

reference value srx(t) of a positioning system: a) 

without compensation, b) with compensation

The durations of each phase are determined ac-

cording to the following aspects. The reset phase 

serves to delete the data basis and, therefore, has to 

be preferably short. During the building phase it is 

necessary to ensure that all threshold values of the 

model are sufficiently excited. The duration of Tb = 

8 s meets this requirement. The duration of the 

learning phase Tl is the multiple of the sampling 

period (125 µs), thus, ensuring a stable solution of 

projected difference equation [4]. The single phases 

are integrated into cyclic operation by which the 

compensator nearly reaches its optimum after a few 

cycles.

Fig. 4 shows as an example the measured stair-

case-shaped time plots of the actual output dis-

placement sx and of the reference displacement srx of 

the positioning system. Since the y-axis shows simi-

lar behaviour, the corresponding demonstration is 

not necessary. 

In Fig. 4a it is depicted how the actual displace-

ments deviate from the reference displacements due 

to the actuator nonlinearities. The self-learning 

compensation method affects sufficient compensa-

tion of the nonlinearities (Fig. 4b) so that the actual 

positioning values can correspond to the reference 

positioning values with a high degree of accuracy. 

Outlook 

The research work introduced in this article will be 

further developed concerning adaptive identification 

and compensation methods for complex hysteretic 

and creep nonlinearities. In future, identifying the 

model parameters will be carried out on the basis of 

continuously measured values of the input-output 

behaviour; the data basis is persistently updated in 

real time. 
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